xref: /optee_os/core/arch/arm/kernel/thread.c (revision 0de9a5fb2f86132c703c27f603125e1e5f29b5a2)
1 /*
2  * Copyright (c) 2014, STMicroelectronics International N.V.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <platform_config.h>
28 #include <kernel/panic.h>
29 #include <kernel/thread.h>
30 #include <kernel/thread_defs.h>
31 #include "thread_private.h"
32 #include <sm/sm_defs.h>
33 #include <sm/sm.h>
34 #include <sm/teesmc.h>
35 #include <sm/teesmc_optee.h>
36 #include <arm.h>
37 #include <kernel/tz_proc_def.h>
38 #include <kernel/tz_proc.h>
39 #include <kernel/misc.h>
40 #include <mm/tee_mmu.h>
41 #include <mm/tee_mmu_defs.h>
42 #include <mm/tee_mm.h>
43 #include <mm/tee_pager.h>
44 #include <kernel/tee_ta_manager.h>
45 #include <util.h>
46 #include <trace.h>
47 #include <assert.h>
48 
49 #ifdef ARM32
50 #define STACK_TMP_SIZE		1024
51 #define STACK_THREAD_SIZE	8192
52 
53 #if TRACE_LEVEL > 0
54 #define STACK_ABT_SIZE		2048
55 #else
56 #define STACK_ABT_SIZE		1024
57 #endif
58 
59 #endif /*ARM32*/
60 
61 #ifdef ARM64
62 #define STACK_TMP_SIZE		2048
63 #define STACK_THREAD_SIZE	8192
64 
65 #if TRACE_LEVEL > 0
66 #define STACK_ABT_SIZE		3072
67 #else
68 #define STACK_ABT_SIZE		1024
69 #endif
70 #endif /*ARM64*/
71 
72 #define RPC_MAX_PARAMS		2
73 
74 struct thread_ctx threads[CFG_NUM_THREADS];
75 
76 static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE];
77 
78 #ifdef CFG_WITH_STACK_CANARIES
79 #ifdef ARM32
80 #define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
81 #endif
82 #ifdef ARM64
83 #define STACK_CANARY_SIZE	(8 * sizeof(uint32_t))
84 #endif
85 #define START_CANARY_VALUE	0xdededede
86 #define END_CANARY_VALUE	0xabababab
87 #define GET_START_CANARY(name, stack_num) name[stack_num][0]
88 #define GET_END_CANARY(name, stack_num) \
89 	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
90 #else
91 #define STACK_CANARY_SIZE	0
92 #endif
93 
94 #define DECLARE_STACK(name, num_stacks, stack_size) \
95 	static uint32_t name[num_stacks][ \
96 		ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
97 		sizeof(uint32_t)] \
98 		__attribute__((section(".nozi.stack"), \
99 			       aligned(STACK_ALIGNMENT)))
100 
101 #define GET_STACK(stack) \
102 	((vaddr_t)(stack) + sizeof(stack) - STACK_CANARY_SIZE / 2)
103 
104 DECLARE_STACK(stack_tmp,	CFG_TEE_CORE_NB_CORE,	STACK_TMP_SIZE);
105 DECLARE_STACK(stack_abt,	CFG_TEE_CORE_NB_CORE,	STACK_ABT_SIZE);
106 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
107 DECLARE_STACK(stack_sm,		CFG_TEE_CORE_NB_CORE,	SM_STACK_SIZE);
108 #endif
109 #ifndef CFG_WITH_PAGER
110 DECLARE_STACK(stack_thread,	CFG_NUM_THREADS,	STACK_THREAD_SIZE);
111 #endif
112 
113 const vaddr_t stack_tmp_top[CFG_TEE_CORE_NB_CORE] = {
114 	GET_STACK(stack_tmp[0]),
115 #if CFG_TEE_CORE_NB_CORE > 1
116 	GET_STACK(stack_tmp[1]),
117 #endif
118 #if CFG_TEE_CORE_NB_CORE > 2
119 	GET_STACK(stack_tmp[2]),
120 #endif
121 #if CFG_TEE_CORE_NB_CORE > 3
122 	GET_STACK(stack_tmp[3]),
123 #endif
124 #if CFG_TEE_CORE_NB_CORE > 4
125 	GET_STACK(stack_tmp[4]),
126 #endif
127 #if CFG_TEE_CORE_NB_CORE > 5
128 	GET_STACK(stack_tmp[5]),
129 #endif
130 #if CFG_TEE_CORE_NB_CORE > 6
131 	GET_STACK(stack_tmp[6]),
132 #endif
133 #if CFG_TEE_CORE_NB_CORE > 7
134 	GET_STACK(stack_tmp[7]),
135 #endif
136 #if CFG_TEE_CORE_NB_CORE > 8
137 #error "Top of tmp stacks aren't defined for more than 8 CPUS"
138 #endif
139 };
140 
141 thread_smc_handler_t thread_std_smc_handler_ptr;
142 static thread_smc_handler_t thread_fast_smc_handler_ptr;
143 thread_fiq_handler_t thread_fiq_handler_ptr;
144 thread_svc_handler_t thread_svc_handler_ptr;
145 static thread_abort_handler_t thread_abort_handler_ptr;
146 thread_pm_handler_t thread_cpu_on_handler_ptr;
147 thread_pm_handler_t thread_cpu_off_handler_ptr;
148 thread_pm_handler_t thread_cpu_suspend_handler_ptr;
149 thread_pm_handler_t thread_cpu_resume_handler_ptr;
150 thread_pm_handler_t thread_system_off_handler_ptr;
151 thread_pm_handler_t thread_system_reset_handler_ptr;
152 
153 
154 static unsigned int thread_global_lock = SPINLOCK_UNLOCK;
155 
156 static void init_canaries(void)
157 {
158 #ifdef CFG_WITH_STACK_CANARIES
159 	size_t n;
160 #define INIT_CANARY(name)						\
161 	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
162 		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
163 		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
164 									\
165 		*start_canary = START_CANARY_VALUE;			\
166 		*end_canary = END_CANARY_VALUE;				\
167 		DMSG("#Stack canaries for %s[%zu] with top at %p\n",	\
168 			#name, n, (void *)(end_canary - 1));		\
