1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <platform_config.h> 8 9 #include <arm.h> 10 #include <assert.h> 11 #include <io.h> 12 #include <keep.h> 13 #include <kernel/asan.h> 14 #include <kernel/lockdep.h> 15 #include <kernel/misc.h> 16 #include <kernel/panic.h> 17 #include <kernel/spinlock.h> 18 #include <kernel/tee_ta_manager.h> 19 #include <kernel/thread_defs.h> 20 #include <kernel/thread.h> 21 #include <kernel/virtualization.h> 22 #include <mm/core_memprot.h> 23 #include <mm/mobj.h> 24 #include <mm/tee_mm.h> 25 #include <mm/tee_mmu.h> 26 #include <mm/tee_pager.h> 27 #include <smccc.h> 28 #include <sm/sm.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #include "thread_private.h" 33 34 #ifdef CFG_WITH_ARM_TRUSTED_FW 35 #define STACK_TMP_OFFS 0 36 #else 37 #define STACK_TMP_OFFS SM_STACK_TMP_RESERVE_SIZE 38 #endif 39 40 41 #ifdef ARM32 42 #ifdef CFG_CORE_SANITIZE_KADDRESS 43 #define STACK_TMP_SIZE (3072 + STACK_TMP_OFFS) 44 #else 45 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 46 #endif 47 #define STACK_THREAD_SIZE 8192 48 49 #if defined(CFG_CORE_SANITIZE_KADDRESS) || defined(__clang__) 50 #define STACK_ABT_SIZE 3072 51 #else 52 #define STACK_ABT_SIZE 2048 53 #endif 54 55 #endif /*ARM32*/ 56 57 #ifdef ARM64 58 #define STACK_TMP_SIZE (2048 + STACK_TMP_OFFS) 59 #define STACK_THREAD_SIZE 8192 60 61 #if TRACE_LEVEL > 0 62 #define STACK_ABT_SIZE 3072 63 #else 64 #define STACK_ABT_SIZE 1024 65 #endif 66 #endif /*ARM64*/ 67 68 struct thread_ctx threads[CFG_NUM_THREADS]; 69 70 struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss; 71 72 #ifdef CFG_WITH_STACK_CANARIES 73 #ifdef ARM32 74 #define STACK_CANARY_SIZE (4 * sizeof(uint32_t)) 75 #endif 76 #ifdef ARM64 77 #define STACK_CANARY_SIZE (8 * sizeof(uint32_t)) 78 #endif 79 #define START_CANARY_VALUE 0xdededede 80 #define END_CANARY_VALUE 0xabababab 81 #define GET_START_CANARY(name, stack_num) name[stack_num][0] 82 #define GET_END_CANARY(name, stack_num) \ 83 name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1] 84 #else 85 #define STACK_CANARY_SIZE 0 86 #endif 87 88 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ 89 linkage uint32_t name[num_stacks] \ 90 [ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \ 91 sizeof(uint32_t)] \ 92 __attribute__((section(".nozi_stack." # name), \ 93 aligned(STACK_ALIGNMENT))) 94 95 #define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2) 96 97 #define GET_STACK(stack) \ 98 ((vaddr_t)(stack) + STACK_SIZE(stack)) 99 100 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, static); 101 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); 102 #ifndef CFG_WITH_PAGER 103 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); 104 #endif 105 106 const void *stack_tmp_export = (uint8_t *)stack_tmp + sizeof(stack_tmp[0]) - 107 (STACK_TMP_OFFS + STACK_CANARY_SIZE / 2); 108 const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]); 109 110 /* 111 * These stack setup info are required by secondary boot cores before they 112 * each locally enable the pager (the mmu). Hence kept in pager sections. 113 */ 114 KEEP_PAGER(stack_tmp_export); 115 KEEP_PAGER(stack_tmp_stride); 116 117 thread_pm_handler_t thread_cpu_on_handler_ptr __nex_bss; 118 thread_pm_handler_t thread_cpu_off_handler_ptr __nex_bss; 119 thread_pm_handler_t thread_cpu_suspend_handler_ptr __nex_bss; 120 thread_pm_handler_t thread_cpu_resume_handler_ptr __nex_bss; 121 thread_pm_handler_t thread_system_off_handler_ptr __nex_bss; 122 thread_pm_handler_t thread_system_reset_handler_ptr __nex_bss; 123 124 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 125 static vaddr_t thread_user_kcode_va __nex_bss; 126 long thread_user_kcode_offset __nex_bss; 127 static size_t thread_user_kcode_size __nex_bss; 128 #endif 129 130 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 131 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 132 long thread_user_kdata_sp_offset __nex_bss; 133 static uint8_t thread_user_kdata_page[ 134 ROUNDUP(sizeof(thread_core_local), SMALL_PAGE_SIZE)] 135 __aligned(SMALL_PAGE_SIZE) 136 #ifndef CFG_VIRTUALIZATION 137 __section(".nozi.kdata_page"); 138 #else 139 __section(".nex_nozi.kdata_page"); 140 #endif 141 #endif 142 143 static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK; 144 145 static void init_canaries(void) 146 { 147 #ifdef CFG_WITH_STACK_CANARIES 148 size_t n; 149 #define INIT_CANARY(name) \ 