xref: /optee_os/core/arch/arm/kernel/thread.c (revision 39a6336d8f7647cb2ed723e9e050c2b4c4a98db8)
1 /*
2  * Copyright (c) 2014, STMicroelectronics International N.V.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <platform_config.h>
28 #include <kernel/panic.h>
29 #include <kernel/thread.h>
30 #include <kernel/thread_defs.h>
31 #include "thread_private.h"
32 #include <sm/sm_defs.h>
33 #include <sm/sm.h>
34 #include <optee_msg.h>
35 #include <sm/optee_smc.h>
36 #include <arm.h>
37 #include <kernel/tz_proc_def.h>
38 #include <kernel/tz_proc.h>
39 #include <kernel/misc.h>
40 #include <mm/tee_mmu.h>
41 #include <mm/core_memprot.h>
42 #include <mm/tee_mmu_defs.h>
43 #include <mm/tee_mm.h>
44 #include <mm/tee_pager.h>
45 #include <kernel/tee_ta_manager.h>
46 #include <util.h>
47 #include <trace.h>
48 #include <assert.h>
49 
50 #ifdef ARM32
51 #define STACK_TMP_SIZE		1024
52 #define STACK_THREAD_SIZE	8192
53 
54 #if TRACE_LEVEL > 0
55 #define STACK_ABT_SIZE		2048
56 #else
57 #define STACK_ABT_SIZE		1024
58 #endif
59 
60 #endif /*ARM32*/
61 
62 #ifdef ARM64
63 #define STACK_TMP_SIZE		2048
64 #define STACK_THREAD_SIZE	8192
65 
66 #if TRACE_LEVEL > 0
67 #define STACK_ABT_SIZE		3072
68 #else
69 #define STACK_ABT_SIZE		1024
70 #endif
71 #endif /*ARM64*/
72 
73 #define RPC_MAX_NUM_PARAMS	2
74 
75 struct thread_ctx threads[CFG_NUM_THREADS];
76 
77 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE];
78 
79 #ifdef CFG_WITH_STACK_CANARIES
80 #ifdef ARM32
81 #define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
82 #endif
83 #ifdef ARM64
84 #define STACK_CANARY_SIZE	(8 * sizeof(uint32_t))
85 #endif
86 #define START_CANARY_VALUE	0xdededede
87 #define END_CANARY_VALUE	0xabababab
88 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
89 #define GET_END_CANARY(name, stack_num) \
90 	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
91 #else
92 #define STACK_CANARY_SIZE	0
93 #endif
94 
95 #define DECLARE_STACK(name, num_stacks, stack_size) \
96 	static uint32_t name[num_stacks][ \
97 		ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
98 		sizeof(uint32_t)] \
99 		__attribute__((section(".nozi.stack"), \
100 			       aligned(STACK_ALIGNMENT)))
101 
102 #define GET_STACK(stack) \
103 	((vaddr_t)(stack) + sizeof(stack) - STACK_CANARY_SIZE / 2)
104 
105 DECLARE_STACK(stack_tmp,	CFG_TEE_CORE_NB_CORE,	STACK_TMP_SIZE);
106 DECLARE_STACK(stack_abt,	CFG_TEE_CORE_NB_CORE,	STACK_ABT_SIZE);
107 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
108 DECLARE_STACK(stack_sm,		CFG_TEE_CORE_NB_CORE,	SM_STACK_SIZE);
109 #endif
110 #ifndef CFG_WITH_PAGER
111 DECLARE_STACK(stack_thread,	CFG_NUM_THREADS,	STACK_THREAD_SIZE);
112 #endif
113 
114 const vaddr_t stack_tmp_top[CFG_TEE_CORE_NB_CORE] = {
115 	GET_STACK(stack_tmp[0]),
116 #if CFG_TEE_CORE_NB_CORE > 1
117 	GET_STACK(stack_tmp[1]),
118 #endif
119 #if CFG_TEE_CORE_NB_CORE > 2
120 	GET_STACK(stack_tmp[2]),
121 #endif
122 #if CFG_TEE_CORE_NB_CORE > 3
123 	GET_STACK(stack_tmp[3]),
124 #endif
125 #if CFG_TEE_CORE_NB_CORE > 4
126 	GET_STACK(stack_tmp[4]),
127 #endif
128 #if CFG_TEE_CORE_NB_CORE > 5
129 	GET_STACK(stack_tmp[5]),
130 #endif
131 #if CFG_TEE_CORE_NB_CORE > 6
132 	GET_STACK(stack_tmp[6]),
133 #endif
134 #if CFG_TEE_CORE_NB_CORE > 7
135 	GET_STACK(stack_tmp[7]),
136 #endif
137 #if CFG_TEE_CORE_NB_CORE > 8
138 #error "Top of tmp stacks aren't defined for more than 8 CPUS"
139 #endif
140 };
141 
142 thread_smc_handler_t thread_std_smc_handler_ptr;
143 static thread_smc_handler_t thread_fast_smc_handler_ptr;
144 thread_fiq_handler_t thread_fiq_handler_ptr;
145 thread_pm_handler_t thread_cpu_on_handler_ptr;
146 thread_pm_handler_t thread_cpu_off_handler_ptr;
147 thread_pm_handler_t thread_cpu_suspend_handler_ptr;
148 thread_pm_handler_t thread_cpu_resume_handler_ptr;