169 		DMSG("watch *%p\n", (void *)end_canary);		\
170 	}
171 
172 	INIT_CANARY(stack_tmp);
173 	INIT_CANARY(stack_abt);
174 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
175 	INIT_CANARY(stack_sm);
176 #endif
177 #ifndef CFG_WITH_PAGER
178 	INIT_CANARY(stack_thread);
179 #endif
180 #endif/*CFG_WITH_STACK_CANARIES*/
181 }
182 
183 void thread_check_canaries(void)
184 {
185 #ifdef CFG_WITH_STACK_CANARIES
186 	size_t n;
187 
188 	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
189 		assert(GET_START_CANARY(stack_tmp, n) == START_CANARY_VALUE);
190 		assert(GET_END_CANARY(stack_tmp, n) == END_CANARY_VALUE);
191 	}
192 
193 	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
194 		assert(GET_START_CANARY(stack_abt, n) == START_CANARY_VALUE);
195 		assert(GET_END_CANARY(stack_abt, n) == END_CANARY_VALUE);
196 	}
197 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
198 	for (n = 0; n < ARRAY_SIZE(stack_sm); n++) {
199 		assert(GET_START_CANARY(stack_sm, n) == START_CANARY_VALUE);
200 		assert(GET_END_CANARY(stack_sm, n) == END_CANARY_VALUE);
201 	}
202 #endif
203 #ifndef CFG_WITH_PAGER
204 	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
205 		assert(GET_START_CANARY(stack_thread, n) == START_CANARY_VALUE);
206 		assert(GET_END_CANARY(stack_thread, n) == END_CANARY_VALUE);
207 	}
208 #endif
209 #endif/*CFG_WITH_STACK_CANARIES*/
210 }
211 
212 static void lock_global(void)
213 {
214 	cpu_spin_lock(&thread_global_lock);
215 }
216 
217 static void unlock_global(void)
218 {
219 	cpu_spin_unlock(&thread_global_lock);
220 }
221 
222 #ifdef ARM32
223 uint32_t thread_get_exceptions(void)
224 {
225 	uint32_t cpsr = read_cpsr();
226 
227 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
228 }
229 
230 void thread_set_exceptions(uint32_t exceptions)
231 {
232 	uint32_t cpsr = read_cpsr();
233 
234 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
235 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
236 	write_cpsr(cpsr);
237 }
238 #endif /*ARM32*/
239 
240 #ifdef ARM64
241 uint32_t thread_get_exceptions(void)
242 {
243 	uint32_t daif = read_daif();
244 
245 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
246 }
247 
248 void thread_set_exceptions(uint32_t exceptions)
249 {
250 	uint32_t daif = read_daif();
251 
252 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
253 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
254 	write_daif(daif);
255 }
256 #endif /*ARM64*/
257 
258 uint32_t thread_mask_exceptions(uint32_t exceptions)
259 {
260 	uint32_t state = thread_get_exceptions();
261 
262 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
263 	return state;
264 }
265 
266 void thread_unmask_exceptions(uint32_t state)
267 {
268 	thread_set_exceptions(state & THREAD_EXCP_ALL);
269 }
270 
271 
272 struct thread_core_local *thread_get_core_local(void)
273 {
274 	uint32_t cpu_id = get_core_pos();
275 
276 	/*
277 	 * IRQs must be disabled before playing with core_local since
278 	 * we otherwise may be rescheduled to a different core in the
279 	 * middle of this function.
280 	 */
281 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
282 
283 	assert(cpu_id < CFG_TEE_CORE_NB_CORE);
284 	return &thread_core_local[cpu_id];
285 }
286 
287 static void thread_lazy_save_ns_vfp(void)
288 {
289 #ifdef CFG_WITH_VFP
290 	struct thread_ctx *thr = threads + thread_get_id();
291 
292 	thr->vfp_state.ns_saved = false;
293 #if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW)
294 	/*
295 	 * ARM TF saves and restores CPACR_EL1, so we must assume NS world
296 	 * uses VFP and always preserve the register file when secure world
297 	 * is about to use it
298 	 */
299 	thr->vfp_state.ns.force_save = true;
300 #endif
301 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
302 #endif /*CFG_WITH_VFP*/
303 }
304 
305 static void thread_lazy_restore_ns_vfp(void)
306 {
307 #ifdef CFG_WITH_VFP
308 	struct thread_ctx *thr = threads + thread_get_id();
309 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
310 
311 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
312 
313 	if (tuv && tuv->lazy_saved && !tuv->saved) {
314 		vfp_lazy_save_state_final(&tuv->vfp);
315 		tuv->saved = true;
316 	}
317 
318 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
319 	thr->vfp_state.ns_saved = false;
320 #endif /*CFG_WITH_VFP*/
321 }
322 
323 #ifdef ARM32
324 static void init_regs(struct thread_ctx *thread,
325 		struct thread_smc_args *args)
326 {
327 	thread->regs.pc = (uint32_t)thread_std_smc_entry;
328 
329 	/*
330 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
331 	 * abort and unmasked FIQ.
