xref: /optee_os/core/arch/arm/kernel/thread.c (revision 1e61d77fe195feab4b8d87331d0d066af41d7acd)
1 /*
2  * Copyright (c) 2016, Linaro Limited
3  * Copyright (c) 2014, STMicroelectronics International N.V.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice,
10  * this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <platform_config.h>
30 
31 #include <arm.h>
32 #include <assert.h>
33 #include <keep.h>
34 #include <kernel/misc.h>
35 #include <kernel/panic.h>
36 #include <kernel/spinlock.h>
37 #include <kernel/tee_ta_manager.h>
38 #include <kernel/thread_defs.h>
39 #include <kernel/thread.h>
40 #include <mm/core_memprot.h>
41 #include <mm/tee_mm.h>
42 #include <mm/tee_mmu_defs.h>
43 #include <mm/tee_mmu.h>
44 #include <mm/tee_pager.h>
45 #include <optee_msg.h>
46 #include <sm/optee_smc.h>
47 #include <sm/sm.h>
48 #include <tee/tee_fs_rpc.h>
49 #include <trace.h>
50 #include <util.h>
51 
52 #include "thread_private.h"
53 
54 #ifdef CFG_WITH_ARM_TRUSTED_FW
55 #define STACK_TMP_OFFS		0
56 #else
57 #define STACK_TMP_OFFS		SM_STACK_TMP_RESERVE_SIZE
58 #endif
59 
60 
61 #ifdef ARM32
62 #ifdef CFG_CORE_SANITIZE_KADDRESS
63 #define STACK_TMP_SIZE		(3072 + STACK_TMP_OFFS)
64 #else
65 #define STACK_TMP_SIZE		(1024 + STACK_TMP_OFFS)
66 #endif
67 #define STACK_THREAD_SIZE	8192
68 
69 #if TRACE_LEVEL > 0
70 #ifdef CFG_CORE_SANITIZE_KADDRESS
71 #define STACK_ABT_SIZE		3072
72 #else
73 #define STACK_ABT_SIZE		2048
74 #endif
75 #else
76 #define STACK_ABT_SIZE		1024
77 #endif
78 
79 #endif /*ARM32*/
80 
81 #ifdef ARM64
82 #define STACK_TMP_SIZE		(2048 + STACK_TMP_OFFS)
83 #define STACK_THREAD_SIZE	8192
84 
85 #if TRACE_LEVEL > 0
86 #define STACK_ABT_SIZE		3072
87 #else
88 #define STACK_ABT_SIZE		1024
89 #endif
90 #endif /*ARM64*/
91 
92 struct thread_ctx threads[CFG_NUM_THREADS];
93 
94 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE];
95 
96 #ifdef CFG_WITH_STACK_CANARIES
97 #ifdef ARM32
98 #define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
99 #endif
100 #ifdef ARM64
101 #define STACK_CANARY_SIZE	(8 * sizeof(uint32_t))
102 #endif
103 #define START_CANARY_VALUE	0xdededede
104 #define END_CANARY_VALUE	0xabababab
105 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
106 #define GET_END_CANARY(name, stack_num) \
107 	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
108 #else
109 #define STACK_CANARY_SIZE	0
110 #endif
111 
112 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \
113 linkage uint32_t name[num_stacks] \
114 		[ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
115 		sizeof(uint32_t)] \
116 		__attribute__((section(".nozi_stack"), \
117 			       aligned(STACK_ALIGNMENT)))
118 
119 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2)
120 
121 #define GET_STACK(stack) \
122 	((vaddr_t)(stack) + STACK_SIZE(stack))
123 
124 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global */);
125 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static);
126 #ifndef CFG_WITH_PAGER
127 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static);
128 #endif
129 
130 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]);
131 const uint32_t stack_tmp_offset = STACK_TMP_OFFS + STACK_CANARY_SIZE / 2;
132 
133 /*
134  * These stack setup info are required by secondary boot cores before they
135  * each locally enable the pager (the mmu). Hence kept in pager sections.