149 thread_pm_handler_t thread_system_off_handler_ptr;
150 thread_pm_handler_t thread_system_reset_handler_ptr;
151 
152 
153 static unsigned int thread_global_lock = SPINLOCK_UNLOCK;
154 static bool thread_prealloc_rpc_cache;
155 
156 static void init_canaries(void)
157 {
158 #ifdef CFG_WITH_STACK_CANARIES
159 	size_t n;
160 #define INIT_CANARY(name)						\
161 	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
162 		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
163 		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
164 									\
165 		*start_canary = START_CANARY_VALUE;			\
166 		*end_canary = END_CANARY_VALUE;				\
167 		DMSG("#Stack canaries for %s[%zu] with top at %p\n",	\
168 			#name, n, (void *)(end_canary - 1));		\
169 		DMSG("watch *%p\n", (void *)end_canary);		\
170 	}
171 
172 	INIT_CANARY(stack_tmp);
173 	INIT_CANARY(stack_abt);
174 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
175 	INIT_CANARY(stack_sm);
176 #endif
177 #ifndef CFG_WITH_PAGER
178 	INIT_CANARY(stack_thread);
179 #endif
180 #endif/*CFG_WITH_STACK_CANARIES*/
181 }
182 
183 void thread_check_canaries(void)
184 {
185 #ifdef CFG_WITH_STACK_CANARIES
186 	size_t n;
187 
188 	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
189 		assert(GET_START_CANARY(stack_tmp, n) == START_CANARY_VALUE);
190 		assert(GET_END_CANARY(stack_tmp, n) == END_CANARY_VALUE);
191 	}
192 
193 	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
194 		assert(GET_START_CANARY(stack_abt, n) == START_CANARY_VALUE);
195 		assert(GET_END_CANARY(stack_abt, n) == END_CANARY_VALUE);
196 	}
197 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
198 	for (n = 0; n < ARRAY_SIZE(stack_sm); n++) {
199 		assert(GET_START_CANARY(stack_sm, n) == START_CANARY_VALUE);
200 		assert(GET_END_CANARY(stack_sm, n) == END_CANARY_VALUE);
201 	}
202 #endif
203 #ifndef CFG_WITH_PAGER
204 	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
205 		assert(GET_START_CANARY(stack_thread, n) == START_CANARY_VALUE);
206 		assert(GET_END_CANARY(stack_thread, n) == END_CANARY_VALUE);
207 	}
208 #endif
209 #endif/*CFG_WITH_STACK_CANARIES*/
210 }
211 
212 static void lock_global(void)
213 {
214 	cpu_spin_lock(&thread_global_lock);
215 }
216 
217 static void unlock_global(void)
218 {
219 	cpu_spin_unlock(&thread_global_lock);
220 }
221 
222 #ifdef ARM32
223 uint32_t thread_get_exceptions(void)
224 {
225 	uint32_t cpsr = read_cpsr();
226 
227 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
228 }
229 
230 void thread_set_exceptions(uint32_t exceptions)
231 {
232 	uint32_t cpsr = read_cpsr();
233 
234 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
235 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
236 	write_cpsr(cpsr);
237 }
238 #endif /*ARM32*/
239 
240 #ifdef ARM64
241 uint32_t thread_get_exceptions(void)
242 {
243 	uint32_t daif = read_daif();
244 
245 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
246 }
247 
248 void thread_set_exceptions(uint32_t exceptions)
249 {
250 	uint32_t daif = read_daif();
251 
252 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
253 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
254 	write_daif(daif);
255 }
256 #endif /*ARM64*/
257 
258 uint32_t thread_mask_exceptions(uint32_t exceptions)
259 {
260 	uint32_t state = thread_get_exceptions();
261 
262 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
263 	return state;
264 }
265 
266 void thread_unmask_exceptions(uint32_t state)
267 {
268 	thread_set_exceptions(state & THREAD_EXCP_ALL);
269 }
270 
271 
272 struct thread_core_local *thread_get_core_local(void)
273 {
274 	uint32_t cpu_id = get_core_pos();
275 
276 	/*
277 	 * IRQs must be disabled before playing with core_local since
278 	 * we otherwise may be rescheduled to a different core in the
279 	 * middle of this function.