150 for (n = 0; n < ARRAY_SIZE(name); n++) { \ 151 uint32_t *start_canary = &GET_START_CANARY(name, n); \ 152 uint32_t *end_canary = &GET_END_CANARY(name, n); \ 153 \ 154 *start_canary = START_CANARY_VALUE; \ 155 *end_canary = END_CANARY_VALUE; \ 156 DMSG("#Stack canaries for %s[%zu] with top at %p", \ 157 #name, n, (void *)(end_canary - 1)); \ 158 DMSG("watch *%p", (void *)end_canary); \ 159 } 160 161 INIT_CANARY(stack_tmp); 162 INIT_CANARY(stack_abt); 163 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) 164 INIT_CANARY(stack_thread); 165 #endif 166 #endif/*CFG_WITH_STACK_CANARIES*/ 167 } 168 169 #define CANARY_DIED(stack, loc, n) \ 170 do { \ 171 EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \ 172 panic(); \ 173 } while (0) 174 175 void thread_check_canaries(void) 176 { 177 #ifdef CFG_WITH_STACK_CANARIES 178 size_t n; 179 180 for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) { 181 if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE) 182 CANARY_DIED(stack_tmp, start, n); 183 if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE) 184 CANARY_DIED(stack_tmp, end, n); 185 } 186 187 for (n = 0; n < ARRAY_SIZE(stack_abt); n++) { 188 if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE) 189 CANARY_DIED(stack_abt, start, n); 190 if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE) 191 CANARY_DIED(stack_abt, end, n); 192 193 } 194 #if !defined(CFG_WITH_PAGER) && !defined(CFG_VIRTUALIZATION) 195 for (n = 0; n < ARRAY_SIZE(stack_thread); n++) { 196 if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE) 197 CANARY_DIED(stack_thread, start, n); 198 if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE) 199 CANARY_DIED(stack_thread, end, n); 200 } 201 #endif 202 #endif/*CFG_WITH_STACK_CANARIES*/ 203 } 204 205 void thread_lock_global(void) 206 { 207 cpu_spin_lock(&thread_global_lock); 208 } 209 210 void thread_unlock_global(void) 211 { 212 cpu_spin_unlock(&thread_global_lock); 213 } 214 215 #ifdef ARM32 216 uint32_t thread_get_exceptions(void) 217 { 218 uint32_t cpsr = read_cpsr(); 219 220 return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL; 221 } 222 223 void thread_set_exceptions(uint32_t exceptions) 224 { 225 uint32_t cpsr = read_cpsr(); 226 227 /* Foreign interrupts must not be unmasked while holding a spinlock */ 228 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 229 assert_have_no_spinlock(); 230 231 cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT); 232 cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT); 233 write_cpsr(cpsr); 234 } 235 #endif /*ARM32*/ 236 237 #ifdef ARM64 238 uint32_t thread_get_exceptions(void) 239 { 240 uint32_t daif = read_daif(); 241 242 return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL; 243 } 244 245 void thread_set_exceptions(uint32_t exceptions) 246 { 247 uint32_t daif = read_daif(); 248 249 /* Foreign interrupts must not be unmasked while holding a spinlock */ 250 if (!(exceptions & THREAD_EXCP_FOREIGN_INTR)) 251 assert_have_no_spinlock(); 252 253 daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT); 254 daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT); 255 write_daif(daif); 256 } 257 #endif /*ARM64*/ 258 259 uint32_t thread_mask_exceptions(uint32_t exceptions) 260 { 261 uint32_t state = thread_get_exceptions(); 262 263 thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL)); 264 return state; 265 } 266 267 void thread_unmask_exceptions(uint32_t state) 268 { 269 thread_set_exceptions(state & THREAD_EXCP_ALL); 270 } 271 272 273 struct thread_core_local *thread_get_core_local(void) 274 { 275 uint32_t cpu_id = get_core_pos(); 276 277 /* 278 * Foreign interrupts must be disabled before playing with core_local 279 * since we otherwise may be rescheduled to a different core in the 280 * middle of this function. 