136  */
137 KEEP_PAGER(stack_tmp);
138 KEEP_PAGER(stack_tmp_stride);
139 KEEP_PAGER(stack_tmp_offset);
140 
141 thread_smc_handler_t thread_std_smc_handler_ptr;
142 static thread_smc_handler_t thread_fast_smc_handler_ptr;
143 thread_fiq_handler_t thread_fiq_handler_ptr;
144 thread_pm_handler_t thread_cpu_on_handler_ptr;
145 thread_pm_handler_t thread_cpu_off_handler_ptr;
146 thread_pm_handler_t thread_cpu_suspend_handler_ptr;
147 thread_pm_handler_t thread_cpu_resume_handler_ptr;
148 thread_pm_handler_t thread_system_off_handler_ptr;
149 thread_pm_handler_t thread_system_reset_handler_ptr;
150 
151 
152 static unsigned int thread_global_lock = SPINLOCK_UNLOCK;
153 static bool thread_prealloc_rpc_cache;
154 
155 static void init_canaries(void)
156 {
157 #ifdef CFG_WITH_STACK_CANARIES
158 	size_t n;
159 #define INIT_CANARY(name)						\
160 	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
161 		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
162 		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
163 									\
164 		*start_canary = START_CANARY_VALUE;			\
165 		*end_canary = END_CANARY_VALUE;				\
166 		DMSG("#Stack canaries for %s[%zu] with top at %p\n",	\
167 			#name, n, (void *)(end_canary - 1));		\
168 		DMSG("watch *%p\n", (void *)end_canary);		\
169 	}
170 
171 	INIT_CANARY(stack_tmp);
172 	INIT_CANARY(stack_abt);
173 #ifndef CFG_WITH_PAGER
174 	INIT_CANARY(stack_thread);
175 #endif
176 #endif/*CFG_WITH_STACK_CANARIES*/
177 }
178 
179 #define CANARY_DIED(stack, loc, n) \
180 	do { \
181 		EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \
182 		panic(); \
183 	} while (0)
184 
185 void thread_check_canaries(void)
186 {
187 #ifdef CFG_WITH_STACK_CANARIES
188 	size_t n;
189 
190 	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
191 		if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE)
192 			CANARY_DIED(stack_tmp, start, n);
193 		if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE)
194 			CANARY_DIED(stack_tmp, end, n);
195 	}
196 
197 	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
198 		if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE)
199 			CANARY_DIED(stack_abt, start, n);
200 		if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE)
201 			CANARY_DIED(stack_abt, end, n);
202 
203 	}
204 #ifndef CFG_WITH_PAGER
205 	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
206 		if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE)
207 			CANARY_DIED(stack_thread, start, n);
208 		if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE)
209 			CANARY_DIED(stack_thread, end, n);
210 	}
211 #endif
212 #endif/*CFG_WITH_STACK_CANARIES*/
213 }
214 
215 static void lock_global(void)
216 {
217 	cpu_spin_lock(&thread_global_lock);
218 }
219 
220 static void unlock_global(void)
221 {
222 	cpu_spin_unlock(&thread_global_lock);
223 }
224 
225 #ifdef ARM32
226 uint32_t thread_get_exceptions(void)
227 {
228 	uint32_t cpsr = read_cpsr();
229 
230 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
231 }
232 
233 void thread_set_exceptions(uint32_t exceptions)
234 {
235 	uint32_t cpsr = read_cpsr();
236 
237 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
238 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
239 	write_cpsr(cpsr);
240 }
241 #endif /*ARM32*/
242 
243 #ifdef ARM64
244 uint32_t thread_get_exceptions(void)
245 {
246 	uint32_t daif = read_daif();
247 
248 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
249 }
250 
251 void thread_set_exceptions(uint32_t exceptions)
252 {
253 	uint32_t daif = read_daif();
254 
255 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
256 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
257 	write_daif(daif);
258 }
259 #endif /*ARM64*/
260 
261 uint32_t thread_mask_exceptions(uint32_t exceptions)
262 {
263 	uint32_t state = thread_get_exceptions();
264 
265 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
266 	return state;
267 }
268 
269 void thread_unmask_exceptions(uint32_t state)
270 {
271 	thread_set_exceptions(state & THREAD_EXCP_ALL);
272 }
273 
274 
275 struct thread_core_local *thread_get_core_local(void)
276 {
277 	uint32_t cpu_id = get_core_pos();
278 
279 	/*
280 	 * IRQs must be disabled before playing with core_local since
281 	 * we otherwise may be rescheduled to a different core in the
282 	 * middle of this function.
283 	 */
284 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
285 
286 	assert(cpu_id < CFG_TEE_CORE_NB_CORE);
287 	return &thread_core_local[cpu_id];
288 }
289 
290 static void thread_lazy_save_ns_vfp(void)
291 {
292 #ifdef CFG_WITH_VFP
293 	struct thread_ctx *thr = threads + thread_get_id();
294 
295 	thr->vfp_state.ns_saved = false;
296 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW)
297 	/*
298 	 * ARM TF saves and restores CPACR_EL1, so we must assume NS world
299 	 * uses VFP and always preserve the register file when secure world
300 	 * is about to use it
301 	 */
302 	thr->vfp_state.ns.force_save = true;
303 #endif
304 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
305 #endif /*CFG_WITH_VFP*/
306 }
307 
308 static void thread_lazy_restore_ns_vfp(void)
309 {
310 #ifdef CFG_WITH_VFP
311 	struct thread_ctx *thr = threads + thread_get_id();
312 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
313 
314 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
315 
316 	if (tuv && tuv->lazy_saved && !tuv->saved) {
317 		vfp_lazy_save_state_final(&tuv->vfp);
318 		tuv->saved = true;
319 	}
320 
321 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
322 	thr->vfp_state.ns_saved = false;
323 #endif /*CFG_WITH_VFP*/
324 }
325 
326 #ifdef ARM32
327 static void init_regs(struct thread_ctx *thread,
328 		struct thread_smc_args *args)
329 {
330 	thread->regs.pc = (uint32_t)thread_std_smc_entry;
331 
332 	/*
333 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
334 	 * abort and unmasked FIQ.