332 	  */
333 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
334 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_I | CPSR_A;
335 	/* Enable thumb mode if it's a thumb instruction */
336 	if (thread->regs.pc & 1)
337 		thread->regs.cpsr |= CPSR_T;
338 	/* Reinitialize stack pointer */
339 	thread->regs.svc_sp = thread->stack_va_end;
340 
341 	/*
342 	 * Copy arguments into context. This will make the
343 	 * arguments appear in r0-r7 when thread is started.
344 	 */
345 	thread->regs.r0 = args->a0;
346 	thread->regs.r1 = args->a1;
347 	thread->regs.r2 = args->a2;
348 	thread->regs.r3 = args->a3;
349 	thread->regs.r4 = args->a4;
350 	thread->regs.r5 = args->a5;
351 	thread->regs.r6 = args->a6;
352 	thread->regs.r7 = args->a7;
353 }
354 #endif /*ARM32*/
355 
356 #ifdef ARM64
357 static void init_regs(struct thread_ctx *thread,
358 		struct thread_smc_args *args)
359 {
360 	thread->regs.pc = (uint64_t)thread_std_smc_entry;
361 
362 	/*
363 	 * Stdcalls starts in SVC mode with masked IRQ, masked Asynchronous
364 	 * abort and unmasked FIQ.
365 	  */
366 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
367 				    DAIFBIT_IRQ | DAIFBIT_ABT);
368 	/* Reinitialize stack pointer */
369 	thread->regs.sp = thread->stack_va_end;
370 
371 	/*
372 	 * Copy arguments into context. This will make the
373 	 * arguments appear in x0-x7 when thread is started.
374 	 */
375 	thread->regs.x[0] = args->a0;
376 	thread->regs.x[1] = args->a1;
377 	thread->regs.x[2] = args->a2;
378 	thread->regs.x[3] = args->a3;
379 	thread->regs.x[4] = args->a4;
380 	thread->regs.x[5] = args->a5;
381 	thread->regs.x[6] = args->a6;
382 	thread->regs.x[7] = args->a7;
383 }
384 #endif /*ARM64*/
385 
386 void thread_init_boot_thread(void)
387 {
388 	struct thread_core_local *l = thread_get_core_local();
389 	size_t n;
390 
391 	for (n = 0; n < CFG_NUM_THREADS; n++)
392 		TAILQ_INIT(&threads[n].mutexes);
393 
394 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
395 		thread_core_local[n].curr_thread = -1;
396 
397 	l->curr_thread = 0;
398 	threads[0].state = THREAD_STATE_ACTIVE;
399 }
400 
401 void thread_clr_boot_thread(void)
402 {
403 	struct thread_core_local *l = thread_get_core_local();
404 
405 	assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
406 	assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
407 	assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes));
408 	threads[l->curr_thread].state = THREAD_STATE_FREE;
409 	l->curr_thread = -1;
410 }
411 
412 static void thread_alloc_and_run(struct thread_smc_args *args)
413 {
414 	size_t n;
415 	struct thread_core_local *l = thread_get_core_local();
416 	bool found_thread = false;
417 
418 	assert(l->curr_thread == -1);
419 
420 	lock_global();
421 
422 	for (n = 0; n < CFG_NUM_THREADS; n++) {
423 		if (threads[n].state == THREAD_STATE_FREE) {
424 			threads[n].state = THREAD_STATE_ACTIVE;
425 			found_thread = true;
426 			break;
427 		}
428 	}
429 
430 	unlock_global();
431 
432 	if (!found_thread) {
433 		args->a0 = TEESMC_RETURN_ETHREAD_LIMIT;
434 		return;
435 	}
436 
437 	l->curr_thread = n;
438 
439 	threads[n].flags = 0;
440 	init_regs(threads + n, args);
441 
442 	/* Save Hypervisor Client ID */
443 	threads[n].hyp_clnt_id = args->a7;
444 
445 	thread_lazy_save_ns_vfp();
446 	thread_resume(&threads[n].regs);
447 }
448 
449 #ifdef ARM32
450 static void copy_a0_to_a3(struct thread_ctx_regs *regs,
451 		struct thread_smc_args *args)
452 {
453 	/*
454 	 * Update returned values from RPC, values will appear in
455 	 * r0-r3 when thread is resumed.
456 	 */
457 	regs->r0 = args->a0;
458 	regs->r1 = args->a1;
459 	regs->r2 = args->a2;
460 	regs->r3 = args->a3;
461 }
462 #endif /*ARM32*/
463 
464 #ifdef ARM64
465 static void copy_a0_to_a3(struct thread_ctx_regs *regs,
466 		struct thread_smc_args *args)
467 {
468 	/*
469 	 * Update returned values from RPC, values will appear in
470 	 * x0-x3 when thread is resumed.