281 */ 282 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 283 284 assert(cpu_id < CFG_TEE_CORE_NB_CORE); 285 return &thread_core_local[cpu_id]; 286 } 287 288 static void thread_lazy_save_ns_vfp(void) 289 { 290 #ifdef CFG_WITH_VFP 291 struct thread_ctx *thr = threads + thread_get_id(); 292 293 thr->vfp_state.ns_saved = false; 294 vfp_lazy_save_state_init(&thr->vfp_state.ns); 295 #endif /*CFG_WITH_VFP*/ 296 } 297 298 static void thread_lazy_restore_ns_vfp(void) 299 { 300 #ifdef CFG_WITH_VFP 301 struct thread_ctx *thr = threads + thread_get_id(); 302 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 303 304 assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved); 305 306 if (tuv && tuv->lazy_saved && !tuv->saved) { 307 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 308 tuv->saved = true; 309 } 310 311 vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved); 312 thr->vfp_state.ns_saved = false; 313 #endif /*CFG_WITH_VFP*/ 314 } 315 316 #ifdef ARM32 317 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1, 318 uint32_t a2, uint32_t a3) 319 { 320 thread->regs.pc = (uint32_t)thread_std_smc_entry; 321 322 /* 323 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 324 * Asynchronous abort and unmasked native interrupts. 325 */ 326 thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E; 327 thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A | 328 (THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT); 329 /* Enable thumb mode if it's a thumb instruction */ 330 if (thread->regs.pc & 1) 331 thread->regs.cpsr |= CPSR_T; 332 /* Reinitialize stack pointer */ 333 thread->regs.svc_sp = thread->stack_va_end; 334 335 /* 336 * Copy arguments into context. This will make the 337 * arguments appear in r0-r7 when thread is started. 338 */ 339 thread->regs.r0 = a0; 340 thread->regs.r1 = a1; 341 thread->regs.r2 = a2; 342 thread->regs.r3 = a3; 343 thread->regs.r4 = 0; 344 thread->regs.r5 = 0; 345 thread->regs.r6 = 0; 346 thread->regs.r7 = 0; 347 } 348 #endif /*ARM32*/ 349 350 #ifdef ARM64 351 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1, 352 uint32_t a2, uint32_t a3) 353 { 354 thread->regs.pc = (uint64_t)thread_std_smc_entry; 355 356 /* 357 * Stdcalls starts in SVC mode with masked foreign interrupts, masked 358 * Asynchronous abort and unmasked native interrupts. 359 */ 360 thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 361 THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT); 362 /* Reinitialize stack pointer */ 363 thread->regs.sp = thread->stack_va_end; 364 365 /* 366 * Copy arguments into context. This will make the 367 * arguments appear in x0-x7 when thread is started. 368 */ 369 thread->regs.x[0] = a0; 370 thread->regs.x[1] = a1; 371 thread->regs.x[2] = a2; 372 thread->regs.x[3] = a3; 373 thread->regs.x[4] = 0; 374 thread->regs.x[5] = 0; 375 thread->regs.x[6] = 0; 376 thread->regs.x[7] = 0; 377 378 /* Set up frame pointer as per the Aarch64 AAPCS */ 379 thread->regs.x[29] = 0; 380 } 381 #endif /*ARM64*/ 382 383 void thread_init_boot_thread(void) 384 { 385 struct thread_core_local *l = thread_get_core_local(); 386 387 thread_init_threads(); 388 389 l->curr_thread = 0; 390 threads[0].state = THREAD_STATE_ACTIVE; 391 } 392 393 void thread_clr_boot_thread(void) 394 { 395 struct thread_core_local *l = thread_get_core_local(); 396 397 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); 398 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); 399 threads[l->curr_thread].state = THREAD_STATE_FREE; 400 l->curr_thread = -1; 401 } 402 403 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) 404 { 405 size_t n; 406 struct thread_core_local *l = thread_get_core_local(); 407 bool found_thread = false; 408 409 assert(l->curr_thread == -1); 410 411 thread_lock_global(); 412 413 for (n = 0; n < CFG_NUM_THREADS; n++) { 414 if (threads[n].state == THREAD_STATE_FREE) { 415 threads[n].state = THREAD_STATE_ACTIVE; 416 found_thread = true; 417 break; 418 } 419 } 420 421 thread_unlock_global(); 422 423 if (!found_thread) 424 return; 425 426 l->curr_thread = n; 427 428 threads[n].flags = 0; 429 init_regs(threads + n, a0, a1, a2, a3); 430 431 thread_lazy_save_ns_vfp(); 432 thread_resume(&threads[n].regs); 433 /*NOTREACHED*/ 434 panic(); 435 } 436 437 #ifdef ARM32 438 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0, 439 uint32_t a1, uint32_t a2, uint32_t a3) 440 { 441 /* 442 * Update returned values from RPC, values will appear in 443 * r0-r3 when thread is resumed. 444 */ 445 regs->r0 = a0; 446 regs->r1 = a1; 447 regs->r2 = a2; 448 regs->r3 = a3; 449 } 450 #endif /*ARM32*/ 451 452 #ifdef ARM64 453 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0, 454 uint32_t a1, uint32_t a2, uint32_t a3) 455 { 456 /* 457 * Update returned values from RPC, values will appear in 458 * x0-x3 when thread is resumed. 