335 	  */
336 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
337 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A;
338 	/* Enable thumb mode if it's a thumb instruction */
339 	if (thread->regs.pc & 1)
340 		thread->regs.cpsr |= CPSR_T;
341 	/* Reinitialize stack pointer */
342 	thread->regs.svc_sp = thread->stack_va_end;
343 
344 	/*
345 	 * Copy arguments into context. This will make the
346 	 * arguments appear in r0-r7 when thread is started.
347 	 */
348 	thread->regs.r0 = args->a0;
349 	thread->regs.r1 = args->a1;
350 	thread->regs.r2 = args->a2;
351 	thread->regs.r3 = args->a3;
352 	thread->regs.r4 = args->a4;
353 	thread->regs.r5 = args->a5;
354 	thread->regs.r6 = args->a6;
355 	thread->regs.r7 = args->a7;
356 }
357 #endif /*ARM32*/
358 
359 #ifdef ARM64
360 static void init_regs(struct thread_ctx *thread,
361 		struct thread_smc_args *args)
362 {
363 	thread->regs.pc = (uint64_t)thread_std_smc_entry;
364 
365 	/*
366 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
367 	 * abort and unmasked FIQ.
368 	  */
369 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
370 				    DAIFBIT_IRQ | DAIFBIT_ABT);
371 	/* Reinitialize stack pointer */
372 	thread->regs.sp = thread->stack_va_end;
373 
374 	/*
375 	 * Copy arguments into context. This will make the
376 	 * arguments appear in x0-x7 when thread is started.
377 	 */
378 	thread->regs.x[0] = args->a0;
379 	thread->regs.x[1] = args->a1;
380 	thread->regs.x[2] = args->a2;
381 	thread->regs.x[3] = args->a3;
382 	thread->regs.x[4] = args->a4;
383 	thread->regs.x[5] = args->a5;
384 	thread->regs.x[6] = args->a6;
385 	thread->regs.x[7] = args->a7;
386 
387 	/* Set up frame pointer as per the Aarch64 AAPCS */
388 	thread->regs.x[29] = 0;
389 }
390 #endif /*ARM64*/
391 
392 void thread_init_boot_thread(void)
393 {
394 	struct thread_core_local *l = thread_get_core_local();
395 	size_t n;
396 
397 	for (n = 0; n < CFG_NUM_THREADS; n++) {
398 		TAILQ_INIT(&threads[n].mutexes);
399 		TAILQ_INIT(&threads[n].tsd.sess_stack);
400 #ifdef CFG_SMALL_PAGE_USER_TA
401 		SLIST_INIT(&threads[n].tsd.pgt_cache);
402 #endif
403 	}
404 
405 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
406 		thread_core_local[n].curr_thread = -1;
407 
408 	l->curr_thread = 0;
409 	threads[0].state = THREAD_STATE_ACTIVE;
410 }
411 
412 void thread_clr_boot_thread(void)
413 {
414 	struct thread_core_local *l = thread_get_core_local();
415 
416 	assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
417 	assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
418 	assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes));
419 	threads[l->curr_thread].state = THREAD_STATE_FREE;
420 	l->curr_thread = -1;
421 }
422 
423 static void thread_alloc_and_run(struct thread_smc_args *args)
424 {
425 	size_t n;
426 	struct thread_core_local *l = thread_get_core_local();
427 	bool found_thread = false;
428 
429 	assert(l->curr_thread == -1);
430 
431 	lock_global();
432 
433 	for (n = 0; n < CFG_NUM_THREADS; n++) {
434 		if (threads[n].state == THREAD_STATE_FREE) {
435 			threads[n].state = THREAD_STATE_ACTIVE;
436 			found_thread = true;
437 			break;
438 		}
439 	}
440 
441 	unlock_global();
442 
443 	if (!found_thread) {
444 		args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT;
445 		return;
446 	}
447 
448 	l->curr_thread = n;
449 
450 	threads[n].flags = 0;
451 	init_regs(threads + n, args);
452 
453 	/* Save Hypervisor Client ID */
454 	threads[n].hyp_clnt_id = args->a7;
455 
456 	thread_lazy_save_ns_vfp();
457 	thread_resume(&threads[n].regs);
458 }
459 
460 #ifdef ARM32
461 static void copy_a0_to_a5(struct thread_ctx_regs *regs,
462 		struct thread_smc_args *args)
463 {
464 	/*
465 	 * Update returned values from RPC, values will appear in
466 	 * r0-r3 when thread is resumed.
467 	 */
468 	regs->r0 = args->a0;
469 	regs->r1 = args->a1;
470 	regs->r2 = args->a2;
471 	regs->r3 = args->a3;
472 	regs->r4 = args->a4;
473 	regs->r5 = args->a5;
474 }
475 #endif /*ARM32*/
476 
477 #ifdef ARM64
478 static void copy_a0_to_a5(struct thread_ctx_regs *regs,
479 		struct thread_smc_args *args)
480 {
481 	/*
482 	 * Update returned values from RPC, values will appear in
483 	 * x0-x3 when thread is resumed.