280 	 */
281 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
282 
283 	assert(cpu_id < CFG_TEE_CORE_NB_CORE);
284 	return &thread_core_local[cpu_id];
285 }
286 
287 static void thread_lazy_save_ns_vfp(void)
288 {
289 #ifdef CFG_WITH_VFP
290 	struct thread_ctx *thr = threads + thread_get_id();
291 
292 	thr->vfp_state.ns_saved = false;
293 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW)
294 	/*
295 	 * ARM TF saves and restores CPACR_EL1, so we must assume NS world
296 	 * uses VFP and always preserve the register file when secure world
297 	 * is about to use it
298 	 */
299 	thr->vfp_state.ns.force_save = true;
300 #endif
301 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
302 #endif /*CFG_WITH_VFP*/
303 }
304 
305 static void thread_lazy_restore_ns_vfp(void)
306 {
307 #ifdef CFG_WITH_VFP
308 	struct thread_ctx *thr = threads + thread_get_id();
309 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
310 
311 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
312 
313 	if (tuv && tuv->lazy_saved && !tuv->saved) {
314 		vfp_lazy_save_state_final(&tuv->vfp);
315 		tuv->saved = true;
316 	}
317 
318 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
319 	thr->vfp_state.ns_saved = false;
320 #endif /*CFG_WITH_VFP*/
321 }
322 
323 #ifdef ARM32
324 static void init_regs(struct thread_ctx *thread,
325 		struct thread_smc_args *args)
326 {
327 	thread->regs.pc = (uint32_t)thread_std_smc_entry;
328 
329 	/*
330 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
331 	 * abort and unmasked FIQ.
332 	  */
333 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
334 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A;
335 	/* Enable thumb mode if it's a thumb instruction */
336 	if (thread->regs.pc & 1)
337 		thread->regs.cpsr |= CPSR_T;
338 	/* Reinitialize stack pointer */
339 	thread->regs.svc_sp = thread->stack_va_end;
340 
341 	/*
342 	 * Copy arguments into context. This will make the
343 	 * arguments appear in r0-r7 when thread is started.
344 	 */
345 	thread->regs.r0 = args->a0;
346 	thread->regs.r1 = args->a1;
347 	thread->regs.r2 = args->a2;
348 	thread->regs.r3 = args->a3;
349 	thread->regs.r4 = args->a4;
350 	thread->regs.r5 = args->a5;
351 	thread->regs.r6 = args->a6;
352 	thread->regs.r7 = args->a7;
353 }
354 #endif /*ARM32*/
355 
356 #ifdef ARM64
357 static void init_regs(struct thread_ctx *thread,
358 		struct thread_smc_args *args)
359 {
360 	thread->regs.pc = (uint64_t)thread_std_smc_entry;
361 
362 	/*
363 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
364 	 * abort and unmasked FIQ.
365 	  */
366 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
367 				    DAIFBIT_IRQ | DAIFBIT_ABT);
368 	/* Reinitialize stack pointer */
369 	thread->regs.sp = thread->stack_va_end;
370 
371 	/*
372 	 * Copy arguments into context. This will make the
373 	 * arguments appear in x0-x7 when thread is started.
374 	 */
375 	thread->regs.x[0] = args->a0;
376 	thread->regs.x[1] = args->a1;
377 	thread->regs.x[2] = args->a2;
378 	thread->regs.x[3] = args->a3;
379 	thread->regs.x[4] = args->a4;
380 	thread->regs.x[5] = args->a5;
381 	thread->regs.x[6] = args->a6;
382 	thread->regs.x[7] = args->a7;
383 }
384 #endif /*ARM64*/
385 
386 void thread_init_boot_thread(void)
387 {
388 	struct thread_core_local *l = thread_get_core_local();
389 	size_t n;
390 
391 	for (n = 0; n < CFG_NUM_THREADS; n++)
392 		TAILQ_INIT(&threads[n].mutexes);
393 
394 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
395 		thread_core_local[n].curr_thread = -1;
396 
397 	l->curr_thread = 0;
398 	threads[0].state = THREAD_STATE_ACTIVE;
399 }
400 
401 void thread_clr_boot_thread(void)
402 {
403 	struct thread_core_local *l = thread_get_core_local();
404 
405 	assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
406 	assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
407 	assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes));
408 	threads[l->curr_thread].state = THREAD_STATE_FREE;
409 	l->curr_thread = -1;
410 }
411 
412 static void thread_alloc_and_run(struct thread_smc_args *args)
413 {
414 	size_t n;
415 	struct thread_core_local *l = thread_get_core_local();
416 	bool found_thread = false;
417 
418 	assert(l->curr_thread == -1);
419 
420 	lock_global();
421 
422 	for (n = 0; n < CFG_NUM_THREADS; n++) {
423 		if (threads[n].state == THREAD_STATE_FREE) {
424 			threads[n].state = THREAD_STATE_ACTIVE;
425 			found_thread = true;
426 			break;
427 		}
428 	}
429 
430 	unlock_global();
431 
432 	if (!found_thread) {
433 		args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT;
434 		return;
435 	}
436 
437 	l->curr_thread = n;
438 
439 	threads[n].flags = 0;
440 	init_regs(threads + n, args);
441 
442 	/* Save Hypervisor Client ID */
443 	threads[n].hyp_clnt_id = args->a7;
444 
445 	thread_lazy_save_ns_vfp();
446 	thread_resume(&threads[n].regs);
447 }
448 
449 #ifdef ARM32
450 static void copy_a0_to_a5(struct thread_ctx_regs *regs,
451 		struct thread_smc_args *args)
452 {
453 	/*
454 	 * Update returned values from RPC, values will appear in
455 	 * r0-r3 when thread is resumed.
