1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2023, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/boot.h> 9 #include <kernel/embedded_ts.h> 10 #include <kernel/ldelf_loader.h> 11 #include <kernel/secure_partition.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/spmc_sp_handler.h> 14 #include <kernel/thread_private.h> 15 #include <kernel/thread_spmc.h> 16 #include <kernel/tpm.h> 17 #include <kernel/ts_store.h> 18 #include <ldelf.h> 19 #include <libfdt.h> 20 #include <mm/core_mmu.h> 21 #include <mm/fobj.h> 22 #include <mm/mobj.h> 23 #include <mm/vm.h> 24 #include <optee_ffa.h> 25 #include <stdio.h> 26 #include <string.h> 27 #include <tee_api_types.h> 28 #include <tee/uuid.h> 29 #include <trace.h> 30 #include <types_ext.h> 31 #include <utee_defines.h> 32 #include <util.h> 33 #include <zlib.h> 34 35 #define SP_MANIFEST_ATTR_READ BIT(0) 36 #define SP_MANIFEST_ATTR_WRITE BIT(1) 37 #define SP_MANIFEST_ATTR_EXEC BIT(2) 38 #define SP_MANIFEST_ATTR_NSEC BIT(3) 39 40 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 41 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 42 SP_MANIFEST_ATTR_WRITE) 43 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 44 SP_MANIFEST_ATTR_EXEC) 45 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 46 SP_MANIFEST_ATTR_WRITE | \ 47 SP_MANIFEST_ATTR_EXEC) 48 49 #define SP_MANIFEST_FLAG_NOBITS BIT(0) 50 51 #define SP_PKG_HEADER_MAGIC (0x474b5053) 52 #define SP_PKG_HEADER_VERSION_V1 (0x1) 53 #define SP_PKG_HEADER_VERSION_V2 (0x2) 54 55 struct sp_pkg_header { 56 uint32_t magic; 57 uint32_t version; 58 uint32_t pm_offset; 59 uint32_t pm_size; 60 uint32_t img_offset; 61 uint32_t img_size; 62 }; 63 64 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 65 66 static const struct ts_ops sp_ops; 67 68 /* List that holds all of the loaded SP's */ 69 static struct sp_sessions_head open_sp_sessions = 70 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 71 72 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 73 { 74 const struct sp_image *sp = NULL; 75 const struct fip_sp *fip_sp = NULL; 76 77 for_each_secure_partition(sp) { 78 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 79 return &sp->image; 80 } 81 82 for_each_fip_sp(fip_sp) { 83 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 84 return &fip_sp->sp_img.image; 85 } 86 87 return NULL; 88 } 89 90 bool is_sp_ctx(struct ts_ctx *ctx) 91 { 92 return ctx && (ctx->ops == &sp_ops); 93 } 94 95 static void set_sp_ctx_ops(struct ts_ctx *ctx) 96 { 97 ctx->ops = &sp_ops; 98 } 99 100 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id) 101 { 102 struct sp_session *s = NULL; 103 104 TAILQ_FOREACH(s, &open_sp_sessions, link) { 105 if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) { 106 if (s->state == sp_dead) 107 return TEE_ERROR_TARGET_DEAD; 108 109 *session_id = s->endpoint_id; 110 return TEE_SUCCESS; 111 } 112 } 113 114 return TEE_ERROR_ITEM_NOT_FOUND; 115 } 116 117 struct sp_session *sp_get_session(uint32_t session_id) 118 { 119 struct sp_session *s = NULL; 120 121 TAILQ_FOREACH(s, &open_sp_sessions, link) { 122 if (s->endpoint_id == session_id) 123 return s; 124 } 125 126 return NULL; 127 } 128 129 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi, 130 size_t *elem_count) 131 { 132 size_t in_count = *elem_count; 133 struct sp_session *s = NULL; 134 size_t count = 0; 135 136 TAILQ_FOREACH(s, &open_sp_sessions, link) { 137 if (s->state == sp_dead) 138 continue; 139 if (count < in_count) { 140 spmc_fill_partition_entry(fpi, s->endpoint_id, 1); 141 fpi++; 142 } 143 count++; 144 } 145 146 *elem_count = count; 147 if (count > in_count) 148 return TEE_ERROR_SHORT_BUFFER; 149 150 return TEE_SUCCESS; 151 } 152 153 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 154 struct user_mode_ctx *uctx) 155 { 156 /* 157 * Check that we have access to the region if it is supposed to be 158 * mapped to the current context. 