484 	 */
485 	regs->x[0] = args->a0;
486 	regs->x[1] = args->a1;
487 	regs->x[2] = args->a2;
488 	regs->x[3] = args->a3;
489 	regs->x[4] = args->a4;
490 	regs->x[5] = args->a5;
491 }
492 #endif /*ARM64*/
493 
494 static void thread_resume_from_rpc(struct thread_smc_args *args)
495 {
496 	size_t n = args->a3; /* thread id */
497 	struct thread_core_local *l = thread_get_core_local();
498 	uint32_t rv = 0;
499 
500 	assert(l->curr_thread == -1);
501 
502 	lock_global();
503 
504 	if (n < CFG_NUM_THREADS &&
505 	    threads[n].state == THREAD_STATE_SUSPENDED &&
506 	    args->a7 == threads[n].hyp_clnt_id)
507 		threads[n].state = THREAD_STATE_ACTIVE;
508 	else
509 		rv = OPTEE_SMC_RETURN_ERESUME;
510 
511 	unlock_global();
512 
513 	if (rv) {
514 		args->a0 = rv;
515 		return;
516 	}
517 
518 	l->curr_thread = n;
519 
520 	if (threads[n].have_user_map)
521 		core_mmu_set_user_map(&threads[n].user_map);
522 
523 	/*
524 	 * Return from RPC to request service of an IRQ must not
525 	 * get parameters from non-secure world.
526 	 */
527 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
528 		copy_a0_to_a5(&threads[n].regs, args);
529 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
530 	}
531 
532 	thread_lazy_save_ns_vfp();
533 	thread_resume(&threads[n].regs);
534 }
535 
536 void thread_handle_fast_smc(struct thread_smc_args *args)
537 {
538 	thread_check_canaries();
539 	thread_fast_smc_handler_ptr(args);
540 	/* Fast handlers must not unmask any exceptions */
541 	assert(thread_get_exceptions() == THREAD_EXCP_ALL);
542 }
543 
544 void thread_handle_std_smc(struct thread_smc_args *args)
545 {
546 	thread_check_canaries();
547 
548 	if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC)
549 		thread_resume_from_rpc(args);
550 	else
551 		thread_alloc_and_run(args);
552 }
553 
554 /* Helper routine for the assembly function thread_std_smc_entry() */
555 void __thread_std_smc_entry(struct thread_smc_args *args)
556 {
557 	struct thread_ctx *thr = threads + thread_get_id();
558 
559 	if (!thr->rpc_arg) {
560 		paddr_t parg;
561 		uint64_t carg;
562 		void *arg;
563 
564 		thread_rpc_alloc_arg(
565 			OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS),
566 			&parg, &carg);
567 		if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) ||
568 		    !(arg = phys_to_virt(parg, CORE_MEM_NSEC_SHM))) {
569 			thread_rpc_free_arg(carg);
570 			args->a0 = OPTEE_SMC_RETURN_ENOMEM;
571 			return;
572 		}
573 
574 		thr->rpc_arg = arg;
575 		thr->rpc_carg = carg;
576 	}
577 
578 	thread_std_smc_handler_ptr(args);
579 
580 	tee_fs_rpc_cache_clear(&thr->tsd);
581 	if (!thread_prealloc_rpc_cache) {
582 		thread_rpc_free_arg(thr->rpc_carg);
583 		thr->rpc_carg = 0;
584 		thr->rpc_arg = 0;
585 	}
586 }
587 
588 void *thread_get_tmp_sp(void)
589 {
590 	struct thread_core_local *l = thread_get_core_local();
591 
592 	return (void *)l->tmp_stack_va_end;
593 }
594 
595 #ifdef ARM64
596 vaddr_t thread_get_saved_thread_sp(void)
597 {
598 	struct thread_core_local *l = thread_get_core_local();
599 	int ct = l->curr_thread;
600 
601 	assert(ct != -1);
602 	return threads[ct].kern_sp;
603 }
604 #endif /*ARM64*/
605 
606 bool thread_addr_is_in_stack(vaddr_t va)
607 {
608 	struct thread_ctx *thr;
609 	int ct = thread_get_id_may_fail();
610 
611 	if (ct == -1)
612 		return false;
613 
614 	thr = threads + ct;
615 	return va < thr->stack_va_end &&
616 	       va >= (thr->stack_va_end - STACK_THREAD_SIZE);
617 }
618 
619 void thread_state_free(void)
620 {
621 	struct thread_core_local *l = thread_get_core_local();
622 	int ct = l->curr_thread;
623 
624 	assert(ct != -1);
625 	assert(TAILQ_EMPTY(&threads[ct].mutexes));
626 
627 	thread_lazy_restore_ns_vfp();
628 	tee_pager_release_phys(
629 		(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
630 		STACK_THREAD_SIZE);
631 
632 	lock_global();
633 
634 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
635 	threads[ct].state = THREAD_STATE_FREE;
636 	threads[ct].flags = 0;