456 	 */
457 	regs->r0 = args->a0;
458 	regs->r1 = args->a1;
459 	regs->r2 = args->a2;
460 	regs->r3 = args->a3;
461 	regs->r4 = args->a4;
462 	regs->r5 = args->a5;
463 }
464 #endif /*ARM32*/
465 
466 #ifdef ARM64
467 static void copy_a0_to_a5(struct thread_ctx_regs *regs,
468 		struct thread_smc_args *args)
469 {
470 	/*
471 	 * Update returned values from RPC, values will appear in
472 	 * x0-x3 when thread is resumed.
473 	 */
474 	regs->x[0] = args->a0;
475 	regs->x[1] = args->a1;
476 	regs->x[2] = args->a2;
477 	regs->x[3] = args->a3;
478 	regs->x[4] = args->a4;
479 	regs->x[5] = args->a5;
480 }
481 #endif /*ARM64*/
482 
483 static void thread_resume_from_rpc(struct thread_smc_args *args)
484 {
485 	size_t n = args->a3; /* thread id */
486 	struct thread_core_local *l = thread_get_core_local();
487 	uint32_t rv = 0;
488 
489 	assert(l->curr_thread == -1);
490 
491 	lock_global();
492 
493 	if (n < CFG_NUM_THREADS &&
494 	    threads[n].state == THREAD_STATE_SUSPENDED &&
495 	    args->a7 == threads[n].hyp_clnt_id)
496 		threads[n].state = THREAD_STATE_ACTIVE;
497 	else
498 		rv = OPTEE_SMC_RETURN_ERESUME;
499 
500 	unlock_global();
501 
502 	if (rv) {
503 		args->a0 = rv;
504 		return;
505 	}
506 
507 	l->curr_thread = n;
508 
509 	if (threads[n].have_user_map)
510 		core_mmu_set_user_map(&threads[n].user_map);
511 
512 	/*
513 	 * Return from RPC to request service of an IRQ must not
514 	 * get parameters from non-secure world.
515 	 */
516 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
517 		copy_a0_to_a5(&threads[n].regs, args);
518 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
519 	}
520 
521 	thread_lazy_save_ns_vfp();
522 	thread_resume(&threads[n].regs);
523 }
524 
525 void thread_handle_fast_smc(struct thread_smc_args *args)
526 {
527 	thread_check_canaries();
528 	thread_fast_smc_handler_ptr(args);
529 	/* Fast handlers must not unmask any exceptions */
530 	assert(thread_get_exceptions() == THREAD_EXCP_ALL);
531 }
532 
533 void thread_handle_std_smc(struct thread_smc_args *args)
534 {
535 	thread_check_canaries();
536 
537 	if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC)
538 		thread_resume_from_rpc(args);
539 	else
540 		thread_alloc_and_run(args);
541 }
542 
543 /* Helper routine for the assembly function thread_std_smc_entry() */
544 void __thread_std_smc_entry(struct thread_smc_args *args)
545 {
546 	struct thread_ctx *thr = threads + thread_get_id();
547 
548 	if (!thr->rpc_arg) {
549 		paddr_t parg;
550 		uint64_t carg;
551 		void *arg;
552 
553 		thread_rpc_alloc_arg(
554 			OPTEE_MSG_GET_ARG_SIZE(RPC_MAX_NUM_PARAMS),
555 			&parg, &carg);
556 		if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) ||
557 		    !(arg = phys_to_virt(parg, CORE_MEM_NSEC_SHM))) {
558 			thread_rpc_free_arg(carg);
559 			args->a0 = OPTEE_SMC_RETURN_ENOMEM;
560 			return;
561 		}
562 
563 		thr->rpc_arg = arg;
564 		thr->rpc_carg = carg;
565 	}
566 
567 	thread_std_smc_handler_ptr(args);
568 
569 	if (!thread_prealloc_rpc_cache) {
570 		thread_rpc_free_arg(thr->rpc_carg);
571 		thr->rpc_carg = 0;
572 		thr->rpc_arg = 0;
573 	}
574 }
575 
576 void *thread_get_tmp_sp(void)
577 {
578 	struct thread_core_local *l = thread_get_core_local();
579 
580 	return (void *)l->tmp_stack_va_end;
581 }
582 
583 #ifdef ARM64
584 vaddr_t thread_get_saved_thread_sp(void)
585 {
586 	struct thread_core_local *l = thread_get_core_local();
587 	int ct = l->curr_thread;
588 
589 	assert(ct != -1);
590 	return threads[ct].kern_sp;
591 }
592 #endif /*ARM64*/
593 
594 bool thread_addr_is_in_stack(vaddr_t va)
595 {
596 	struct thread_ctx *thr = threads + thread_get_id();
597 
598 	return va < thr->stack_va_end &&
599 	       va >= (thr->stack_va_end - STACK_THREAD_SIZE);
600 }
601 
602 void thread_state_free(void)
603 {
604 	struct thread_core_local *l = thread_get_core_local();
