xref: /optee_os/core/arch/arm/kernel/thread.c (revision 039e02df2716a0ed886b56e1e07b7ac1d8597228)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2021, Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2020-2021, Arm Limited
6  */
7 
8 #include <platform_config.h>
9 
10 #include <arm.h>
11 #include <assert.h>
12 #include <config.h>
13 #include <io.h>
14 #include <keep.h>
15 #include <kernel/asan.h>
16 #include <kernel/boot.h>
17 #include <kernel/linker.h>
18 #include <kernel/lockdep.h>
19 #include <kernel/misc.h>
20 #include <kernel/panic.h>
21 #include <kernel/spinlock.h>
22 #include <kernel/spmc_sp_handler.h>
23 #include <kernel/tee_ta_manager.h>
24 #include <kernel/thread.h>
25 #include <kernel/thread_private.h>
26 #include <kernel/user_mode_ctx_struct.h>
27 #include <kernel/virtualization.h>
28 #include <mm/core_memprot.h>
29 #include <mm/mobj.h>
30 #include <mm/tee_mm.h>
31 #include <mm/tee_pager.h>
32 #include <mm/vm.h>
33 #include <smccc.h>
34 #include <sm/sm.h>
35 #include <trace.h>
36 #include <util.h>
37 
38 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
39 static vaddr_t thread_user_kcode_va __nex_bss;
40 long thread_user_kcode_offset __nex_bss;
41 static size_t thread_user_kcode_size __nex_bss;
42 #endif
43 
44 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
45 	defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
46 long thread_user_kdata_sp_offset __nex_bss;
47 static uint8_t thread_user_kdata_page[
48 	ROUNDUP(sizeof(struct thread_core_local) * CFG_TEE_CORE_NB_CORE,
49 		SMALL_PAGE_SIZE)]
50 	__aligned(SMALL_PAGE_SIZE)
51 #ifndef CFG_VIRTUALIZATION
52 	__section(".nozi.kdata_page");
53 #else
54 	__section(".nex_nozi.kdata_page");
55 #endif
56 #endif
57 
58 #ifdef ARM32
59 uint32_t __nostackcheck thread_get_exceptions(void)
60 {
61 	uint32_t cpsr = read_cpsr();
62 
63 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
64 }
65 
66 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
67 {
68 	uint32_t cpsr = read_cpsr();
69 
70 	/* Foreign interrupts must not be unmasked while holding a spinlock */
71 	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
72 		assert_have_no_spinlock();
73 
74 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
75 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
76 
77 	barrier();
78 	write_cpsr(cpsr);
79 	barrier();
80 }
81 #endif /*ARM32*/
82 
83 #ifdef ARM64
84 uint32_t __nostackcheck thread_get_exceptions(void)
85 {
86 	uint32_t daif = read_daif();
87 
88 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
89 }
90 
91 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
92 {
93 	uint32_t daif = read_daif();
94 
95 	/* Foreign interrupts must not be unmasked while holding a spinlock */
96 	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
97 		assert_have_no_spinlock();
98 
99 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
100 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
101 
102 	barrier();
103 	write_daif(daif);
104 	barrier();
105 }
106 #endif /*ARM64*/
107 
108 uint32_t __nostackcheck thread_mask_exceptions(uint32_t exceptions)
109 {
110 	uint32_t state = thread_get_exceptions();
111 
112 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
113 	return state;
114 }
115 
116 void __nostackcheck thread_unmask_exceptions(uint32_t state)
117 {
118 	thread_set_exceptions(state & THREAD_EXCP_ALL);
119 }
120 
121 static void thread_lazy_save_ns_vfp(void)
122 {
123 #ifdef CFG_WITH_VFP
124 	struct thread_ctx *thr = threads + thread_get_id();
125 
126 	thr->vfp_state.ns_saved = false;
127 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
128 #endif /*CFG_WITH_VFP*/
129 }
130 
131 static void thread_lazy_restore_ns_vfp(void)
132 {
133 #ifdef CFG_WITH_VFP
134 	struct thread_ctx *thr = threads + thread_get_id();
135 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
136 
137 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
138 
139 	if (tuv && tuv->lazy_saved && !tuv->saved) {
140 		vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
141 		tuv->saved = true;
142 	}
143 
144 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
145 	thr->vfp_state.ns_saved = false;
146 #endif /*CFG_WITH_VFP*/
147 }
148 
149 #ifdef ARM32
150 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
151 		      uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
152 		      uint32_t a6, uint32_t a7, void *pc)
153 {
154 	thread->regs.pc = (uint32_t)pc;
155 
156 	/*
157 	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
158 	 * Asynchronous abort and unmasked native interrupts.