637 	l->curr_thread = -1;
638 
639 	unlock_global();
640 }
641 
642 #ifdef ARM32
643 static bool is_from_user(uint32_t cpsr)
644 {
645 	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
646 }
647 #endif
648 
649 #ifdef ARM64
650 static bool is_from_user(uint32_t cpsr)
651 {
652 	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
653 		return true;
654 	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
655 	     SPSR_64_MODE_EL0)
656 		return true;
657 	return false;
658 }
659 #endif
660 
661 #ifdef CFG_WITH_PAGER
662 static void release_unused_kernel_stack(struct thread_ctx *thr)
663 {
664 	vaddr_t sp = thr->regs.svc_sp;
665 	vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
666 	size_t len = sp - base;
667 
668 	tee_pager_release_phys((void *)base, len);
669 }
670 #else
671 static void release_unused_kernel_stack(struct thread_ctx *thr __unused)
672 {
673 }
674 #endif
675 
676 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
677 {
678 	struct thread_core_local *l = thread_get_core_local();
679 	int ct = l->curr_thread;
680 
681 	assert(ct != -1);
682 
683 	thread_check_canaries();
684 
685 	release_unused_kernel_stack(threads + ct);
686 
687 	if (is_from_user(cpsr))
688 		thread_user_save_vfp();
689 	thread_lazy_restore_ns_vfp();
690 
691 	lock_global();
692 
693 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
694 	threads[ct].flags |= flags;
695 	threads[ct].regs.cpsr = cpsr;
696 	threads[ct].regs.pc = pc;
697 	threads[ct].state = THREAD_STATE_SUSPENDED;
698 
699 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
700 	if (threads[ct].have_user_map) {
701 		core_mmu_get_user_map(&threads[ct].user_map);
702 		core_mmu_set_user_map(NULL);
703 	}
704 
705 	l->curr_thread = -1;
706 
707 	unlock_global();
708 
709 	return ct;
710 }
711 
712 #ifdef ARM32
713 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
714 {
715 	l->tmp_stack_va_end = sp;
716 	thread_set_irq_sp(sp);
717 	thread_set_fiq_sp(sp);
718 }
719 
720 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp)
721 {
722 	thread_set_abt_sp(sp);
723 }
724 #endif /*ARM32*/
725 
726 #ifdef ARM64
727 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
728 {
729 	/*
730 	 * We're already using the tmp stack when this function is called
731 	 * so there's no need to assign it to any stack pointer. However,
732 	 * we'll need to restore it at different times so store it here.
733 	 */
734 	l->tmp_stack_va_end = sp;
735 }
736 
737 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
738 {
739 	l->abt_stack_va_end = sp;
740 }
741 #endif /*ARM64*/
742 
743 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
744 {
745 	if (thread_id >= CFG_NUM_THREADS)
746 		return false;
747 	threads[thread_id].stack_va_end = sp;
748 	return true;
749 }
750 
751 int thread_get_id_may_fail(void)
752 {
753 	/* thread_get_core_local() requires IRQs to be disabled */
754 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
755 	struct thread_core_local *l = thread_get_core_local();
756 	int ct = l->curr_thread;
757 
758 	thread_unmask_exceptions(exceptions);
759 	return ct;
760 }
761 
762 int thread_get_id(void)
763 {
764 	int ct = thread_get_id_may_fail();
765 
766 	assert(ct >= 0 && ct < CFG_NUM_THREADS);
767 	return ct;
768 }
769 
770 static void init_handlers(const struct thread_handlers *handlers)
771 {
772 	thread_std_smc_handler_ptr = handlers->std_smc;
773 	thread_fast_smc_handler_ptr = handlers->fast_smc;
774 	thread_fiq_handler_ptr = handlers->fiq;
775 	thread_cpu_on_handler_ptr = handlers->cpu_on;
776 	thread_cpu_off_handler_ptr = handlers->cpu_off;
777 	thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
778 	thread_cpu_resume_handler_ptr = handlers->cpu_resume;
779 	thread_system_off_handler_ptr = handlers->system_off;
780 	thread_system_reset_handler_ptr = handlers->system_reset;
781 }
782 
783 #ifdef CFG_WITH_PAGER
784 static void init_thread_stacks(void)
785 {
786 	size_t n;
787 
788 	/*
789 	 * Allocate virtual memory for thread stacks.