605 	int ct = l->curr_thread;
606 
607 	assert(ct != -1);
608 	assert(TAILQ_EMPTY(&threads[ct].mutexes));
609 
610 	thread_lazy_restore_ns_vfp();
611 
612 	lock_global();
613 
614 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
615 	threads[ct].state = THREAD_STATE_FREE;
616 	threads[ct].flags = 0;
617 	l->curr_thread = -1;
618 
619 	unlock_global();
620 }
621 
622 #ifdef ARM32
623 static bool is_from_user(uint32_t cpsr)
624 {
625 	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
626 }
627 #endif
628 
629 #ifdef ARM64
630 static bool is_from_user(uint32_t cpsr)
631 {
632 	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
633 		return true;
634 	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
635 	     SPSR_64_MODE_EL0)
636 		return true;
637 	return false;
638 }
639 #endif
640 
641 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
642 {
643 	struct thread_core_local *l = thread_get_core_local();
644 	int ct = l->curr_thread;
645 
646 	assert(ct != -1);
647 
648 	thread_check_canaries();
649 
650 	if (is_from_user(cpsr))
651 		thread_user_save_vfp();
652 	thread_lazy_restore_ns_vfp();
653 
654 	lock_global();
655 
656 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
657 	threads[ct].flags |= flags;
658 	threads[ct].regs.cpsr = cpsr;
659 	threads[ct].regs.pc = pc;
660 	threads[ct].state = THREAD_STATE_SUSPENDED;
661 
662 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
663 	if (threads[ct].have_user_map) {
664 		core_mmu_get_user_map(&threads[ct].user_map);
665 		core_mmu_set_user_map(NULL);
666 	}
667 
668 
669 	l->curr_thread = -1;
670 
671 	unlock_global();
672 
673 	return ct;
674 }
675 
676 #ifdef ARM32
677 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
678 {
679 	l->tmp_stack_va_end = sp;
680 	thread_set_irq_sp(sp);
681 	thread_set_fiq_sp(sp);
682 }
683 
684 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp)
685 {
686 	thread_set_abt_sp(sp);
687 }
688 #endif /*ARM32*/
689 
690 #ifdef ARM64
691 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
692 {
693 	/*
694 	 * We're already using the tmp stack when this function is called
695 	 * so there's no need to assign it to any stack pointer. However,
696 	 * we'll need to restore it at different times so store it here.
697 	 */
698 	l->tmp_stack_va_end = sp;
699 }
700 
701 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
702 {
703 	l->abt_stack_va_end = sp;
704 }
705 #endif /*ARM64*/
706 
707 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
708 {
709 	if (thread_id >= CFG_NUM_THREADS)
710 		return false;
711 	threads[thread_id].stack_va_end = sp;
712 	return true;
713 }
714 
715 int thread_get_id_may_fail(void)
716 {
717 	/* thread_get_core_local() requires IRQs to be disabled */
718 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
719 	struct thread_core_local *l = thread_get_core_local();
720 	int ct = l->curr_thread;
721 
722 	thread_unmask_exceptions(exceptions);
723 	return ct;
724 }
725 
726 int thread_get_id(void)
727 {
728 	int ct = thread_get_id_may_fail();
729 
730 	assert((ct >= 0) && (ct < CFG_NUM_THREADS));
731 	return ct;
732 }
733 
734 static void init_handlers(const struct thread_handlers *handlers)
735 {
736 	thread_std_smc_handler_ptr = handlers->std_smc;
737 	thread_fast_smc_handler_ptr = handlers->fast_smc;
738 	thread_fiq_handler_ptr = handlers->fiq;
739 	thread_cpu_on_handler_ptr = handlers->cpu_on;
740 	thread_cpu_off_handler_ptr = handlers->cpu_off;
741 	thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
742 	thread_cpu_resume_handler_ptr = handlers->cpu_resume;
743 	thread_system_off_handler_ptr = handlers->system_off;
744 	thread_system_reset_handler_ptr = handlers->system_reset;
745 }
746 
747 
748 #ifdef CFG_WITH_PAGER
749 static void init_thread_stacks(void)
750 {
751 	size_t n;
752 
753 	/*
754 	 * Allocate virtual memory for thread stacks.