159 	 */
160 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
161 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
162 			(THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
163 	/* Enable thumb mode if it's a thumb instruction */
164 	if (thread->regs.pc & 1)
165 		thread->regs.cpsr |= CPSR_T;
166 	/* Reinitialize stack pointer */
167 	thread->regs.svc_sp = thread->stack_va_end;
168 
169 	/*
170 	 * Copy arguments into context. This will make the
171 	 * arguments appear in r0-r7 when thread is started.
172 	 */
173 	thread->regs.r0 = a0;
174 	thread->regs.r1 = a1;
175 	thread->regs.r2 = a2;
176 	thread->regs.r3 = a3;
177 	thread->regs.r4 = a4;
178 	thread->regs.r5 = a5;
179 	thread->regs.r6 = a6;
180 	thread->regs.r7 = a7;
181 }
182 #endif /*ARM32*/
183 
184 #ifdef ARM64
185 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
186 		      uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
187 		      uint32_t a6, uint32_t a7, void *pc)
188 {
189 	thread->regs.pc = (uint64_t)pc;
190 
191 	/*
192 	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
193 	 * Asynchronous abort and unmasked native interrupts.
194 	 */
195 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
196 				THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
197 	/* Reinitialize stack pointer */
198 	thread->regs.sp = thread->stack_va_end;
199 
200 	/*
201 	 * Copy arguments into context. This will make the
202 	 * arguments appear in x0-x7 when thread is started.
203 	 */
204 	thread->regs.x[0] = a0;
205 	thread->regs.x[1] = a1;
206 	thread->regs.x[2] = a2;
207 	thread->regs.x[3] = a3;
208 	thread->regs.x[4] = a4;
209 	thread->regs.x[5] = a5;
210 	thread->regs.x[6] = a6;
211 	thread->regs.x[7] = a7;
212 
213 	/* Set up frame pointer as per the Aarch64 AAPCS */
214 	thread->regs.x[29] = 0;
215 }
216 #endif /*ARM64*/
217 
218 static void __thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2,
219 				   uint32_t a3, uint32_t a4, uint32_t a5,
220 				   uint32_t a6, uint32_t a7,
221 				   void *pc)
222 {
223 	size_t n;
224 	struct thread_core_local *l = thread_get_core_local();
225 	bool found_thread = false;
226 
227 	assert(l->curr_thread == THREAD_ID_INVALID);
228 
229 	thread_lock_global();
230 
231 	for (n = 0; n < CFG_NUM_THREADS; n++) {
232 		if (threads[n].state == THREAD_STATE_FREE) {
233 			threads[n].state = THREAD_STATE_ACTIVE;
234 			found_thread = true;
235 			break;
236 		}
237 	}
238 
239 	thread_unlock_global();
240 
241 	if (!found_thread)
242 		return;
243 
244 	l->curr_thread = n;
245 
246 	threads[n].flags = 0;
247 	init_regs(threads + n, a0, a1, a2, a3, a4, a5, a6, a7, pc);
248 
249 	thread_lazy_save_ns_vfp();
250 
251 	l->flags &= ~THREAD_CLF_TMP;
252 	thread_resume(&threads[n].regs);
253 	/*NOTREACHED*/
254 	panic();
255 }
256 
257 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
258 			  uint32_t a4, uint32_t a5)
259 {
260 	__thread_alloc_and_run(a0, a1, a2, a3, a4, a5, 0, 0,
261 			       thread_std_smc_entry);
262 }
263 
264 #ifdef CFG_SECURE_PARTITION
265 void thread_sp_alloc_and_run(struct thread_smc_args *args __maybe_unused)
266 {
267 	__thread_alloc_and_run(args->a0, args->a1, args->a2, args->a3, args->a4,
268 			       args->a5, args->a6, args->a7,
269 			       spmc_sp_thread_entry);
270 }
271 #endif
272 
273 #ifdef ARM32
274 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
275 			  uint32_t a1, uint32_t a2, uint32_t a3)
276 {
277 	/*
278 	 * Update returned values from RPC, values will appear in
279 	 * r0-r3 when thread is resumed.
280 	 */
281 	regs->r0 = a0;
282 	regs->r1 = a1;
283 	regs->r2 = a2;
284 	regs->r3 = a3;
285 }
286 #endif /*ARM32*/
287 
288 #ifdef ARM64
289 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
290 			  uint32_t a1, uint32_t a2, uint32_t a3)
291 {
292 	/*
293 	 * Update returned values from RPC, values will appear in
294 	 * x0-x3 when thread is resumed.