471 	 */
472 	regs->x[0] = args->a0;
473 	regs->x[1] = args->a1;
474 	regs->x[2] = args->a2;
475 	regs->x[3] = args->a3;
476 }
477 #endif /*ARM64*/
478 
479 static void thread_resume_from_rpc(struct thread_smc_args *args)
480 {
481 	size_t n = args->a3; /* thread id */
482 	struct thread_core_local *l = thread_get_core_local();
483 	uint32_t rv = 0;
484 
485 	assert(l->curr_thread == -1);
486 
487 	lock_global();
488 
489 	if (n < CFG_NUM_THREADS &&
490 	    threads[n].state == THREAD_STATE_SUSPENDED &&
491 	    args->a7 == threads[n].hyp_clnt_id)
492 		threads[n].state = THREAD_STATE_ACTIVE;
493 	else
494 		rv = TEESMC_RETURN_ERESUME;
495 
496 	unlock_global();
497 
498 	if (rv) {
499 		args->a0 = rv;
500 		return;
501 	}
502 
503 	l->curr_thread = n;
504 
505 	if (threads[n].have_user_map)
506 		core_mmu_set_user_map(&threads[n].user_map);
507 
508 	/*
509 	 * Return from RPC to request service of an IRQ must not
510 	 * get parameters from non-secure world.
511 	 */
512 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
513 		copy_a0_to_a3(&threads[n].regs, args);
514 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
515 	}
516 
517 	thread_lazy_save_ns_vfp();
518 	thread_resume(&threads[n].regs);
519 }
520 
521 void thread_handle_fast_smc(struct thread_smc_args *args)
522 {
523 	thread_check_canaries();
524 	thread_fast_smc_handler_ptr(args);
525 	/* Fast handlers must not unmask any exceptions */
526 	assert(thread_get_exceptions() == THREAD_EXCP_ALL);
527 }
528 
529 void thread_handle_std_smc(struct thread_smc_args *args)
530 {
531 	thread_check_canaries();
532 
533 	if (args->a0 == TEESMC32_CALL_RETURN_FROM_RPC)
534 		thread_resume_from_rpc(args);
535 	else
536 		thread_alloc_and_run(args);
537 }
538 
539 /* Helper routine for the assembly function thread_std_smc_entry() */
540 void __thread_std_smc_entry(struct thread_smc_args *args)
541 {
542 	struct thread_ctx *thr = threads + thread_get_id();
543 
544 	if (!thr->rpc_arg) {
545 		paddr_t parg;
546 		void *arg;
547 
548 		parg = thread_rpc_alloc_arg(
549 				TEESMC32_GET_ARG_SIZE(RPC_MAX_PARAMS));
550 		if (!parg || !ALIGNMENT_IS_OK(parg, struct teesmc32_arg) ||
551 		     core_pa2va(parg, &arg)) {
552 			thread_rpc_free_arg(parg);
553 			args->a0 = TEESMC_RETURN_ENOMEM;
554 			return;
555 		}
556 
557 		thr->rpc_arg = arg;
558 		thr->rpc_parg = parg;
559 	}
560 
561 	thread_std_smc_handler_ptr(args);
562 }
563 
564 void thread_handle_abort(uint32_t abort_type, struct thread_abort_regs *regs)
565 {
566 	thread_abort_handler_ptr(abort_type, regs);
567 }
568 
569 void *thread_get_tmp_sp(void)
570 {
571 	struct thread_core_local *l = thread_get_core_local();
572 
573 	return (void *)l->tmp_stack_va_end;
574 }
575 
576 #ifdef ARM64
577 vaddr_t thread_get_saved_thread_sp(void)
578 {
579 	struct thread_core_local *l = thread_get_core_local();
580 	int ct = l->curr_thread;
581 
582 	assert(ct != -1);
583 	return threads[ct].kern_sp;
584 }
585 #endif /*ARM64*/
586 
587 void thread_state_free(void)
588 {
589 	struct thread_core_local *l = thread_get_core_local();
590 	int ct = l->curr_thread;
591 
592 	assert(ct != -1);
593 	assert(TAILQ_EMPTY(&threads[ct].mutexes));
594 
595 	thread_lazy_restore_ns_vfp();
596 
597 	lock_global();
598 
599 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
600 	threads[ct].state = THREAD_STATE_FREE;
601 	threads[ct].flags = 0;
602 	l->curr_thread = -1;
603 
604 	unlock_global();
605 }
606 
607 #ifdef ARM32
608 static bool is_from_user(uint32_t cpsr)
609 {
610 	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
611 }
612 #endif
613 
614 #ifdef ARM64
615 static bool is_from_user(uint32_t cpsr)
616 {
617 	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
618 		return true;
619 	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
620 	     SPSR_64_MODE_EL0)
621 		return true;
622 	return false;
623 }
624 #endif
625 
626 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
627 {
628 	struct thread_core_local *l = thread_get_core_local();
629 	int ct = l->curr_thread;
630 
631 	assert(ct != -1);
632 
633 	thread_check_canaries();
634 
635 	if (is_from_user(cpsr))
636 		thread_user_save_vfp();
637 	thread_lazy_restore_ns_vfp();
638 
639 	lock_global();
640 
641 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
642 	threads[ct].flags |= flags;
643 	threads[ct].regs.cpsr = cpsr;
644 	threads[ct].regs.pc = pc;
645 	threads[ct].state = THREAD_STATE_SUSPENDED;
646 
647 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
648 	if (threads[ct].have_user_map) {
649 		core_mmu_get_user_map(&threads[ct].user_map);
650 		core_mmu_set_user_map(NULL);
651 	}
652 
653 
654 	l->curr_thread = -1;
655 
656 	unlock_global();
657 
658 	return ct;
659 }
660 
661 #ifdef ARM32
662 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
663 {
664 	l->tmp_stack_va_end = sp;
665 	thread_set_irq_sp(sp);
666 	thread_set_fiq_sp(sp);
667 }
668 
669 static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp)
670 {
671 	thread_set_abt_sp(sp);
672 }
673 #endif /*ARM32*/
674 
675 #ifdef ARM64
676 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
677 {
678 	/*
679 	 * We're already using the tmp stack when this function is called
680 	 * so there's no need to assign it to any stack pointer. However,
681 	 * we'll need to restore it at different times so store it here.