159 */ 160 if (uctx) { 161 struct vm_region *region = NULL; 162 163 /* Make sure that each mobj belongs to the SP */ 164 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 165 if (region->mobj == mem->mobj) 166 break; 167 } 168 169 if (!region) 170 return false; 171 } 172 173 /* Check that it is not shared with another SP */ 174 return !sp_mem_is_shared(mem); 175 } 176 177 static uint16_t new_session_id(struct sp_sessions_head *open_sessions) 178 { 179 struct sp_session *last = NULL; 180 uint16_t id = SPMC_ENDPOINT_ID + 1; 181 182 last = TAILQ_LAST(open_sessions, sp_sessions_head); 183 if (last) 184 id = last->endpoint_id + 1; 185 186 assert(id > SPMC_ENDPOINT_ID); 187 return id; 188 } 189 190 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s) 191 { 192 TEE_Result res = TEE_SUCCESS; 193 struct sp_ctx *spc = NULL; 194 195 /* Register context */ 196 spc = calloc(1, sizeof(struct sp_ctx)); 197 if (!spc) 198 return TEE_ERROR_OUT_OF_MEMORY; 199 200 spc->open_session = s; 201 s->ts_sess.ctx = &spc->ts_ctx; 202 spc->ts_ctx.uuid = *uuid; 203 204 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 205 if (res) 206 goto err; 207 208 set_sp_ctx_ops(&spc->ts_ctx); 209 210 return TEE_SUCCESS; 211 212 err: 213 free(spc); 214 return res; 215 } 216 217 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 218 const TEE_UUID *uuid, 219 struct sp_session **sess) 220 { 221 TEE_Result res = TEE_SUCCESS; 222 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 223 224 if (!s) 225 return TEE_ERROR_OUT_OF_MEMORY; 226 227 s->endpoint_id = new_session_id(open_sessions); 228 if (!s->endpoint_id) { 229 res = TEE_ERROR_OVERFLOW; 230 goto err; 231 } 232 233 DMSG("Loading Secure Partition %pUl", (void *)uuid); 234 res = sp_create_ctx(uuid, s); 235 if (res) 236 goto err; 237 238 TAILQ_INSERT_TAIL(open_sessions, s, link); 239 *sess = s; 240 return TEE_SUCCESS; 241 242 err: 243 free(s); 244 return res; 245 } 246 247 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 248 { 249 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 250 251 memset(sp_regs, 0, sizeof(*sp_regs)); 252 sp_regs->sp = ctx->uctx.stack_ptr; 253 sp_regs->pc = ctx->uctx.entry_func; 254 255 return TEE_SUCCESS; 256 } 257 258 TEE_Result sp_map_shared(struct sp_session *s, 259 struct sp_mem_receiver *receiver, 260 struct sp_mem *smem, 261 uint64_t *va) 262 { 263 TEE_Result res = TEE_SUCCESS; 264 struct sp_ctx *ctx = NULL; 265 uint32_t perm = TEE_MATTR_UR; 266 struct sp_mem_map_region *reg = NULL; 267 268 ctx = to_sp_ctx(s->ts_sess.ctx); 269 270 /* Get the permission */ 271 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 272 perm |= TEE_MATTR_UX; 273 274 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 275 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 276 return TEE_ERROR_ACCESS_CONFLICT; 277 278 perm |= TEE_MATTR_UW; 279 } 280 /* 281 * Currently we don't support passing a va. We can't guarantee that the 282 * full region will be mapped in a contiguous region. A smem->region can 283 * have multiple mobj for one share. Currently there doesn't seem to be 284 * an option to guarantee that these will be mapped in a contiguous va 285 * space. 