295 	 */
296 	regs->x[0] = a0;
297 	regs->x[1] = a1;
298 	regs->x[2] = a2;
299 	regs->x[3] = a3;
300 }
301 #endif /*ARM64*/
302 
303 #ifdef ARM32
304 static bool is_from_user(uint32_t cpsr)
305 {
306 	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
307 }
308 #endif
309 
310 #ifdef ARM64
311 static bool is_from_user(uint32_t cpsr)
312 {
313 	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
314 		return true;
315 	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
316 	     SPSR_64_MODE_EL0)
317 		return true;
318 	return false;
319 }
320 #endif
321 
322 #ifdef CFG_SYSCALL_FTRACE
323 static void __noprof ftrace_suspend(void)
324 {
325 	struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
326 
327 	if (s && s->fbuf)
328 		s->fbuf->syscall_trace_suspended = true;
329 }
330 
331 static void __noprof ftrace_resume(void)
332 {
333 	struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
334 
335 	if (s && s->fbuf)
336 		s->fbuf->syscall_trace_suspended = false;
337 }
338 #else
339 static void __noprof ftrace_suspend(void)
340 {
341 }
342 
343 static void __noprof ftrace_resume(void)
344 {
345 }
346 #endif
347 
348 static bool is_user_mode(struct thread_ctx_regs *regs)
349 {
350 	return is_from_user((uint32_t)regs->cpsr);
351 }
352 
353 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
354 			    uint32_t a2, uint32_t a3)
355 {
356 	size_t n = thread_id;
357 	struct thread_core_local *l = thread_get_core_local();
358 	bool found_thread = false;
359 
360 	assert(l->curr_thread == THREAD_ID_INVALID);
361 
362 	thread_lock_global();
363 
364 	if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
365 		threads[n].state = THREAD_STATE_ACTIVE;
366 		found_thread = true;
367 	}
368 
369 	thread_unlock_global();
370 
371 	if (!found_thread)
372 		return;
373 
374 	l->curr_thread = n;
375 
376 	if (threads[n].have_user_map) {
377 		core_mmu_set_user_map(&threads[n].user_map);
378 		if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
379 			tee_ta_ftrace_update_times_resume();
380 	}
381 
382 	if (is_user_mode(&threads[n].regs))
383 		tee_ta_update_session_utime_resume();
384 
385 	/*
386 	 * Return from RPC to request service of a foreign interrupt must not
387 	 * get parameters from non-secure world.
388 	 */
389 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
390 		copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
391 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
392 	}
393 
394 	thread_lazy_save_ns_vfp();
395 
396 	if (threads[n].have_user_map)
397 		ftrace_resume();
398 
399 	l->flags &= ~THREAD_CLF_TMP;
400 	thread_resume(&threads[n].regs);
401 	/*NOTREACHED*/
402 	panic();
403 }
404 
405 #ifdef ARM64
406 vaddr_t thread_get_saved_thread_sp(void)
407 {
408 	struct thread_core_local *l = thread_get_core_local();
409 	int ct = l->curr_thread;
410 
411 	assert(ct != THREAD_ID_INVALID);
412 	return threads[ct].kern_sp;
413 }
414 #endif /*ARM64*/
415 
416 #ifdef ARM32
417 bool thread_is_in_normal_mode(void)
418 {
419 	return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
420 }
421 #endif
422 
423 void thread_state_free(void)
424 {
425 	struct thread_core_local *l = thread_get_core_local();
426 	int ct = l->curr_thread;
427 
428 	assert(ct != THREAD_ID_INVALID);
429 
430 	thread_lazy_restore_ns_vfp();
431 	tee_pager_release_phys(
432 		(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
433 		STACK_THREAD_SIZE);
434 
435 	thread_lock_global();
436 
437 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
438 	threads[ct].state = THREAD_STATE_FREE;
439 	threads[ct].flags = 0;
440 	l->curr_thread = THREAD_ID_INVALID;
441 
442 	if (IS_ENABLED(CFG_VIRTUALIZATION))
443 		virt_unset_guest();
444 	thread_unlock_global();
445 }
446 
447 #ifdef CFG_WITH_PAGER
448 static void release_unused_kernel_stack(struct thread_ctx *thr,
449 					uint32_t cpsr __maybe_unused)
450 {
451 #ifdef ARM64
452 	/*
453 	 * If we're from user mode then thr->regs.sp is the saved user
454 	 * stack pointer and thr->kern_sp holds the last kernel stack
455 	 * pointer. But if we're from kernel mode then thr->kern_sp isn't
456 	 * up to date so we need to read from thr->regs.sp instead.