459 */ 460 regs->x[0] = a0; 461 regs->x[1] = a1; 462 regs->x[2] = a2; 463 regs->x[3] = a3; 464 } 465 #endif /*ARM64*/ 466 467 #ifdef ARM32 468 static bool is_from_user(uint32_t cpsr) 469 { 470 return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR; 471 } 472 #endif 473 474 #ifdef ARM64 475 static bool is_from_user(uint32_t cpsr) 476 { 477 if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT)) 478 return true; 479 if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) == 480 SPSR_64_MODE_EL0) 481 return true; 482 return false; 483 } 484 #endif 485 486 #ifdef CFG_SYSCALL_FTRACE 487 static void __noprof ftrace_suspend(void) 488 { 489 struct tee_ta_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack); 490 491 if (!s) 492 return; 493 494 if (s->fbuf) 495 s->fbuf->syscall_trace_suspended = true; 496 } 497 498 static void __noprof ftrace_resume(void) 499 { 500 struct tee_ta_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack); 501 502 if (!s) 503 return; 504 505 if (s->fbuf) 506 s->fbuf->syscall_trace_suspended = false; 507 } 508 #else 509 static void __noprof ftrace_suspend(void) 510 { 511 } 512 513 static void __noprof ftrace_resume(void) 514 { 515 } 516 #endif 517 518 static bool is_user_mode(struct thread_ctx_regs *regs) 519 { 520 return is_from_user((uint32_t)regs->cpsr); 521 } 522 523 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1, 524 uint32_t a2, uint32_t a3) 525 { 526 size_t n = thread_id; 527 struct thread_core_local *l = thread_get_core_local(); 528 bool found_thread = false; 529 530 assert(l->curr_thread == -1); 531 532 thread_lock_global(); 533 534 if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) { 535 threads[n].state = THREAD_STATE_ACTIVE; 536 found_thread = true; 537 } 538 539 thread_unlock_global(); 540 541 if (!found_thread) 542 return; 543 544 l->curr_thread = n; 545 546 if (threads[n].have_user_map) { 547 core_mmu_set_user_map(&threads[n].user_map); 548 if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR) 549 tee_ta_ftrace_update_times_resume(); 550 } 551 552 if (is_user_mode(&threads[n].regs)) 553 tee_ta_update_session_utime_resume(); 554 555 /* 556 * Return from RPC to request service of a foreign interrupt must not 557 * get parameters from non-secure world. 558 */ 559 if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) { 560 copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3); 561 threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN; 562 } 563 564 thread_lazy_save_ns_vfp(); 565 566 if (threads[n].have_user_map) 567 ftrace_resume(); 568 569 thread_resume(&threads[n].regs); 570 /*NOTREACHED*/ 571 panic(); 572 } 573 574 void *thread_get_tmp_sp(void) 575 { 576 struct thread_core_local *l = thread_get_core_local(); 577 578 return (void *)l->tmp_stack_va_end; 579 } 580 581 #ifdef ARM64 582 vaddr_t thread_get_saved_thread_sp(void) 583 { 584 struct thread_core_local *l = thread_get_core_local(); 585 int ct = l->curr_thread; 586 587 assert(ct != -1); 588 return threads[ct].kern_sp; 589 } 590 #endif /*ARM64*/ 591 592 vaddr_t thread_stack_start(void) 593 { 594 struct thread_ctx *thr; 595 int ct = thread_get_id_may_fail(); 596 597 if (ct == -1) 598 return 0; 599 600 thr = threads + ct; 601 return thr->stack_va_end - STACK_THREAD_SIZE; 602 } 603 604 size_t thread_stack_size(void) 605 { 606 return STACK_THREAD_SIZE; 607 } 608 609 bool thread_is_from_abort_mode(void) 610 { 611 struct thread_core_local *l = thread_get_core_local(); 612 613 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; 614 } 615 616 #ifdef ARM32 617 bool thread_is_in_normal_mode(void) 618 { 619 return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC; 620 } 621 #endif 622 623 #ifdef ARM64 624 bool thread_is_in_normal_mode(void) 625 { 626 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 627 struct thread_core_local *l = thread_get_core_local(); 628 bool ret; 629 630 /* If any bit in l->flags is set we're handling some exception. */ 631 ret = !l->flags; 632 thread_unmask_exceptions(exceptions); 633 634 return ret; 635 } 636 #endif 637 638 void thread_state_free(void) 639 { 640 struct thread_core_local *l = thread_get_core_local(); 641 int ct = l->curr_thread; 642 643 assert(ct != -1); 644 645 thread_lazy_restore_ns_vfp(); 646 tee_pager_release_phys( 647 (void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE), 648 STACK_THREAD_SIZE); 649 650 thread_lock_global(); 651 652 assert(threads[ct].state == THREAD_STATE_ACTIVE); 653 threads[ct].state = THREAD_STATE_FREE; 654 threads[ct].flags = 0; 655 l->curr_thread = -1; 656 657 #ifdef CFG_VIRTUALIZATION 658 virt_unset_guest(); 659 #endif 660 thread_unlock_global(); 661 } 662 663 #ifdef CFG_WITH_PAGER 664 static void release_unused_kernel_stack(struct thread_ctx *thr, 665 uint32_t cpsr __maybe_unused) 666 { 667 #ifdef ARM64 668 /* 669 * If we're from user mode then thr->regs.sp is the saved user 670 * stack pointer and thr->kern_sp holds the last kernel stack 671 * pointer. But if we're from kernel mode then thr->kern_sp isn't 672 * up to date so we need to read from thr->regs.sp instead. 