755 	 */
756 	for (n = 0; n < CFG_NUM_THREADS; n++) {
757 		tee_mm_entry_t *mm;
758 		vaddr_t sp;
759 
760 		/* Find vmem for thread stack and its protection gap */
761 		mm = tee_mm_alloc(&tee_mm_vcore,
762 				  SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
763 		TEE_ASSERT(mm);
764 
765 		/* Claim eventual physical page */
766 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
767 				    true);
768 
769 		/* Realloc both protection vmem and stack vmem separately */
770 		sp = tee_mm_get_smem(mm);
771 		tee_mm_free(mm);
772 		mm = tee_mm_alloc2(&tee_mm_vcore, sp, SMALL_PAGE_SIZE);
773 		TEE_ASSERT(mm);
774 		mm = tee_mm_alloc2(&tee_mm_vcore, sp + SMALL_PAGE_SIZE,
775 						  STACK_THREAD_SIZE);
776 		TEE_ASSERT(mm);
777 
778 		/* init effective stack */
779 		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
780 		if (!thread_init_stack(n, sp))
781 			panic();
782 
783 		/* Add the area to the pager */
784 		tee_pager_add_area(mm, TEE_PAGER_AREA_RW, NULL, NULL);
785 	}
786 }
787 #else
788 static void init_thread_stacks(void)
789 {
790 	size_t n;
791 
792 	/* Assign the thread stacks */
793 	for (n = 0; n < CFG_NUM_THREADS; n++) {
794 		if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
795 			panic();
796 	}
797 }
798 #endif /*CFG_WITH_PAGER*/
799 
800 void thread_init_primary(const struct thread_handlers *handlers)
801 {
802 	init_handlers(handlers);
803 
804 	/* Initialize canaries around the stacks */
805 	init_canaries();
806 
807 	init_thread_stacks();
808 }
809 
810 static void init_sec_mon(size_t pos __maybe_unused)
811 {
812 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
813 	/* Initialize secure monitor */
814 	sm_init(GET_STACK(stack_sm[pos]));
815 	sm_set_entry_vector(thread_vector_table);
816 #endif
817 }
818 
819 void thread_init_per_cpu(void)
820 {
821 	size_t pos = get_core_pos();
822 	struct thread_core_local *l = thread_get_core_local();
823 
824 	init_sec_mon(pos);
825 
826 	set_tmp_stack(l, GET_STACK(stack_tmp[pos]));
827 	set_abt_stack(l, GET_STACK(stack_abt[pos]));
828 
829 	thread_init_vbar();
830 }
831 
832 struct thread_specific_data *thread_get_tsd(void)
833 {
834 	return &threads[thread_get_id()].tsd;
835 }
836 
837 struct thread_ctx_regs *thread_get_ctx_regs(void)
838 {
839 	struct thread_core_local *l = thread_get_core_local();
840 
841 	assert(l->curr_thread != -1);
842 	return &threads[l->curr_thread].regs;
843 }
844 
845 void thread_set_irq(bool enable)
846 {
847 	/* thread_get_core_local() requires IRQs to be disabled */
848 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
849 	struct thread_core_local *l;
850 
851 	l = thread_get_core_local();
852 
853 	assert(l->curr_thread != -1);
854 
855 	if (enable) {
856 		threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE;
857 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
858 	} else {
859 		/*
860 		 * No need to disable IRQ here since it's already disabled
861 		 * above.
862 		 */
863 		threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE;
864 	}
865 }
866 
867 void thread_restore_irq(void)
868 {
869 	/* thread_get_core_local() requires IRQs to be disabled */
870 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
871 	struct thread_core_local *l;
872 
873 	l = thread_get_core_local();
874 
875 	assert(l->curr_thread != -1);
876 
877 	if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE)
878 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
879 }
880 
881 #ifdef CFG_WITH_VFP
882 uint32_t thread_kernel_enable_vfp(void)
883 {
884 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
885 	struct thread_ctx *thr = threads + thread_get_id();
886 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
887 
888 	assert(!vfp_is_enabled());
889 
890 	if (!thr->vfp_state.ns_saved) {
891 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
892 		thr->vfp_state.ns_saved = true;
893 	} else if (thr->vfp_state.sec_lazy_saved &&
894 		   !thr->vfp_state.sec_saved) {
895 		/*
896 		 * This happens when we're handling an abort while the
897 		 * thread was using the VFP state.
898 		 */
899 		vfp_lazy_save_state_final(&thr->vfp_state.sec);
900 		thr->vfp_state.sec_saved = true;
901 	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
902 		/*
903 		 * This can happen either during syscall or abort
904 		 * processing (while processing a syscall).