457 	 */
458 	vaddr_t sp = is_from_user(cpsr) ?  thr->kern_sp : thr->regs.sp;
459 #else
460 	vaddr_t sp = thr->regs.svc_sp;
461 #endif
462 	vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
463 	size_t len = sp - base;
464 
465 	tee_pager_release_phys((void *)base, len);
466 }
467 #else
468 static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
469 					uint32_t cpsr __unused)
470 {
471 }
472 #endif
473 
474 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
475 {
476 	struct thread_core_local *l = thread_get_core_local();
477 	int ct = l->curr_thread;
478 
479 	assert(ct != THREAD_ID_INVALID);
480 
481 	if (core_mmu_user_mapping_is_active())
482 		ftrace_suspend();
483 
484 	thread_check_canaries();
485 
486 	release_unused_kernel_stack(threads + ct, cpsr);
487 
488 	if (is_from_user(cpsr)) {
489 		thread_user_save_vfp();
490 		tee_ta_update_session_utime_suspend();
491 		tee_ta_gprof_sample_pc(pc);
492 	}
493 	thread_lazy_restore_ns_vfp();
494 
495 	thread_lock_global();
496 
497 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
498 	threads[ct].flags |= flags;
499 	threads[ct].regs.cpsr = cpsr;
500 	threads[ct].regs.pc = pc;
501 	threads[ct].state = THREAD_STATE_SUSPENDED;
502 
503 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
504 	if (threads[ct].have_user_map) {
505 		if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
506 			tee_ta_ftrace_update_times_suspend();
507 		core_mmu_get_user_map(&threads[ct].user_map);
508 		core_mmu_set_user_map(NULL);
509 	}
510 
511 	l->curr_thread = THREAD_ID_INVALID;
512 
513 	if (IS_ENABLED(CFG_VIRTUALIZATION))
514 		virt_unset_guest();
515 
516 	thread_unlock_global();
517 
518 	return ct;
519 }
520 
521 bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
522 {
523 	if (thread_id >= CFG_NUM_THREADS)
524 		return false;
525 	threads[thread_id].stack_va_end = sp;
526 	return true;
527 }
528 
529 static void __maybe_unused
530 set_core_local_kcode_offset(struct thread_core_local *cls, long offset)
531 {
532 	size_t n = 0;
533 
534 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
535 		cls[n].kcode_offset = offset;
536 }
537 
538 static void init_user_kcode(void)
539 {
540 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
541 	vaddr_t v = (vaddr_t)thread_excp_vect;
542 	vaddr_t ve = (vaddr_t)thread_excp_vect_end;
543 
544 	thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
545 	ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
546 	thread_user_kcode_size = ve - thread_user_kcode_va;
547 
548 	core_mmu_get_user_va_range(&v, NULL);
549 	thread_user_kcode_offset = thread_user_kcode_va - v;
550 
551 	set_core_local_kcode_offset(thread_core_local,
552 				    thread_user_kcode_offset);
553 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
554 	set_core_local_kcode_offset((void *)thread_user_kdata_page,
555 				    thread_user_kcode_offset);
556 	/*
557 	 * When transitioning to EL0 subtract SP with this much to point to
558 	 * this special kdata page instead. SP is restored by add this much
559 	 * while transitioning back to EL1.
560 	 */
561 	v += thread_user_kcode_size;
562 	thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
563 #endif
564 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
565 }
566 
567 void thread_init_primary(void)
568 {
569 	/* Initialize canaries around the stacks */
570 	thread_init_canaries();
571 
572 	init_user_kcode();
573 }
574 
575 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
576 {
577 	return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
578 }
579 
580 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
581 {
582 	return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
583 	       MIDR_PRIMARY_PART_NUM_MASK;
584 }
585 
586 static uint32_t __maybe_unused get_midr_variant(uint32_t midr)
587 {
588 	return (midr >> MIDR_VARIANT_SHIFT) & MIDR_VARIANT_MASK;
589 }
590 
591 static uint32_t __maybe_unused get_midr_revision(uint32_t midr)
592 {
593 	return (midr >> MIDR_REVISION_SHIFT) & MIDR_REVISION_MASK;
594 }
595 
596 #ifdef ARM64
597 static bool probe_workaround_available(uint32_t wa_id)
598 {
599 	int32_t r;
600 
601 	r = thread_smc(SMCCC_VERSION, 0, 0, 0);
602 	if (r < 0)
603 		return false;
604 	if (r < 0x10001)	/* compare with version 1.1 */
605 		return false;
606 
607 	/* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
608 	r = thread_smc(SMCCC_ARCH_FEATURES, wa_id, 0, 0);
609 	return r >= 0;
610 }
611 
612 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
613 {
614 	if (probe_workaround_available(SMCCC_ARCH_WORKAROUND_1)) {
615 		DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
616 		     SMCCC_ARCH_WORKAROUND_1);
617 		DMSG("SMC Workaround for CVE-2017-5715 used");
618 		return (vaddr_t)thread_excp_vect_wa_spectre_v2;
619 	}
620 
621 	DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
622 	     SMCCC_ARCH_WORKAROUND_1);
623 	DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
624 	return (vaddr_t)thread_excp_vect;
625 }
626 #else
627 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
628 {
629 	return (vaddr_t)thread_excp_vect_wa_spectre_v2;
630 }
631 #endif
632 
633 static vaddr_t __maybe_unused
634 select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)
635 {
636 	/*
637 	 * Spectre-BHB has only been analyzed for AArch64 so far. For
638 	 * AArch32 fall back to the Spectre-V2 workaround which is likely
639 	 * to work even if perhaps a bit more expensive than a more
640 	 * optimized workaround.