682 	 */
683 	l->tmp_stack_va_end = sp;
684 }
685 
686 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
687 {
688 	l->abt_stack_va_end = sp;
689 }
690 #endif /*ARM64*/
691 
692 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
693 {
694 	if (thread_id >= CFG_NUM_THREADS)
695 		return false;
696 	threads[thread_id].stack_va_end = sp;
697 	return true;
698 }
699 
700 int thread_get_id(void)
701 {
702 	/* thread_get_core_local() requires IRQs to be disabled */
703 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
704 	struct thread_core_local *l;
705 	int ct;
706 
707 	l = thread_get_core_local();
708 	ct = l->curr_thread;
709 	assert((ct >= 0) && (ct < CFG_NUM_THREADS));
710 
711 	thread_unmask_exceptions(exceptions);
712 	return ct;
713 }
714 
715 static void init_handlers(const struct thread_handlers *handlers)
716 {
717 	thread_std_smc_handler_ptr = handlers->std_smc;
718 	thread_fast_smc_handler_ptr = handlers->fast_smc;
719 	thread_fiq_handler_ptr = handlers->fiq;
720 	thread_svc_handler_ptr = handlers->svc;
721 	thread_abort_handler_ptr = handlers->abort;
722 	thread_cpu_on_handler_ptr = handlers->cpu_on;
723 	thread_cpu_off_handler_ptr = handlers->cpu_off;
724 	thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
725 	thread_cpu_resume_handler_ptr = handlers->cpu_resume;
726 	thread_system_off_handler_ptr = handlers->system_off;
727 	thread_system_reset_handler_ptr = handlers->system_reset;
728 }
729 
730 
731 #ifdef CFG_WITH_PAGER
732 static void init_thread_stacks(void)
733 {
734 	size_t n;
735 
736 	/*
737 	 * Allocate virtual memory for thread stacks.
738 	 */
739 	for (n = 0; n < CFG_NUM_THREADS; n++) {
740 		tee_mm_entry_t *mm;
741 		vaddr_t sp;
742 
743 		/* Find vmem for thread stack and its protection gap */
744 		mm = tee_mm_alloc(&tee_mm_vcore,
745 				  SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
746 		TEE_ASSERT(mm);
747 
748 		/* Claim eventual physical page */
749 		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
750 				    true);
751 
752 		/* Realloc both protection vmem and stack vmem separately */
753 		sp = tee_mm_get_smem(mm);
754 		tee_mm_free(mm);
755 		mm = tee_mm_alloc2(&tee_mm_vcore, sp, SMALL_PAGE_SIZE);
756 		TEE_ASSERT(mm);
757 		mm = tee_mm_alloc2(&tee_mm_vcore, sp + SMALL_PAGE_SIZE,
758 						  STACK_THREAD_SIZE);
759 		TEE_ASSERT(mm);
760 
761 		/* init effective stack */
762 		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
763 		if (!thread_init_stack(n, sp))
764 			panic();
765 
766 		/* Add the area to the pager */
767 		tee_pager_add_area(mm, TEE_PAGER_AREA_RW, NULL, NULL);
768 	}
769 }
770 #else
771 static void init_thread_stacks(void)
772 {
773 	size_t n;
774 
775 	/* Assign the thread stacks */
776 	for (n = 0; n < CFG_NUM_THREADS; n++) {
777 		if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
778 			panic();
779 	}
780 }
781 #endif /*CFG_WITH_PAGER*/
782 
783 void thread_init_primary(const struct thread_handlers *handlers)
784 {
785 	/*
786 	 * The COMPILE_TIME_ASSERT only works in function context. These
787 	 * checks verifies that the offsets used in assembly code matches
788 	 * what's used in C code.
789 	 */
790 #ifdef ARM32
791 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r0) ==
792 				THREAD_SVC_REG_R0_OFFS);
793 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r1) ==
794 				THREAD_SVC_REG_R1_OFFS);
795 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r2) ==
796 				THREAD_SVC_REG_R2_OFFS);
797 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r3) ==
798 				THREAD_SVC_REG_R3_OFFS);
799 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r4) ==
800 				THREAD_SVC_REG_R4_OFFS);
801 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r5) ==
802 				THREAD_SVC_REG_R5_OFFS);
803 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r6) ==
804 				THREAD_SVC_REG_R6_OFFS);
805 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, r7) ==
806 				THREAD_SVC_REG_R7_OFFS);
807 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, lr) ==
808 				THREAD_SVC_REG_LR_OFFS);
809 	COMPILE_TIME_ASSERT(offsetof(struct thread_svc_regs, spsr) ==
810 				THREAD_SVC_REG_SPSR_OFFS);
811 #endif /*ARM32*/
812 #ifdef ARM64
813 	/* struct thread_abort_regs */
814 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, x22) ==
815 			    THREAD_ABT_REG_X_OFFS(22));
816 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, elr) ==
817 			    THREAD_ABT_REG_ELR_OFFS);
818 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, spsr) ==
819 			    THREAD_ABT_REG_SPSR_OFFS);
820 	COMPILE_TIME_ASSERT(offsetof(struct thread_abort_regs, sp_el0) ==
821 			    THREAD_ABT_REG_SP_EL0_OFFS);