673 */ 674 vaddr_t sp = is_from_user(cpsr) ? thr->kern_sp : thr->regs.sp; 675 #else 676 vaddr_t sp = thr->regs.svc_sp; 677 #endif 678 vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE; 679 size_t len = sp - base; 680 681 tee_pager_release_phys((void *)base, len); 682 } 683 #else 684 static void release_unused_kernel_stack(struct thread_ctx *thr __unused, 685 uint32_t cpsr __unused) 686 { 687 } 688 #endif 689 690 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc) 691 { 692 struct thread_core_local *l = thread_get_core_local(); 693 int ct = l->curr_thread; 694 695 assert(ct != -1); 696 697 if (core_mmu_user_mapping_is_active()) 698 ftrace_suspend(); 699 700 thread_check_canaries(); 701 702 release_unused_kernel_stack(threads + ct, cpsr); 703 704 if (is_from_user(cpsr)) { 705 thread_user_save_vfp(); 706 tee_ta_update_session_utime_suspend(); 707 tee_ta_gprof_sample_pc(pc); 708 } 709 thread_lazy_restore_ns_vfp(); 710 711 thread_lock_global(); 712 713 assert(threads[ct].state == THREAD_STATE_ACTIVE); 714 threads[ct].flags |= flags; 715 threads[ct].regs.cpsr = cpsr; 716 threads[ct].regs.pc = pc; 717 threads[ct].state = THREAD_STATE_SUSPENDED; 718 719 threads[ct].have_user_map = core_mmu_user_mapping_is_active(); 720 if (threads[ct].have_user_map) { 721 if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR) 722 tee_ta_ftrace_update_times_suspend(); 723 core_mmu_get_user_map(&threads[ct].user_map); 724 core_mmu_set_user_map(NULL); 725 } 726 727 l->curr_thread = -1; 728 729 #ifdef CFG_VIRTUALIZATION 730 virt_unset_guest(); 731 #endif 732 733 thread_unlock_global(); 734 735 return ct; 736 } 737 738 #ifdef ARM32 739 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 740 { 741 l->tmp_stack_va_end = sp; 742 thread_set_irq_sp(sp); 743 thread_set_fiq_sp(sp); 744 } 745 746 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 747 { 748 l->abt_stack_va_end = sp; 749 thread_set_abt_sp((vaddr_t)l); 750 thread_set_und_sp((vaddr_t)l); 751 } 752 #endif /*ARM32*/ 753 754 #ifdef ARM64 755 static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp) 756 { 757 /* 758 * We're already using the tmp stack when this function is called 759 * so there's no need to assign it to any stack pointer. However, 760 * we'll need to restore it at different times so store it here. 761 */ 762 l->tmp_stack_va_end = sp; 763 } 764 765 static void set_abt_stack(struct thread_core_local *l, vaddr_t sp) 766 { 767 l->abt_stack_va_end = sp; 768 } 769 #endif /*ARM64*/ 770 771 bool thread_init_stack(uint32_t thread_id, vaddr_t sp) 772 { 773 if (thread_id >= CFG_NUM_THREADS) 774 return false; 775 threads[thread_id].stack_va_end = sp; 776 return true; 777 } 778 779 int thread_get_id_may_fail(void) 780 { 781 /* 782 * thread_get_core_local() requires foreign interrupts to be disabled 783 */ 784 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 785 struct thread_core_local *l = thread_get_core_local(); 786 int ct = l->curr_thread; 787 788 thread_unmask_exceptions(exceptions); 789 return ct; 790 } 791 792 int thread_get_id(void) 793 { 794 int ct = thread_get_id_may_fail(); 795 796 assert(ct >= 0 && ct < CFG_NUM_THREADS); 797 return ct; 798 } 799 800 static void init_handlers(const struct thread_handlers *handlers) 801 { 802 thread_cpu_on_handler_ptr = handlers->cpu_on; 803 thread_cpu_off_handler_ptr = handlers->cpu_off; 804 thread_cpu_suspend_handler_ptr = handlers->cpu_suspend; 805 thread_cpu_resume_handler_ptr = handlers->cpu_resume; 806 thread_system_off_handler_ptr = handlers->system_off; 807 thread_system_reset_handler_ptr = handlers->system_reset; 808 } 809 810 #ifdef CFG_WITH_PAGER 811 static void init_thread_stacks(void) 812 { 813 size_t n = 0; 814 815 /* 816 * Allocate virtual memory for thread stacks. 