641 	 */
642 #ifdef ARM64
643 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
644 	struct thread_core_local *cl = (void *)thread_user_kdata_page;
645 
646 	cl[get_core_pos()].bhb_loop_count = loop_count;
647 #endif
648 	thread_get_core_local()->bhb_loop_count = loop_count;
649 
650 	DMSG("Spectre-BHB CVE-2022-23960 workaround enabled with \"K\" = %u",
651 	     loop_count);
652 
653 	return (vaddr_t)thread_excp_vect_wa_spectre_bhb;
654 #else
655 	return select_vector_wa_spectre_v2();
656 #endif
657 }
658 
659 static vaddr_t get_excp_vect(void)
660 {
661 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
662 	uint32_t midr = read_midr();
663 	uint8_t vers = 0;
664 
665 	if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
666 		return (vaddr_t)thread_excp_vect;
667 	/*
668 	 * Variant rx, Revision py, for instance
669 	 * Variant 2 Revision 0 = r2p0 = 0x20
670 	 */
671 	vers = (get_midr_variant(midr) << 4) | get_midr_revision(midr);
672 
673 	/*
674 	 * Spectre-V2 (CVE-2017-5715) software workarounds covers what's
675 	 * needed for Spectre-BHB (CVE-2022-23960) too. The workaround for
676 	 * Spectre-V2 is more expensive than the one for Spectre-BHB so if
677 	 * possible select the workaround for Spectre-BHB.
678 	 */
679 	switch (get_midr_primary_part(midr)) {
680 #ifdef ARM32
681 	/* Spectre-V2 */
682 	case CORTEX_A8_PART_NUM:
683 	case CORTEX_A9_PART_NUM:
684 	case CORTEX_A17_PART_NUM:
685 #endif
686 	/* Spectre-V2 */
687 	case CORTEX_A57_PART_NUM:
688 	case CORTEX_A73_PART_NUM:
689 	case CORTEX_A75_PART_NUM:
690 		return select_vector_wa_spectre_v2();
691 #ifdef ARM32
692 	/* Spectre-V2 */
693 	case CORTEX_A15_PART_NUM:
694 		return (vaddr_t)thread_excp_vect_wa_a15_spectre_v2;
695 #endif
696 	/*
697 	 * Spectre-V2 for vers < r1p0
698 	 * Spectre-BHB for vers >= r1p0
699 	 */
700 	case CORTEX_A72_PART_NUM:
701 		if (vers < 0x10)
702 			return select_vector_wa_spectre_v2();
703 		return select_vector_wa_spectre_bhb(8);
704 
705 	/*
706 	 * Doing the more safe but expensive Spectre-V2 workaround for CPUs
707 	 * still being researched on the best mitigation sequence.
708 	 */
709 	case CORTEX_A65_PART_NUM:
710 	case CORTEX_A65AE_PART_NUM:
711 	case NEOVERSE_E1_PART_NUM:
712 		return select_vector_wa_spectre_v2();
713 
714 	/* Spectre-BHB */
715 	case CORTEX_A76_PART_NUM:
716 	case CORTEX_A76AE_PART_NUM:
717 	case CORTEX_A77_PART_NUM:
718 		return select_vector_wa_spectre_bhb(24);
719 	case CORTEX_A78_PART_NUM:
720 	case CORTEX_A78AE_PART_NUM:
721 	case CORTEX_A78C_PART_NUM:
722 	case CORTEX_A710_PART_NUM:
723 	case CORTEX_X1_PART_NUM:
724 	case CORTEX_X2_PART_NUM:
725 		return select_vector_wa_spectre_bhb(32);
726 	case NEOVERSE_N1_PART_NUM:
727 		return select_vector_wa_spectre_bhb(24);
728 	case NEOVERSE_N2_PART_NUM:
729 	case NEOVERSE_V1_PART_NUM:
730 		return select_vector_wa_spectre_bhb(32);
731 
732 	default:
733 		return (vaddr_t)thread_excp_vect;
734 	}
735 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
736 
737 	return (vaddr_t)thread_excp_vect;
738 }
739 
740 void thread_init_per_cpu(void)
741 {
742 #ifdef ARM32
743 	struct thread_core_local *l = thread_get_core_local();
744 
745 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
746 	/* Initialize secure monitor */
747 	sm_init(l->tmp_stack_va_end + STACK_TMP_OFFS);
748 #endif
749 	thread_set_irq_sp(l->tmp_stack_va_end);
750 	thread_set_fiq_sp(l->tmp_stack_va_end);
751 	thread_set_abt_sp((vaddr_t)l);
752 	thread_set_und_sp((vaddr_t)l);
753 #endif
754 
755 	thread_init_vbar(get_excp_vect());
756 
757 #ifdef CFG_FTRACE_SUPPORT
758 	/*
759 	 * Enable accesses to frequency register and physical counter
760 	 * register in EL0/PL0 required for timestamping during
761 	 * function tracing.