905 		 */
906 		vfp_lazy_save_state_final(&tuv->vfp);
907 		tuv->saved = true;
908 	}
909 
910 	vfp_enable();
911 	return exceptions;
912 }
913 
914 void thread_kernel_disable_vfp(uint32_t state)
915 {
916 	uint32_t exceptions;
917 
918 	assert(vfp_is_enabled());
919 
920 	vfp_disable();
921 	exceptions = thread_get_exceptions();
922 	assert(exceptions & THREAD_EXCP_IRQ);
923 	exceptions &= ~THREAD_EXCP_IRQ;
924 	exceptions |= state & THREAD_EXCP_IRQ;
925 	thread_set_exceptions(exceptions);
926 }
927 
928 void thread_kernel_save_vfp(void)
929 {
930 	struct thread_ctx *thr = threads + thread_get_id();
931 
932 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
933 	if (vfp_is_enabled()) {
934 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
935 		thr->vfp_state.sec_lazy_saved = true;
936 	}
937 }
938 
939 void thread_kernel_restore_vfp(void)
940 {
941 	struct thread_ctx *thr = threads + thread_get_id();
942 
943 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
944 	assert(!vfp_is_enabled());
945 	if (thr->vfp_state.sec_lazy_saved) {
946 		vfp_lazy_restore_state(&thr->vfp_state.sec,
947 				       thr->vfp_state.sec_saved);
948 		thr->vfp_state.sec_saved = false;
949 		thr->vfp_state.sec_lazy_saved = false;
950 	}
951 }
952 
953 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
954 {
955 	struct thread_ctx *thr = threads + thread_get_id();
956 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
957 
958 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
959 	assert(!vfp_is_enabled());
960 
961 	if (!thr->vfp_state.ns_saved) {
962 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
963 		thr->vfp_state.ns_saved = true;
964 	} else if (tuv && uvfp != tuv) {
965 		if (tuv->lazy_saved && !tuv->saved) {
966 			vfp_lazy_save_state_final(&tuv->vfp);
967 			tuv->saved = true;
968 		}
969 	}
970 
971 	if (uvfp->lazy_saved)
972 		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
973 	uvfp->lazy_saved = false;
974 	uvfp->saved = false;
975 
976 	thr->vfp_state.uvfp = uvfp;
977 	vfp_enable();
978 }
979 
980 void thread_user_save_vfp(void)
981 {
982 	struct thread_ctx *thr = threads + thread_get_id();
983 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
984 
985 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
986 	if (!vfp_is_enabled())
987 		return;
988 
989 	assert(tuv && !tuv->lazy_saved && !tuv->saved);
990 	vfp_lazy_save_state_init(&tuv->vfp);
991 	tuv->lazy_saved = true;
992 }
993 
994 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp)
995 {
996 	struct thread_ctx *thr = threads + thread_get_id();
997 
998 	if (uvfp == thr->vfp_state.uvfp)
999 		thr->vfp_state.uvfp = NULL;
1000 	uvfp->lazy_saved = false;
1001 	uvfp->saved = false;
1002 }
1003 #endif /*CFG_WITH_VFP*/
1004 
1005 #ifdef ARM32
1006 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1007 {
1008 	uint32_t s;
1009 
1010 	if (!is_32bit)
1011 		return false;
1012 
1013 	s = read_spsr();
1014 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
1015 	s |= CPSR_MODE_USR;
1016 	if (entry_func & 1)
1017 		s |= CPSR_T;
1018 	*spsr = s;
1019 	return true;
1020 }
1021 #endif
1022 
1023 #ifdef ARM64
1024 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1025 {
1026 	uint32_t s;
1027 
1028 	if (is_32bit) {
1029 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
1030 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
1031 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
1032 	} else {
1033 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
1034 	}
1035 
1036 	*spsr = s;
1037 	return true;
1038 }
1039 #endif
1040 
1041 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1042 		unsigned long a2, unsigned long a3, unsigned long user_sp,
1043 		unsigned long entry_func, bool is_32bit,
1044 		uint32_t *exit_status0, uint32_t *exit_status1)
1045 {
1046 	uint32_t spsr;
1047 
1048 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1049 		*exit_status0 = 1; /* panic */
1050 		*exit_status1 = 0xbadbadba;
1051 		return 0;
1052 	}
1053 	return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func,
1054 					spsr, exit_status0, exit_status1);
1055 }
1056 
1057 void thread_add_mutex(struct mutex *m)
1058 {
1059 	struct thread_core_local *l = thread_get_core_local();
1060 	int ct = l->curr_thread;
1061 
1062 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1063 	assert(m->owner_id == -1);
1064 	m->owner_id = ct;
1065 	TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link);
1066 }
1067 
1068 void thread_rem_mutex(struct mutex *m)
1069 {
1070 	struct thread_core_local *l = thread_get_core_local();
1071 	int ct = l->curr_thread;
1072 
1073 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1074 	assert(m->owner_id == ct);
1075 	m->owner_id = -1;
1076 	TAILQ_REMOVE(&threads[ct].mutexes, m, link);
1077 }
1078 
1079 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie)
1080 {
1081 	bool rv;
1082 	size_t n;
1083 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
1084 
1085 	lock_global();
1086 
1087 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1088 		if (threads[n].state != THREAD_STATE_FREE) {
1089 			rv = false;
1090 			goto out;
1091 		}
1092 	}
1093 
1094 	rv = true;
1095 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1096 		if (threads[n].rpc_arg) {
1097 			*cookie = threads[n].rpc_carg;
1098 			threads[n].rpc_carg = 0;
1099 			threads[n].rpc_arg = NULL;
1100 			goto out;
1101 		}
1102 	}
1103 
1104 	*cookie = 0;
1105 	thread_prealloc_rpc_cache = false;
1106 out:
1107 	unlock_global();
1108 	thread_unmask_exceptions(exceptions);
1109 	return rv;
1110 }
1111 
1112 bool thread_enable_prealloc_rpc_cache(void)
1113 {
1114 	bool rv;
1115 	size_t n;