822 	COMPILE_TIME_ASSERT(sizeof(struct thread_abort_regs) ==
823 			    THREAD_ABT_REGS_SIZE);
824 
825 	/* struct thread_ctx */
826 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx, kern_sp) ==
827 			    THREAD_CTX_KERN_SP_OFFSET);
828 	COMPILE_TIME_ASSERT(sizeof(struct thread_ctx) == THREAD_CTX_SIZE);
829 
830 	/* struct thread_ctx_regs */
831 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, sp) ==
832 			    THREAD_CTX_REGS_SP_OFFSET);
833 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, pc) ==
834 			    THREAD_CTX_REGS_PC_OFFSET);
835 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, cpsr) ==
836 			    THREAD_CTX_REGS_SPSR_OFFSET);
837 	COMPILE_TIME_ASSERT(offsetof(struct thread_ctx_regs, x[23]) ==
838 			    THREAD_CTX_REGS_X_OFFSET(23));
839 	COMPILE_TIME_ASSERT(sizeof(struct thread_ctx_regs) ==
840 			    THREAD_CTX_REGS_SIZE);
841 
842 	/* struct thread_user_mode_rec */
843 	COMPILE_TIME_ASSERT(
844 		offsetof(struct thread_user_mode_rec, exit_status0_ptr) ==
845 		THREAD_USER_MODE_REC_EXIT_STATUS0_PTR_OFFSET);
846 	COMPILE_TIME_ASSERT(
847 		offsetof(struct thread_user_mode_rec, exit_status1_ptr) ==
848 		THREAD_USER_MODE_REC_EXIT_STATUS1_PTR_OFFSET);
849 	COMPILE_TIME_ASSERT(
850 		offsetof(struct thread_user_mode_rec, x[1]) ==
851 		THREAD_USER_MODE_REC_X_OFFSET(20));
852 	COMPILE_TIME_ASSERT(sizeof(struct thread_user_mode_rec) ==
853 			    THREAD_USER_MODE_REC_SIZE);
854 
855 	/* struct thread_core_local */
856 	COMPILE_TIME_ASSERT(
857 		offsetof(struct thread_core_local, tmp_stack_va_end) ==
858 		THREAD_CORE_LOCAL_TMP_STACK_VA_END_OFFSET);
859 	COMPILE_TIME_ASSERT(
860 		offsetof(struct thread_core_local, curr_thread) ==
861 		THREAD_CORE_LOCAL_CURR_THREAD_OFFSET);
862 	COMPILE_TIME_ASSERT(
863 		offsetof(struct thread_core_local, flags) ==
864 		THREAD_CORE_LOCAL_FLAGS_OFFSET);
865 	COMPILE_TIME_ASSERT(
866 		offsetof(struct thread_core_local, abt_stack_va_end) ==
867 		THREAD_CORE_LOCAL_ABT_STACK_VA_END_OFFSET);
868 	COMPILE_TIME_ASSERT(
869 		offsetof(struct thread_core_local, x[3]) ==
870 		THREAD_CORE_LOCAL_X_OFFSET(3));
871 	COMPILE_TIME_ASSERT(sizeof(struct thread_core_local) ==
872 		THREAD_CORE_LOCAL_SIZE);
873 
874 #endif /*ARM64*/
875 
876 	init_handlers(handlers);
877 
878 	/* Initialize canaries around the stacks */
879 	init_canaries();
880 
881 	init_thread_stacks();
882 }
883 
884 static void init_sec_mon(size_t pos __maybe_unused)
885 {
886 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
887 	/* Initialize secure monitor */
888 	sm_init(GET_STACK(stack_sm[pos]));
889 	sm_set_entry_vector(thread_vector_table);
890 #endif
891 }
892 
893 void thread_init_per_cpu(void)
894 {
895 	size_t pos = get_core_pos();
896 	struct thread_core_local *l = thread_get_core_local();
897 
898 	init_sec_mon(pos);
899 
900 	set_tmp_stack(l, GET_STACK(stack_tmp[pos]));
901 	set_abt_stack(l, GET_STACK(stack_abt[pos]));
902 
903 	thread_init_vbar();
904 }
905 
906 void thread_set_tsd(void *tsd)
907 {
908 	/* thread_get_core_local() requires IRQs to be disabled */
909 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
910 	struct thread_core_local *l;
911 	int ct;
912 
913 	l = thread_get_core_local();
914 	ct = l->curr_thread;
915 
916 	assert(ct != -1);
917 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
918 	threads[ct].tsd = tsd;
919 
920 	thread_unmask_exceptions(exceptions);
921 }
922 
923 void *thread_get_tsd(void)
924 {
925 	/* thread_get_core_local() requires IRQs to be disabled */
926 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
927 	struct thread_core_local *l;
928 	int ct;
929 	void *tsd;
930 
931 	l = thread_get_core_local();
932 	ct = l->curr_thread;
933 
934 	if (ct == -1 || threads[ct].state != THREAD_STATE_ACTIVE)
935 		tsd = NULL;
936 	else
937 		tsd = threads[ct].tsd;
938 
939 	thread_unmask_exceptions(exceptions);
940 	return tsd;
941 }
942 
943 struct thread_ctx_regs *thread_get_ctx_regs(void)
944 {
945 	struct thread_core_local *l = thread_get_core_local();
946 
947 	assert(l->curr_thread != -1);
948 	return &threads[l->curr_thread].regs;
949 }
950 
951 void thread_set_irq(bool enable)
952 {
953 	/* thread_get_core_local() requires IRQs to be disabled */
954 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
955 	struct thread_core_local *l;
956 
957 	l = thread_get_core_local();
958 
959 	assert(l->curr_thread != -1);
960 
961 	if (enable) {
962 		threads[l->curr_thread].flags |= THREAD_FLAGS_IRQ_ENABLE;
963 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
964 	} else {
965 		/*
966 		 * No need to disable IRQ here since it's already disabled
967 		 * above.