762 	 */
763 	write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
764 #endif
765 }
766 
767 #ifdef CFG_WITH_VFP
768 uint32_t thread_kernel_enable_vfp(void)
769 {
770 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
771 	struct thread_ctx *thr = threads + thread_get_id();
772 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
773 
774 	assert(!vfp_is_enabled());
775 
776 	if (!thr->vfp_state.ns_saved) {
777 		vfp_lazy_save_state_final(&thr->vfp_state.ns,
778 					  true /*force_save*/);
779 		thr->vfp_state.ns_saved = true;
780 	} else if (thr->vfp_state.sec_lazy_saved &&
781 		   !thr->vfp_state.sec_saved) {
782 		/*
783 		 * This happens when we're handling an abort while the
784 		 * thread was using the VFP state.
785 		 */
786 		vfp_lazy_save_state_final(&thr->vfp_state.sec,
787 					  false /*!force_save*/);
788 		thr->vfp_state.sec_saved = true;
789 	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
790 		/*
791 		 * This can happen either during syscall or abort
792 		 * processing (while processing a syscall).
793 		 */
794 		vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
795 		tuv->saved = true;
796 	}
797 
798 	vfp_enable();
799 	return exceptions;
800 }
801 
802 void thread_kernel_disable_vfp(uint32_t state)
803 {
804 	uint32_t exceptions;
805 
806 	assert(vfp_is_enabled());
807 
808 	vfp_disable();
809 	exceptions = thread_get_exceptions();
810 	assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
811 	exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
812 	exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
813 	thread_set_exceptions(exceptions);
814 }
815 
816 void thread_kernel_save_vfp(void)
817 {
818 	struct thread_ctx *thr = threads + thread_get_id();
819 
820 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
821 	if (vfp_is_enabled()) {
822 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
823 		thr->vfp_state.sec_lazy_saved = true;
824 	}
825 }
826 
827 void thread_kernel_restore_vfp(void)
828 {
829 	struct thread_ctx *thr = threads + thread_get_id();
830 
831 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
832 	assert(!vfp_is_enabled());
833 	if (thr->vfp_state.sec_lazy_saved) {
834 		vfp_lazy_restore_state(&thr->vfp_state.sec,
835 				       thr->vfp_state.sec_saved);
836 		thr->vfp_state.sec_saved = false;
837 		thr->vfp_state.sec_lazy_saved = false;
838 	}
839 }
840 
841 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
842 {
843 	struct thread_ctx *thr = threads + thread_get_id();
844 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
845 
846 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
847 	assert(!vfp_is_enabled());
848 
849 	if (!thr->vfp_state.ns_saved) {
850 		vfp_lazy_save_state_final(&thr->vfp_state.ns,
851 					  true /*force_save*/);
852 		thr->vfp_state.ns_saved = true;
853 	} else if (tuv && uvfp != tuv) {
854 		if (tuv->lazy_saved && !tuv->saved) {
855 			vfp_lazy_save_state_final(&tuv->vfp,
856 						  false /*!force_save*/);
857 			tuv->saved = true;
858 		}
859 	}
860 
861 	if (uvfp->lazy_saved)
862 		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
863 	uvfp->lazy_saved = false;
864 	uvfp->saved = false;
865 
866 	thr->vfp_state.uvfp = uvfp;
867 	vfp_enable();
868 }
869 
870 void thread_user_save_vfp(void)
871 {
872 	struct thread_ctx *thr = threads + thread_get_id();
873 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
874 
875 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
876 	if (!vfp_is_enabled())
877 		return;
878 
879 	assert(tuv && !tuv->lazy_saved && !tuv->saved);
880 	vfp_lazy_save_state_init(&tuv->vfp);
881 	tuv->lazy_saved = true;
882 }
883 