817 */ 818 for (n = 0; n < CFG_NUM_THREADS; n++) { 819 tee_mm_entry_t *mm = NULL; 820 vaddr_t sp = 0; 821 size_t num_pages = 0; 822 struct fobj *fobj = NULL; 823 824 /* Find vmem for thread stack and its protection gap */ 825 mm = tee_mm_alloc(&tee_mm_vcore, 826 SMALL_PAGE_SIZE + STACK_THREAD_SIZE); 827 assert(mm); 828 829 /* Claim eventual physical page */ 830 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), 831 true); 832 833 num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1; 834 fobj = fobj_locked_paged_alloc(num_pages); 835 836 /* Add the area to the pager */ 837 tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, 838 PAGER_AREA_TYPE_LOCK, fobj); 839 fobj_put(fobj); 840 841 /* init effective stack */ 842 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); 843 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); 844 if (!thread_init_stack(n, sp)) 845 panic("init stack failed"); 846 } 847 } 848 #else 849 static void init_thread_stacks(void) 850 { 851 size_t n; 852 853 /* Assign the thread stacks */ 854 for (n = 0; n < CFG_NUM_THREADS; n++) { 855 if (!thread_init_stack(n, GET_STACK(stack_thread[n]))) 856 panic("thread_init_stack failed"); 857 } 858 } 859 #endif /*CFG_WITH_PAGER*/ 860 861 static void init_user_kcode(void) 862 { 863 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 864 vaddr_t v = (vaddr_t)thread_excp_vect; 865 vaddr_t ve = (vaddr_t)thread_excp_vect_end; 866 867 thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE); 868 ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE); 869 thread_user_kcode_size = ve - thread_user_kcode_va; 870 871 core_mmu_get_user_va_range(&v, NULL); 872 thread_user_kcode_offset = thread_user_kcode_va - v; 873 874 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 875 /* 876 * When transitioning to EL0 subtract SP with this much to point to 877 * this special kdata page instead. SP is restored by add this much 878 * while transitioning back to EL1. 879 */ 880 v += thread_user_kcode_size; 881 thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v; 882 #endif 883 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/ 884 } 885 886 void thread_init_threads(void) 887 { 888 size_t n; 889 890 init_thread_stacks(); 891 pgt_init(); 892 893 mutex_lockdep_init(); 894 895 for (n = 0; n < CFG_NUM_THREADS; n++) { 896 TAILQ_INIT(&threads[n].tsd.sess_stack); 897 SLIST_INIT(&threads[n].tsd.pgt_cache); 898 } 899 900 for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) 901 thread_core_local[n].curr_thread = -1; 902 } 903 904 void thread_init_primary(const struct thread_handlers *handlers) 905 { 906 init_handlers(handlers); 907 908 /* Initialize canaries around the stacks */ 909 init_canaries(); 910 911 init_user_kcode(); 912 } 913 914 static void init_sec_mon(size_t pos __maybe_unused) 915 { 916 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 917 /* Initialize secure monitor */ 918 sm_init(GET_STACK(stack_tmp[pos])); 919 #endif 920 } 921 922 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr) 923 { 924 return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK; 925 } 926 927 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr) 928 { 929 return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) & 930 MIDR_PRIMARY_PART_NUM_MASK; 931 } 932 933 #ifdef ARM64 934 static bool probe_workaround_available(void) 935 { 936 int32_t r; 937 938 r = thread_smc(SMCCC_VERSION, 0, 0, 0); 939 if (r < 0) 940 return false; 941 if (r < 0x10001) /* compare with version 1.1 */ 942 return false; 943 944 /* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */ 945 r = thread_smc(SMCCC_ARCH_FEATURES, SMCCC_ARCH_WORKAROUND_1, 0, 0); 946 return r >= 0; 947 } 948 949 static vaddr_t __maybe_unused select_vector(vaddr_t a) 950 { 951 if (probe_workaround_available()) { 952 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available", 953 SMCCC_ARCH_WORKAROUND_1); 954 DMSG("SMC Workaround for CVE-2017-5715 used"); 955 return a; 956 } 957 958 DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable", 959 SMCCC_ARCH_WORKAROUND_1); 960 DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)"); 961 return (vaddr_t)thread_excp_vect; 962 } 963 #else 964 static vaddr_t __maybe_unused select_vector(vaddr_t a) 965 { 966 return a; 967 } 968 #endif 969 970 static vaddr_t get_excp_vect(void) 971 { 972 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC 973 uint32_t midr = read_midr(); 974 975 if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM) 976 return (vaddr_t)thread_excp_vect; 977 978 switch (get_midr_primary_part(midr)) { 979 #ifdef ARM32 980 case CORTEX_A8_PART_NUM: 981 case CORTEX_A9_PART_NUM: 982 case CORTEX_A17_PART_NUM: 983 #endif 984 case CORTEX_A57_PART_NUM: 985 case CORTEX_A72_PART_NUM: 986 case CORTEX_A73_PART_NUM: 987 case CORTEX_A75_PART_NUM: 988 return select_vector((vaddr_t)thread_excp_vect_workaround); 989 #ifdef ARM32 990 case CORTEX_A15_PART_NUM: 991 return select_vector((vaddr_t)thread_excp_vect_workaround_a15); 992 #endif 993 default: 994 return (vaddr_t)thread_excp_vect; 995 } 996 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/ 997 998 return (vaddr_t)thread_excp_vect; 999 } 1000 1001 void thread_init_per_cpu(void) 1002 { 1003 size_t pos = get_core_pos(); 1004 struct thread_core_local *l = thread_get_core_local(); 1005 1006 init_sec_mon(pos); 1007 1008 set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS); 1009 set_abt_stack(l, GET_STACK(stack_abt[pos])); 1010 1011 thread_init_vbar(get_excp_vect()); 1012 1013 #ifdef CFG_FTRACE_SUPPORT 1014 /* 1015 * Enable accesses to frequency register and physical counter 1016 * register in EL0/PL0 required for timestamping during 1017 * function tracing. 1018 */ 1019 write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN); 1020 #endif 1021 } 1022 1023 struct thread_specific_data *thread_get_tsd(void) 1024 { 1025 return &threads[thread_get_id()].tsd; 1026 } 1027 1028 struct thread_ctx_regs *thread_get_ctx_regs(void) 1029 { 1030 struct thread_core_local *l = thread_get_core_local(); 1031 1032 assert(l->curr_thread != -1); 1033 return &threads[l->curr_thread].regs; 1034 } 1035 1036 void thread_set_foreign_intr(bool enable) 1037 { 1038 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1039 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1040 struct thread_core_local *l; 1041 1042 l = thread_get_core_local(); 1043 1044 assert(l->curr_thread != -1); 1045 1046 if (enable) { 1047 threads[l->curr_thread].flags |= 1048 THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1049 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1050 } else { 1051 /* 1052 * No need to disable foreign interrupts here since they're 1053 * already disabled above. 1054 */ 1055 threads[l->curr_thread].flags &= 1056 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; 1057 } 1058 } 1059 1060 void thread_restore_foreign_intr(void) 1061 { 1062 /* thread_get_core_local() requires foreign interrupts to be disabled */ 1063 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1064 struct thread_core_local *l; 1065 1066 l = thread_get_core_local(); 1067 1068 assert(l->curr_thread != -1); 1069 1070 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) 1071 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); 1072 } 1073 1074 #ifdef CFG_WITH_VFP 1075 uint32_t thread_kernel_enable_vfp(void) 1076 { 1077 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); 1078 struct thread_ctx *thr = threads + thread_get_id(); 1079 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1080 1081 assert(!vfp_is_enabled()); 1082 1083 if (!thr->vfp_state.ns_saved) { 1084 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1085 true /*force_save*/); 1086 thr->vfp_state.ns_saved = true; 1087 } else if (thr->vfp_state.sec_lazy_saved && 1088 !thr->vfp_state.sec_saved) { 1089 /* 1090 * This happens when we're handling an abort while the 1091 * thread was using the VFP state. 1092 */ 1093 vfp_lazy_save_state_final(&thr->vfp_state.sec, 1094 false /*!force_save*/); 1095 thr->vfp_state.sec_saved = true; 1096 } else if (tuv && tuv->lazy_saved && !tuv->saved) { 1097 /* 1098 * This can happen either during syscall or abort 1099 * processing (while processing a syscall). 1100 */ 1101 vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/); 1102 tuv->saved = true; 1103 } 1104 1105 vfp_enable(); 1106 return exceptions; 1107 } 1108 1109 void thread_kernel_disable_vfp(uint32_t state) 1110 { 1111 uint32_t exceptions; 1112 1113 assert(vfp_is_enabled()); 1114 1115 vfp_disable(); 1116 exceptions = thread_get_exceptions(); 1117 assert(exceptions & THREAD_EXCP_FOREIGN_INTR); 1118 exceptions &= ~THREAD_EXCP_FOREIGN_INTR; 1119 exceptions |= state & THREAD_EXCP_FOREIGN_INTR; 1120 thread_set_exceptions(exceptions); 1121 } 1122 1123 void thread_kernel_save_vfp(void) 1124 { 1125 struct thread_ctx *thr = threads + thread_get_id(); 1126 1127 