1116 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
1117 
1118 	lock_global();
1119 
1120 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1121 		if (threads[n].state != THREAD_STATE_FREE) {
1122 			rv = false;
1123 			goto out;
1124 		}
1125 	}
1126 
1127 	rv = true;
1128 	thread_prealloc_rpc_cache = true;
1129 out:
1130 	unlock_global();
1131 	thread_unmask_exceptions(exceptions);
1132 	return rv;
1133 }
1134 
1135 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params,
1136 		struct optee_msg_param *params)
1137 {
1138 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1139 	struct thread_ctx *thr = threads + thread_get_id();
1140 	struct optee_msg_arg *arg = thr->rpc_arg;
1141 	uint64_t carg = thr->rpc_carg;
1142 	const size_t params_size = sizeof(struct optee_msg_param) * num_params;
1143 	size_t n;
1144 
1145 	TEE_ASSERT(arg && carg && num_params <= RPC_MAX_NUM_PARAMS);
1146 
1147 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(RPC_MAX_NUM_PARAMS));
1148 	arg->cmd = cmd;
1149 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1150 	arg->num_params = num_params;
1151 	memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size);
1152 
1153 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1154 	thread_rpc(rpc_args);
1155 	for (n = 0; n < num_params; n++) {
1156 		switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) {
1157 		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
1158 		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
1159 		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
1160 		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
1161 		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
1162 		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
1163 			memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n,
1164 			       sizeof(struct optee_msg_param));
1165 			break;
1166 		default:
1167 			break;
1168 		}
1169 	}
1170 	return arg->ret;
1171 }
1172 
1173 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
1174 		struct optee_msg_param *params)
1175 {
1176 	uint32_t ret;
1177 
1178 	ret = rpc_cmd_nolock(cmd, num_params, params);
1179 
1180 	return ret;
1181 }
1182 
1183 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie)
1184 {
1185 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1186 		OPTEE_SMC_RETURN_RPC_ALLOC, size};
1187 
1188 	thread_rpc(rpc_args);
1189 	*arg = reg_pair_to_64(rpc_args[1], rpc_args[2]);
1190 	*cookie = reg_pair_to_64(rpc_args[4], rpc_args[5]);
1191 }
1192 
1193 /**
1194  * Allocates shared memory buffer via RPC
1195  *
1196  * @size:	size in bytes of shared memory buffer
1197  * @align:	required alignment of buffer
1198  * @bt:		buffer type OPTEE_MSG_RPC_SHM_TYPE_*
1199  * @payload:	returned physical pointer to buffer, 0 if allocation
1200  *		failed.
1201  * @cookie:	returned cookie used when freeing the buffer
1202  */
1203 static void thread_rpc_alloc(size_t size, size_t align, unsigned bt,
1204 			paddr_t *payload, uint64_t *cookie)
1205 {
1206 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1207 	struct thread_ctx *thr = threads + thread_get_id();
1208 	struct optee_msg_arg *arg = thr->rpc_arg;
1209 	uint64_t carg = thr->rpc_carg;
1210 	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);
1211 
1212 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
1213 	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC;
1214 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1215 	arg->num_params = 1;
1216 
1217 	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1218 	params[0].u.value.a = bt;
1219 	params[0].u.value.b = size;
1220 	params[0].u.value.c = align;
1221 
1222 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1223 	thread_rpc(rpc_args);
1224 	if (arg->ret != TEE_SUCCESS)
1225 		goto fail;
1226 
1227 	if (arg->num_params != 1)
1228 		goto fail;
1229 
1230 	if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT)
1231 		goto fail;
1232 
1233 	*payload = params[0].u.tmem.buf_ptr;
1234 	*cookie = params[0].u.tmem.shm_ref;
1235 	return;
1236 fail:
1237 	*payload = 0;
1238 	*cookie = 0;
1239 }
1240 
1241 /**
1242  * Free physical memory previously allocated with thread_rpc_alloc()
1243  *
1244  * @cookie:	cookie received when allocating the buffer
1245  * @bt:		 must be the same as supplied when allocating
1246  */
1247 static void thread_rpc_free(unsigned bt, uint64_t cookie)
1248 {
1249 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1250 	struct thread_ctx *thr = threads + thread_get_id();
1251 	struct optee_msg_arg *arg = thr->rpc_arg;
1252 	uint64_t carg = thr->rpc_carg;
1253 	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);
1254 
1255 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
1256 	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE;
1257 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1258 	arg->num_params = 1;
1259 
1260 	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1261 	params[0].u.value.a = bt;
1262 	params[0].u.value.b = cookie;
1263 	params[0].u.value.c = 0;
1264 
1265 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1266 	thread_rpc(rpc_args);
1267 }
1268 
1269 
1270 void thread_rpc_free_arg(uint64_t cookie)
1271 {
1272 	if (cookie) {
1273 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1274 			OPTEE_SMC_RETURN_RPC_FREE};
1275 
1276 		reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2);
1277 		thread_rpc(rpc_args);
1278 	}
1279 }
1280 
1281 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie)
1282 {
1283 	thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie);
1284 }
1285 
1286 void thread_rpc_free_payload(uint64_t cookie)
1287 {
1288 	thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie);
1289 }
1290