884 void thread_user_clear_vfp(struct user_mode_ctx *uctx)
885 {
886 	struct thread_user_vfp_state *uvfp = &uctx->vfp;
887 	struct thread_ctx *thr = threads + thread_get_id();
888 
889 	if (uvfp == thr->vfp_state.uvfp)
890 		thr->vfp_state.uvfp = NULL;
891 	uvfp->lazy_saved = false;
892 	uvfp->saved = false;
893 }
894 #endif /*CFG_WITH_VFP*/
895 
896 #ifdef ARM32
897 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
898 {
899 	uint32_t s;
900 
901 	if (!is_32bit)
902 		return false;
903 
904 	s = read_cpsr();
905 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
906 	s |= CPSR_MODE_USR;
907 	if (entry_func & 1)
908 		s |= CPSR_T;
909 	*spsr = s;
910 	return true;
911 }
912 #endif
913 
914 #ifdef ARM64
915 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
916 {
917 	uint32_t s;
918 
919 	if (is_32bit) {
920 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
921 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
922 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
923 	} else {
924 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
925 	}
926 
927 	*spsr = s;
928 	return true;
929 }
930 #endif
931 
932 static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
933 			 unsigned long a1, unsigned long a2, unsigned long a3,
934 			 unsigned long user_sp, unsigned long entry_func,
935 			 uint32_t spsr,
936 			 struct thread_pauth_keys *keys __maybe_unused)
937 {
938 	/*
939 	 * First clear all registers to avoid leaking information from
940 	 * other TAs or even the Core itself.
941 	 */
942 	*regs = (struct thread_ctx_regs){ };
943 #ifdef ARM32
944 	regs->r0 = a0;
945 	regs->r1 = a1;
946 	regs->r2 = a2;
947 	regs->r3 = a3;
948 	regs->usr_sp = user_sp;
949 	regs->pc = entry_func;
950 	regs->cpsr = spsr;
951 #endif
952 #ifdef ARM64
953 	regs->x[0] = a0;
954 	regs->x[1] = a1;
955 	regs->x[2] = a2;
956 	regs->x[3] = a3;
957 	regs->sp = user_sp;
958 	regs->pc = entry_func;
959 	regs->cpsr = spsr;
960 	regs->x[13] = user_sp;	/* Used when running TA in Aarch32 */
961 	regs->sp = user_sp;	/* Used when running TA in Aarch64 */
962 #ifdef CFG_TA_PAUTH
963 	assert(keys);
964 	regs->apiakey_hi = keys->hi;
965 	regs->apiakey_lo = keys->lo;
966 #endif
967 	/* Set frame pointer (user stack can't be unwound past this point) */
968 	regs->x[29] = 0;
969 #endif
970 }
971 
972 static struct thread_pauth_keys *thread_get_pauth_keys(void)
973 {
974 #if defined(CFG_TA_PAUTH)
975 	struct ts_session *s = ts_get_current_session();
976 	/* Only user TA's support the PAUTH keys */
977 	struct user_ta_ctx *utc = to_user_ta_ctx(s->ctx);
978 
979 	return &utc->uctx.keys;
980 #else
981 	return NULL;
982 #endif
983 }
984 
985 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
986 		unsigned long a2, unsigned long a3, unsigned long user_sp,
987 		unsigned long entry_func, bool is_32bit,
988 		uint32_t *exit_status0, uint32_t *exit_status1)
989 {
990 	uint32_t spsr = 0;
991 	uint32_t exceptions = 0;
992 	uint32_t rc = 0;
993 	struct thread_ctx_regs *regs = NULL;
994 	struct thread_pauth_keys *keys = NULL;
995 
996 	tee_ta_update_session_utime_resume();
997 
998 	keys = thread_get_pauth_keys();
999 
1000 	/* Derive SPSR from current CPSR/PSTATE readout. */
1001 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1002 		*exit_status0 = 1; /* panic */
1003 		*exit_status1 = 0xbadbadba;
1004 		return 0;
1005 	}
1006 
1007 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1008 	/*
1009 	 * We're using the per thread location of saved context registers
1010 	 * for temporary storage. Now that exceptions are masked they will
1011 	 * not be used for any thing else until they are eventually
1012 	 * unmasked when user mode has been entered.