790 	 */
791 	for (n = 0; n < CFG_NUM_THREADS; n++) {
792 		tee_mm_entry_t *mm;
793 		vaddr_t sp;
794 
795 		/* Find vmem for thread stack and its protection gap */
796 		mm = tee_mm_alloc(&tee_mm_vcore,
797 				  SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
798 		assert(mm);
799 
800 		/* Claim eventual physical page */
801 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
802 				    true);
803 
804 		/* Add the area to the pager */
805 		tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE,
806 					tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE,
807 					TEE_MATTR_PRW | TEE_MATTR_LOCKED,
808 					NULL, NULL);
809 
810 		/* init effective stack */
811 		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
812 		if (!thread_init_stack(n, sp))
813 			panic("init stack failed");
814 	}
815 }
816 #else
817 static void init_thread_stacks(void)
818 {
819 	size_t n;
820 
821 	/* Assign the thread stacks */
822 	for (n = 0; n < CFG_NUM_THREADS; n++) {
823 		if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
824 			panic("thread_init_stack failed");
825 	}
826 }
827 #endif /*CFG_WITH_PAGER*/
828 
829 void thread_init_primary(const struct thread_handlers *handlers)
830 {
831 	init_handlers(handlers);
832 
833 	/* Initialize canaries around the stacks */
834 	init_canaries();
835 
836 	init_thread_stacks();
837 	pgt_init();
838 }
839 
840 static void init_sec_mon(size_t pos __maybe_unused)
841 {
842 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
843 	/* Initialize secure monitor */
844 	sm_init(GET_STACK(stack_tmp[pos]));
845 #endif
846 }
847 
848 void thread_init_per_cpu(void)
849 {
850 	size_t pos = get_core_pos();
851 	struct thread_core_local *l = thread_get_core_local();
852 
853 	init_sec_mon(pos);
854 
855 	set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS);
856 	set_abt_stack(l, GET_STACK(stack_abt[pos]));
857 
858 	thread_init_vbar();
859 }
860 
861 struct thread_specific_data *thread_get_tsd(void)
862 {
863 	return &threads[thread_get_id()].tsd;
864 }
865 
866 struct thread_ctx_regs *thread_get_ctx_regs(void)
867 {
868 	struct thread_core_local *l = thread_get_core_local();
869 
870 	assert(l->curr_thread != -1);
871 	return &threads[l->curr_thread].regs;
872 }
873 
874 void thread_set_irq(bool enable)
875 {
876 	/* thread_get_core_local() requires IRQs to be disabled */
877 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
878 	struct thread_core_local *l;
879 
880 	l = thread_get_core_local();
881 
882 	assert(l->curr_thread != -1);
883 
884 	if (enable) {
885 		threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE;
886 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
887 	} else {
888 		/*
889 		 * No need to disable IRQ here since it's already disabled
890 		 * above.
891 		 */
892 		threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE;
893 	}
894 }
895 
896 void thread_restore_irq(void)
897 {
898 	/* thread_get_core_local() requires IRQs to be disabled */
899 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
900 	struct thread_core_local *l;
901 
902 	l = thread_get_core_local();
903 
904 	assert(l->curr_thread != -1);
905 
906 	if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE)
907 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
908 }
909 
910 #ifdef CFG_WITH_VFP
911 uint32_t thread_kernel_enable_vfp(void)
912 {
913 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
914 	struct thread_ctx *thr = threads + thread_get_id();
915 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
916 
917 	assert(!vfp_is_enabled());
918 
919 	if (!thr->vfp_state.ns_saved) {
920 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
921 		thr->vfp_state.ns_saved = true;
922 	} else if (thr->vfp_state.sec_lazy_saved &&
923 		   !thr->vfp_state.sec_saved) {
924 		/*
925 		 * This happens when we're handling an abort while the
926 		 * thread was using the VFP state.
927 		 */
928 		vfp_lazy_save_state_final(&thr->vfp_state.sec);
929 		thr->vfp_state.sec_saved = true;
930 	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
931 		/*
932 		 * This can happen either during syscall or abort
933 		 * processing (while processing a syscall).
934 		 */
935 		vfp_lazy_save_state_final(&tuv->vfp);
936 		tuv->saved = true;
937 	}
938 
939 	vfp_enable();
940 	return exceptions;
941 }
942 
943 void thread_kernel_disable_vfp(uint32_t state)
944 {
945 	uint32_t exceptions;
946 
947 	assert(vfp_is_enabled());
948 
949 	vfp_disable();
950 	exceptions = thread_get_exceptions();
951 	assert(exceptions & THREAD_EXCP_IRQ);
952 	exceptions &= ~THREAD_EXCP_IRQ;
953 	exceptions |= state & THREAD_EXCP_IRQ;
954 	thread_set_exceptions(exceptions);
955 }
956 
957 void thread_kernel_save_vfp(void)
958 {
959 	struct thread_ctx *thr = threads + thread_get_id();
960 
961 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
962 	if (vfp_is_enabled()) {
963 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
964 		thr->vfp_state.sec_lazy_saved = true;
965 	}
966 }
967 
968 void thread_kernel_restore_vfp(void)
969 {
970 	struct thread_ctx *thr = threads + thread_get_id();
971 
972 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
973 	assert(!vfp_is_enabled());
974 	if (thr->vfp_state.sec_lazy_saved) {
975 		vfp_lazy_restore_state(&thr->vfp_state.sec,
976 				       thr->vfp_state.sec_saved);
977 		thr->vfp_state.sec_saved = false;