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1128 if (vfp_is_enabled()) { 1129 vfp_lazy_save_state_init(&thr->vfp_state.sec); 1130 thr->vfp_state.sec_lazy_saved = true; 1131 } 1132 } 1133 1134 void thread_kernel_restore_vfp(void) 1135 { 1136 struct thread_ctx *thr = threads + thread_get_id(); 1137 1138 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1139 assert(!vfp_is_enabled()); 1140 if (thr->vfp_state.sec_lazy_saved) { 1141 vfp_lazy_restore_state(&thr->vfp_state.sec, 1142 thr->vfp_state.sec_saved); 1143 thr->vfp_state.sec_saved = false; 1144 thr->vfp_state.sec_lazy_saved = false; 1145 } 1146 } 1147 1148 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp) 1149 { 1150 struct thread_ctx *thr = threads + thread_get_id(); 1151 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1152 1153 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1154 assert(!vfp_is_enabled()); 1155 1156 if (!thr->vfp_state.ns_saved) { 1157 vfp_lazy_save_state_final(&thr->vfp_state.ns, 1158 true /*force_save*/); 1159 thr->vfp_state.ns_saved = true; 1160 } else if (tuv && uvfp != tuv) { 1161 if (tuv->lazy_saved && !tuv->saved) { 1162 vfp_lazy_save_state_final(&tuv->vfp, 1163 false /*!force_save*/); 1164 tuv->saved = true; 1165 } 1166 } 1167 1168 if (uvfp->lazy_saved) 1169 vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved); 1170 uvfp->lazy_saved = false; 1171 uvfp->saved = false; 1172 1173 thr->vfp_state.uvfp = uvfp; 1174 vfp_enable(); 1175 } 1176 1177 void thread_user_save_vfp(void) 1178 { 1179 struct thread_ctx *thr = threads + thread_get_id(); 1180 struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp; 1181 1182 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); 1183 if (!vfp_is_enabled()) 1184 return; 1185 1186 assert(tuv && !tuv->lazy_saved && !tuv->saved); 1187 vfp_lazy_save_state_init(&tuv->vfp); 1188 tuv->lazy_saved = true; 1189 } 1190 1191 void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp) 1192 { 1193 struct thread_ctx *thr = threads + thread_get_id(); 1194 1195 if (uvfp == thr->vfp_state.uvfp) 1196 thr->vfp_state.uvfp = NULL; 1197 uvfp->lazy_saved = false; 1198 uvfp->saved = false; 1199 } 1200 #endif /*CFG_WITH_VFP*/ 1201 1202 #ifdef ARM32 1203 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1204 { 1205 uint32_t s; 1206 1207 if (!is_32bit) 1208 return false; 1209 1210 s = read_spsr(); 1211 s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2); 1212 s |= CPSR_MODE_USR; 1213 if (entry_func & 1) 1214 s |= CPSR_T; 1215 *spsr = s; 1216 return true; 1217 } 1218 #endif 1219 1220 #ifdef ARM64 1221 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr) 1222 { 1223 uint32_t s; 1224 1225 if (is_32bit) { 1226 s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT); 1227 s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT; 1228 s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT; 1229 } else { 1230 s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1231 } 1232 1233 *spsr = s; 1234 return true; 1235 } 1236 #endif 1237 1238 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1, 1239 unsigned long a2, unsigned long a3, unsigned long user_sp, 1240 unsigned long entry_func, bool is_32bit, 1241 uint32_t *exit_status0, uint32_t *exit_status1) 1242 { 1243 uint32_t spsr; 1244 1245 tee_ta_update_session_utime_resume(); 1246 1247 if (!get_spsr(is_32bit, entry_func, &spsr)) { 1248 *exit_status0 = 1; /* panic */ 1249 *exit_status1 = 0xbadbadba; 1250 return 0; 1251 } 1252 return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func, 1253 spsr, exit_status0, exit_status1); 1254 } 1255 1256 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0 1257 void thread_get_user_kcode(struct mobj **mobj, size_t *offset, 1258 vaddr_t *va, size_t *sz) 1259 { 1260 core_mmu_get_user_va_range(va, NULL); 1261 *mobj = mobj_tee_ram; 1262 *offset = thread_user_kcode_va - TEE_RAM_START; 1263 *sz = thread_user_kcode_size; 1264 } 1265 #endif 1266 1267 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \ 1268 defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64) 1269 void thread_get_user_kdata(struct mobj **mobj, size_t *offset, 1270 vaddr_t *va, size_t *sz) 1271 { 1272 vaddr_t v; 1273 1274 core_mmu_get_user_va_range(&v, NULL); 1275 *va = v + thread_user_kcode_size; 1276 *mobj = mobj_tee_ram; 1277 *offset = (vaddr_t)thread_user_kdata_page - TEE_RAM_START; 1278 *sz = sizeof(thread_user_kdata_page); 1279 } 1280 #endif 1281