1013 	 */
1014 	regs = thread_get_ctx_regs();
1015 	set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr, keys);
1016 	rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
1017 	thread_unmask_exceptions(exceptions);
1018 	return rc;
1019 }
1020 
1021 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
1022 void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
1023 			   vaddr_t *va, size_t *sz)
1024 {
1025 	core_mmu_get_user_va_range(va, NULL);
1026 	*mobj = mobj_tee_ram_rx;
1027 	*sz = thread_user_kcode_size;
1028 	*offset = thread_user_kcode_va - (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1029 }
1030 #endif
1031 
1032 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
1033 	defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
1034 void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
1035 			   vaddr_t *va, size_t *sz)
1036 {
1037 	vaddr_t v;
1038 
1039 	core_mmu_get_user_va_range(&v, NULL);
1040 	*va = v + thread_user_kcode_size;
1041 	*mobj = mobj_tee_ram_rw;
1042 	*sz = sizeof(thread_user_kdata_page);
1043 	*offset = (vaddr_t)thread_user_kdata_page -
1044 		  (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1045 }
1046 #endif
1047 
1048 static void setup_unwind_user_mode(struct thread_svc_regs *regs)
1049 {
1050 #ifdef ARM32
1051 	regs->lr = (uintptr_t)thread_unwind_user_mode;
1052 	regs->spsr = read_cpsr();
1053 #endif
1054 #ifdef ARM64
1055 	regs->elr = (uintptr_t)thread_unwind_user_mode;
1056 	regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
1057 	regs->spsr |= read_daif();
1058 	/*
1059 	 * Regs is the value of stack pointer before calling the SVC
1060 	 * handler.  By the addition matches for the reserved space at the
1061 	 * beginning of el0_sync_svc(). This prepares the stack when
1062 	 * returning to thread_unwind_user_mode instead of a normal
1063 	 * exception return.
1064 	 */
1065 	regs->sp_el0 = (uint64_t)(regs + 1);
1066 #endif
1067 }
1068 
1069 static void gprof_set_status(struct ts_session *s __maybe_unused,
1070 			     enum ts_gprof_status status __maybe_unused)
1071 {
1072 #ifdef CFG_TA_GPROF_SUPPORT
1073 	if (s->ctx->ops->gprof_set_status)
1074 		s->ctx->ops->gprof_set_status(status);
1075 #endif
1076 }
1077 
1078 /*
1079  * Note: this function is weak just to make it possible to exclude it from
1080  * the unpaged area.
1081  */
1082 void __weak thread_svc_handler(struct thread_svc_regs *regs)
1083 {
1084 	struct ts_session *sess = NULL;
1085 	uint32_t state = 0;
1086 
1087 	/* Enable native interrupts */
1088 	state = thread_get_exceptions();
1089 	thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR);
1090 
1091 	thread_user_save_vfp();
1092 
1093 	sess = ts_get_current_session();
1094 	/*
1095 	 * User mode service has just entered kernel mode, suspend gprof
1096 	 * collection until we're about to switch back again.
1097 	 */
1098 	gprof_set_status(sess, TS_GPROF_SUSPEND);
1099 
1100 	/* Restore foreign interrupts which are disabled on exception entry */
1101 	thread_restore_foreign_intr();
1102 
1103 	assert(sess && sess->handle_svc);
1104 	if (sess->handle_svc(regs)) {
1105 		/* We're about to switch back to user mode */
1106 		gprof_set_status(sess, TS_GPROF_RESUME);
1107 	} else {
1108 		/* We're returning from __thread_enter_user_mode() */
1109 		setup_unwind_user_mode(regs);
1110 	}
1111 }
1112 
1113 #ifdef CFG_WITH_ARM_TRUSTED_FW
1114 /*
1115  * These five functions are __weak to allow platforms to override them if
1116  * needed.
1117  */
1118 unsigned long __weak thread_cpu_off_handler(unsigned long a0 __unused,
1119 					    unsigned long a1 __unused)
1120 {
1121 	return 0;
1122 }
1123 DECLARE_KEEP_PAGER(thread_cpu_off_handler);
1124 
1125 unsigned long __weak thread_cpu_suspend_handler(unsigned long a0 __unused,
1126 						unsigned long a1 __unused)
1127 {
1128 	return 0;
1129 }
1130 DECLARE_KEEP_PAGER(thread_cpu_suspend_handler);
1131 
1132 unsigned long __weak thread_cpu_resume_handler(unsigned long a0 __unused,
1133 					       unsigned long a1 __unused)
1134 {
1135 	return 0;
1136 }
1137 DECLARE_KEEP_PAGER(thread_cpu_resume_handler);
1138 
1139 unsigned long __weak thread_system_off_handler(unsigned long a0 __unused,
1140 					       unsigned long a1 __unused)
1141 {
1142 	return 0;
1143 }
1144 DECLARE_KEEP_PAGER(thread_system_off_handler);
1145 
1146 unsigned long __weak thread_system_reset_handler(unsigned long a0 __unused,
1147 						 unsigned long a1 __unused)
1148 {
1149 	return 0;
1150 }
1151 DECLARE_KEEP_PAGER(thread_system_reset_handler);
1152 #endif /*CFG_WITH_ARM_TRUSTED_FW*/
1153