978 		thr->vfp_state.sec_lazy_saved = false;
979 	}
980 }
981 
982 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
983 {
984 	struct thread_ctx *thr = threads + thread_get_id();
985 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
986 
987 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
988 	assert(!vfp_is_enabled());
989 
990 	if (!thr->vfp_state.ns_saved) {
991 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
992 		thr->vfp_state.ns_saved = true;
993 	} else if (tuv && uvfp != tuv) {
994 		if (tuv->lazy_saved && !tuv->saved) {
995 			vfp_lazy_save_state_final(&tuv->vfp);
996 			tuv->saved = true;
997 		}
998 	}
999 
1000 	if (uvfp->lazy_saved)
1001 		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
1002 	uvfp->lazy_saved = false;
1003 	uvfp->saved = false;
1004 
1005 	thr->vfp_state.uvfp = uvfp;
1006 	vfp_enable();
1007 }
1008 
1009 void thread_user_save_vfp(void)
1010 {
1011 	struct thread_ctx *thr = threads + thread_get_id();
1012 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1013 
1014 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
1015 	if (!vfp_is_enabled())
1016 		return;
1017 
1018 	assert(tuv && !tuv->lazy_saved && !tuv->saved);
1019 	vfp_lazy_save_state_init(&tuv->vfp);
1020 	tuv->lazy_saved = true;
1021 }
1022 
1023 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp)
1024 {
1025 	struct thread_ctx *thr = threads + thread_get_id();
1026 
1027 	if (uvfp == thr->vfp_state.uvfp)
1028 		thr->vfp_state.uvfp = NULL;
1029 	uvfp->lazy_saved = false;
1030 	uvfp->saved = false;
1031 }
1032 #endif /*CFG_WITH_VFP*/
1033 
1034 #ifdef ARM32
1035 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1036 {
1037 	uint32_t s;
1038 
1039 	if (!is_32bit)
1040 		return false;
1041 
1042 	s = read_spsr();
1043 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
1044 	s |= CPSR_MODE_USR;
1045 	if (entry_func & 1)
1046 		s |= CPSR_T;
1047 	*spsr = s;
1048 	return true;
1049 }
1050 #endif
1051 
1052 #ifdef ARM64
1053 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1054 {
1055 	uint32_t s;
1056 
1057 	if (is_32bit) {
1058 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
1059 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
1060 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
1061 	} else {
1062 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
1063 	}
1064 
1065 	*spsr = s;
1066 	return true;
1067 }
1068 #endif
1069 
1070 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1071 		unsigned long a2, unsigned long a3, unsigned long user_sp,
1072 		unsigned long entry_func, bool is_32bit,
1073 		uint32_t *exit_status0, uint32_t *exit_status1)
1074 {
1075 	uint32_t spsr;
1076 
1077 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1078 		*exit_status0 = 1; /* panic */
1079 		*exit_status1 = 0xbadbadba;
1080 		return 0;
1081 	}
1082 	return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func,
1083 					spsr, exit_status0, exit_status1);
1084 }
1085 
1086 void thread_add_mutex(struct mutex *m)
1087 {
1088 	struct thread_core_local *l = thread_get_core_local();
1089 	int ct = l->curr_thread;
1090 
1091 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1092 	assert(m->owner_id == -1);
1093 	m->owner_id = ct;
1094 	TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link);
1095 }
1096 
1097 void thread_rem_mutex(struct mutex *m)
1098 {
1099 	struct thread_core_local *l = thread_get_core_local();
1100 	int ct = l->curr_thread;
1101 
1102 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1103 	assert(m->owner_id == ct);
1104 	m->owner_id = -1;
1105 	TAILQ_REMOVE(&threads[ct].mutexes, m, link);
1106 }
1107 
1108 bool thread_disable_prealloc_rpc_cache(uint64_t *cookie)
1109 {
1110 	bool rv;
1111 	size_t n;
1112 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
1113 
1114 	lock_global();
1115 
1116 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1117 		if (threads[n].state != THREAD_STATE_FREE) {
1118 			rv = false;
1119 			goto out;
1120 		}
1121 	}
1122 
1123 	rv = true;
1124 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1125 		if (threads[n].rpc_arg) {
1126 			*cookie = threads[n].rpc_carg;
1127 			threads[n].rpc_carg = 0;
1128 			threads[n].rpc_arg = NULL;
1129 			goto out;
1130 		}
1131 	}
1132 
1133 	*cookie = 0;
1134 	thread_prealloc_rpc_cache = false;
1135 out:
1136 	unlock_global();
1137 	thread_unmask_exceptions(exceptions);
1138 	return rv;
1139 }
1140 
1141 bool thread_enable_prealloc_rpc_cache(void)
1142 {
1143 	bool rv;
1144 	size_t n;
1145 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
1146 
1147 	lock_global();
1148 
1149 	for (n = 0; n < CFG_NUM_THREADS; n++) {
1150 		if (threads[n].state != THREAD_STATE_FREE) {
1151 			rv = false;
1152 			goto out;
1153 		}
1154 	}
1155 
1156 	rv = true;
1157 	thread_prealloc_rpc_cache = true;
1158 out:
1159 	unlock_global();
1160 	thread_unmask_exceptions(exceptions);
1161 	return rv;
1162 }
1163 
1164 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params,
1165 		struct optee_msg_param *params)
1166 {
1167 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1168 	struct thread_ctx *thr = threads + thread_get_id();
1169 	struct optee_msg_arg *arg = thr->rpc_arg;
1170 	uint64_t carg = thr->rpc_carg;
1171 	const size_t params_size = sizeof(struct optee_msg_param) * num_params;
1172 	size_t n;
1173 
1174 	assert(arg && carg && num_params <= THREAD_RPC_MAX_NUM_PARAMS);