968 		 */
969 		threads[l->curr_thread].flags &= ~THREAD_FLAGS_IRQ_ENABLE;
970 	}
971 }
972 
973 void thread_restore_irq(void)
974 {
975 	/* thread_get_core_local() requires IRQs to be disabled */
976 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
977 	struct thread_core_local *l;
978 
979 	l = thread_get_core_local();
980 
981 	assert(l->curr_thread != -1);
982 
983 	if (threads[l->curr_thread].flags & THREAD_FLAGS_IRQ_ENABLE)
984 		thread_set_exceptions(exceptions & ~THREAD_EXCP_IRQ);
985 }
986 
987 #ifdef CFG_WITH_VFP
988 uint32_t thread_kernel_enable_vfp(void)
989 {
990 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_IRQ);
991 	struct thread_ctx *thr = threads + thread_get_id();
992 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
993 
994 	assert(!vfp_is_enabled());
995 
996 	if (!thr->vfp_state.ns_saved) {
997 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
998 		thr->vfp_state.ns_saved = true;
999 	} else if (thr->vfp_state.sec_lazy_saved &&
1000 		   !thr->vfp_state.sec_saved) {
1001 		/*
1002 		 * This happens when we're handling an abort while the
1003 		 * thread was using the VFP state.
1004 		 */
1005 		vfp_lazy_save_state_final(&thr->vfp_state.sec);
1006 		thr->vfp_state.sec_saved = true;
1007 	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
1008 		/*
1009 		 * This can happen either during syscall or abort
1010 		 * processing (while processing a syscall).
1011 		 */
1012 		vfp_lazy_save_state_final(&tuv->vfp);
1013 		tuv->saved = true;
1014 	}
1015 
1016 	vfp_enable();
1017 	return exceptions;
1018 }
1019 
1020 void thread_kernel_disable_vfp(uint32_t state)
1021 {
1022 	uint32_t exceptions;
1023 
1024 	assert(vfp_is_enabled());
1025 
1026 	vfp_disable();
1027 	exceptions = thread_get_exceptions();
1028 	assert(exceptions & THREAD_EXCP_IRQ);
1029 	exceptions &= ~THREAD_EXCP_IRQ;
1030 	exceptions |= state & THREAD_EXCP_IRQ;
1031 	thread_set_exceptions(exceptions);
1032 }
1033 
1034 void thread_kernel_save_vfp(void)
1035 {
1036 	struct thread_ctx *thr = threads + thread_get_id();
1037 
1038 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
1039 	if (vfp_is_enabled()) {
1040 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
1041 		thr->vfp_state.sec_lazy_saved = true;
1042 	}
1043 }
1044 
1045 void thread_kernel_restore_vfp(void)
1046 {
1047 	struct thread_ctx *thr = threads + thread_get_id();
1048 
1049 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
1050 	assert(!vfp_is_enabled());
1051 	if (thr->vfp_state.sec_lazy_saved) {
1052 		vfp_lazy_restore_state(&thr->vfp_state.sec,
1053 				       thr->vfp_state.sec_saved);
1054 		thr->vfp_state.sec_saved = false;
1055 		thr->vfp_state.sec_lazy_saved = false;
1056 	}
1057 }
1058 
1059 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
1060 {
1061 	struct thread_ctx *thr = threads + thread_get_id();
1062 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1063 
1064 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
1065 	assert(!vfp_is_enabled());
1066 
1067 	if (!thr->vfp_state.ns_saved) {
1068 		vfp_lazy_save_state_final(&thr->vfp_state.ns);
1069 		thr->vfp_state.ns_saved = true;
1070 	} else if (tuv && uvfp != tuv) {
1071 		if (tuv->lazy_saved && !tuv->saved) {
1072 			vfp_lazy_save_state_final(&tuv->vfp);
1073 			tuv->saved = true;
1074 		}
1075 	}
1076 
1077 	if (uvfp->lazy_saved)
1078 		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
1079 	uvfp->lazy_saved = false;
1080 	uvfp->saved = false;
1081 
1082 	thr->vfp_state.uvfp = uvfp;
1083 	vfp_enable();
1084 }
1085 
1086 void thread_user_save_vfp(void)
1087 {
1088 	struct thread_ctx *thr = threads + thread_get_id();
1089 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
1090 
1091 	assert(thread_get_exceptions() & THREAD_EXCP_IRQ);
1092 	if (!vfp_is_enabled())
1093 		return;
1094 
1095 	assert(tuv && !tuv->lazy_saved && !tuv->saved);
1096 	vfp_lazy_save_state_init(&tuv->vfp);
1097 	tuv->lazy_saved = true;
1098 }
1099 
1100 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp)
1101 {
1102 	struct thread_ctx *thr = threads + thread_get_id();
1103 
1104 	if (uvfp == thr->vfp_state.uvfp)
1105 		thr->vfp_state.uvfp = NULL;
1106 	uvfp->lazy_saved = false;
1107 	uvfp->saved = false;
1108 }
1109 #endif /*CFG_WITH_VFP*/
1110 
1111 #ifdef ARM32
1112 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1113 {
1114 	uint32_t s;
1115 
1116 	if (!is_32bit)
1117 		return false;
1118 
1119 	s = read_spsr();
1120 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
1121 	s |= CPSR_MODE_USR;
1122 	if (entry_func & 1)
1123 		s |= CPSR_T;
1124 	*spsr = s;
1125 	return true;
1126 }
1127 #endif
1128 
1129 #ifdef ARM64