1175 
1176 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS));
1177 	arg->cmd = cmd;
1178 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1179 	arg->num_params = num_params;
1180 	memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size);
1181 
1182 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1183 	thread_rpc(rpc_args);
1184 	for (n = 0; n < num_params; n++) {
1185 		switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) {
1186 		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
1187 		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
1188 		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
1189 		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
1190 		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
1191 		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
1192 			memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n,
1193 			       sizeof(struct optee_msg_param));
1194 			break;
1195 		default:
1196 			break;
1197 		}
1198 	}
1199 	return arg->ret;
1200 }
1201 
1202 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
1203 		struct optee_msg_param *params)
1204 {
1205 	uint32_t ret;
1206 
1207 	ret = rpc_cmd_nolock(cmd, num_params, params);
1208 
1209 	return ret;
1210 }
1211 
1212 static bool check_alloced_shm(paddr_t pa, size_t len, size_t align)
1213 {
1214 	if (pa & (align - 1))
1215 		return false;
1216 	return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len);
1217 }
1218 
1219 void thread_rpc_free_arg(uint64_t cookie)
1220 {
1221 	if (cookie) {
1222 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1223 			OPTEE_SMC_RETURN_RPC_FREE
1224 		};
1225 
1226 		reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2);
1227 		thread_rpc(rpc_args);
1228 	}
1229 }
1230 
1231 void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie)
1232 {
1233 	paddr_t pa;
1234 	uint64_t co;
1235 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1236 		OPTEE_SMC_RETURN_RPC_ALLOC, size
1237 	};
1238 
1239 	thread_rpc(rpc_args);
1240 
1241 	pa = reg_pair_to_64(rpc_args[1], rpc_args[2]);
1242 	co = reg_pair_to_64(rpc_args[4], rpc_args[5]);
1243 	if (!check_alloced_shm(pa, size, sizeof(uint64_t))) {
1244 		thread_rpc_free_arg(co);
1245 		pa = 0;
1246 		co = 0;
1247 	}
1248 
1249 	*arg = pa;
1250 	*cookie = co;
1251 }
1252 
1253 /**
1254  * Free physical memory previously allocated with thread_rpc_alloc()
1255  *
1256  * @cookie:	cookie received when allocating the buffer
1257  * @bt:		 must be the same as supplied when allocating
1258  */
1259 static void thread_rpc_free(unsigned int bt, uint64_t cookie)
1260 {
1261 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1262 	struct thread_ctx *thr = threads + thread_get_id();
1263 	struct optee_msg_arg *arg = thr->rpc_arg;
1264 	uint64_t carg = thr->rpc_carg;
1265 	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);
1266 
1267 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
1268 	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE;
1269 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1270 	arg->num_params = 1;
1271 
1272 	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1273 	params[0].u.value.a = bt;
1274 	params[0].u.value.b = cookie;
1275 	params[0].u.value.c = 0;
1276 
1277 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1278 	thread_rpc(rpc_args);
1279 }
1280 
1281 /**
1282  * Allocates shared memory buffer via RPC
1283  *
1284  * @size:	size in bytes of shared memory buffer
1285  * @align:	required alignment of buffer
1286  * @bt:		buffer type OPTEE_MSG_RPC_SHM_TYPE_*
1287  * @payload:	returned physical pointer to buffer, 0 if allocation
1288  *		failed.
1289  * @cookie:	returned cookie used when freeing the buffer
1290  */
1291 static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt,
1292 			paddr_t *payload, uint64_t *cookie)
1293 {
1294 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
1295 	struct thread_ctx *thr = threads + thread_get_id();
1296 	struct optee_msg_arg *arg = thr->rpc_arg;
1297 	uint64_t carg = thr->rpc_carg;
1298 	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);
1299 
1300 	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
1301 	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC;
1302 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1303 	arg->num_params = 1;
1304 
1305 	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
1306 	params[0].u.value.a = bt;
1307 	params[0].u.value.b = size;
1308 	params[0].u.value.c = align;
1309 
1310 	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
1311 	thread_rpc(rpc_args);
1312 	if (arg->ret != TEE_SUCCESS)
1313 		goto fail;
1314 
1315 	if (arg->num_params != 1)
1316 		goto fail;
1317 
1318 	if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT)
1319 		goto fail;
1320 
1321 	if (!check_alloced_shm(params[0].u.tmem.buf_ptr, size, align)) {
1322 		thread_rpc_free(bt, params[0].u.tmem.shm_ref);
1323 		goto fail;
1324 	}
1325 
1326 	*payload = params[0].u.tmem.buf_ptr;
1327 	*cookie = params[0].u.tmem.shm_ref;
1328 	return;
1329 fail:
1330 	*payload = 0;
1331 	*cookie = 0;
1332 }
1333 
1334 void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie)
1335 {
1336 	thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie);
1337 }
1338 
1339 void thread_rpc_free_payload(uint64_t cookie)
1340 {
1341 	thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie);
1342 }
1343