1130 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
1131 {
1132 	uint32_t s;
1133 
1134 	if (is_32bit) {
1135 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
1136 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
1137 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
1138 	} else {
1139 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
1140 	}
1141 
1142 	*spsr = s;
1143 	return true;
1144 }
1145 #endif
1146 
1147 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1148 		unsigned long a2, unsigned long a3, unsigned long user_sp,
1149 		unsigned long entry_func, bool is_32bit,
1150 		uint32_t *exit_status0, uint32_t *exit_status1)
1151 {
1152 	uint32_t spsr;
1153 
1154 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1155 		*exit_status0 = 1; /* panic */
1156 		*exit_status1 = 0xbadbadba;
1157 		return 0;
1158 	}
1159 	return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func,
1160 					spsr, exit_status0, exit_status1);
1161 }
1162 
1163 void thread_add_mutex(struct mutex *m)
1164 {
1165 	struct thread_core_local *l = thread_get_core_local();
1166 	int ct = l->curr_thread;
1167 
1168 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1169 	assert(m->owner_id == -1);
1170 	m->owner_id = ct;
1171 	TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link);
1172 }
1173 
1174 void thread_rem_mutex(struct mutex *m)
1175 {
1176 	struct thread_core_local *l = thread_get_core_local();
1177 	int ct = l->curr_thread;
1178 
1179 	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
1180 	assert(m->owner_id == ct);
1181 	m->owner_id = -1;
1182 	TAILQ_REMOVE(&threads[ct].mutexes, m, link);
1183 }
1184 
1185 paddr_t thread_rpc_alloc_arg(size_t size)
1186 {
1187 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1188 		TEESMC_RETURN_RPC_ALLOC_ARG, size};
1189 
1190 	thread_rpc(rpc_args);
1191 	return rpc_args[1];
1192 }
1193 
1194 paddr_t thread_rpc_alloc_payload(size_t size)
1195 {
1196 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1197 		TEESMC_RETURN_RPC_ALLOC_PAYLOAD, size};
1198 
1199 	thread_rpc(rpc_args);
1200 	return rpc_args[1];
1201 }
1202 
1203 void thread_rpc_free_arg(paddr_t arg)
1204 {
1205 	if (arg) {
1206 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1207 			TEESMC_RETURN_RPC_FREE_ARG, arg};
1208 
1209 		thread_rpc(rpc_args);
1210 	}
1211 }
1212 void thread_rpc_free_payload(paddr_t payload)
1213 {
1214 	if (payload) {
1215 		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1216 			TEESMC_RETURN_RPC_FREE_PAYLOAD, payload};
1217 
1218 		thread_rpc(rpc_args);
1219 	}
1220 }
1221 
1222 static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params,
1223 		struct teesmc32_param *params)
1224 {
1225 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { 0 };
1226 	struct thread_ctx *thr = threads + thread_get_id();
1227 	struct teesmc32_arg *arg = thr->rpc_arg;
1228 	paddr_t parg = thr->rpc_parg;
1229 	const size_t params_size = sizeof(struct teesmc32_param) * num_params;
1230 	size_t n;
1231 
1232 	TEE_ASSERT(arg && parg && num_params <= RPC_MAX_PARAMS);
1233 
1234 	memset(arg, 0, TEESMC32_GET_ARG_SIZE(RPC_MAX_PARAMS));
1235 	arg->cmd = cmd;
1236 	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
1237 	arg->num_params = num_params;
1238 	memcpy(TEESMC32_GET_PARAMS(arg), params, params_size);
1239 
1240 	rpc_args[0] = TEESMC_RETURN_RPC_CMD;
1241 	rpc_args[1] = parg;
1242 	thread_rpc(rpc_args);
1243 
1244 	for (n = 0; n < num_params; n++) {
1245 		switch (params[n].attr & TEESMC_ATTR_TYPE_MASK) {
1246 		case TEESMC_ATTR_TYPE_VALUE_OUTPUT:
1247 		case TEESMC_ATTR_TYPE_VALUE_INOUT:
1248 		case TEESMC_ATTR_TYPE_MEMREF_OUTPUT:
1249 		case TEESMC_ATTR_TYPE_MEMREF_INOUT:
1250 			memcpy(params + n, TEESMC32_GET_PARAMS(arg) + n,
1251 			       sizeof(struct teesmc32_param));
1252 			break;
1253 		default:
1254 			break;
1255 		}
1256 	}
1257 
1258 	return arg->ret;
1259 }
1260 
1261 uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
1262 		struct teesmc32_param *params)
1263 {
1264 	uint32_t ret;
1265 
1266 	ret = rpc_cmd_nolock(cmd, num_params, params);
1267 
1268 	return ret;
1269 }
1270 
1271 void thread_optee_rpc_alloc_payload(size_t size, paddr_t *payload,
1272 		paddr_t *cookie)
1273 {
1274 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
1275 		TEESMC_RETURN_OPTEE_RPC_ALLOC_PAYLOAD, size};
1276 
1277 	thread_rpc(rpc_args);
1278 	if (payload)
1279 		*payload = rpc_args[1];
1280 	if (cookie)
1281 		*cookie = rpc_args[2];
1282 }
1283 
1284 void thread_optee_rpc_free_payload(paddr_t cookie)
1285 {
1286 	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] ={
1287 		TEESMC_RETURN_OPTEE_RPC_FREE_PAYLOAD, cookie};
1288 
1289 	thread_rpc(rpc_args);
1290 }
1291