286 */ 287 if (*va) 288 return TEE_ERROR_NOT_SUPPORTED; 289 290 SLIST_FOREACH(reg, &smem->regions, link) { 291 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 292 perm, 0, reg->mobj, reg->page_offset); 293 294 if (res != TEE_SUCCESS) { 295 EMSG("Failed to map memory region %#"PRIx32, res); 296 return res; 297 } 298 } 299 return TEE_SUCCESS; 300 } 301 302 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 303 { 304 TEE_Result res = TEE_SUCCESS; 305 vaddr_t vaddr = 0; 306 size_t len = 0; 307 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 308 struct sp_mem_map_region *reg = NULL; 309 310 SLIST_FOREACH(reg, &smem->regions, link) { 311 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 312 reg->mobj); 313 len = reg->page_count * SMALL_PAGE_SIZE; 314 315 res = vm_unmap(&ctx->uctx, vaddr, len); 316 if (res != TEE_SUCCESS) 317 return res; 318 } 319 320 return TEE_SUCCESS; 321 } 322 323 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 324 uint64_t *value) 325 { 326 const fdt64_t *p = NULL; 327 int len = 0; 328 329 p = fdt_getprop(fdt, node, property, &len); 330 if (!p) 331 return TEE_ERROR_ITEM_NOT_FOUND; 332 333 if (len != sizeof(*p)) 334 return TEE_ERROR_BAD_FORMAT; 335 336 *value = fdt64_ld(p); 337 338 return TEE_SUCCESS; 339 } 340 341 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 342 uint32_t *value) 343 { 344 const fdt32_t *p = NULL; 345 int len = 0; 346 347 p = fdt_getprop(fdt, node, property, &len); 348 if (!p) 349 return TEE_ERROR_ITEM_NOT_FOUND; 350 351 if (len != sizeof(*p)) 352 return TEE_ERROR_BAD_FORMAT; 353 354 *value = fdt32_to_cpu(*p); 355 356 return TEE_SUCCESS; 357 } 358 359 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 360 const char *property, TEE_UUID *uuid) 361 { 362 uint32_t uuid_array[4] = { 0 }; 363 const fdt32_t *p = NULL; 364 int len = 0; 365 int i = 0; 366 367 p = fdt_getprop(fdt, node, property, &len); 368 if (!p) 369 return TEE_ERROR_ITEM_NOT_FOUND; 370 371 if (len != sizeof(TEE_UUID)) 372 return TEE_ERROR_BAD_FORMAT; 373 374 for (i = 0; i < 4; i++) 375 uuid_array[i] = fdt32_to_cpu(p[i]); 376 377 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 378 379 return TEE_SUCCESS; 380 } 381 382 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node, 383 bool *is_elf_format) 384 { 385 TEE_Result res = TEE_SUCCESS; 386 uint32_t elf_format = 0; 387 388 res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format); 389 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) 390 return res; 391 392 *is_elf_format = (elf_format != 0); 393 394 return TEE_SUCCESS; 395 } 396 397 static TEE_Result sp_binary_open(const TEE_UUID *uuid, 398 const struct ts_store_ops **ops, 399 struct ts_store_handle **handle) 400 { 401 TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND; 402 403 SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) { 404 res = (*ops)->open(uuid, handle); 405 if (res != TEE_ERROR_ITEM_NOT_FOUND && 406 res != TEE_ERROR_STORAGE_NOT_AVAILABLE) 407 break; 408 } 409 410 return res; 411 } 412 413 static TEE_Result load_binary_sp(struct ts_session *s, 414 struct user_mode_ctx *uctx) 415 { 416 size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0; 417 const struct ts_store_ops *store_ops = NULL; 418 struct ts_store_handle *handle = NULL; 419 TEE_Result res = TEE_SUCCESS; 420 tee_mm_entry_t *mm = NULL; 421 struct mobj *mobj = NULL; 422 uaddr_t base_addr = 0; 423 uint32_t vm_flags = 0; 424 unsigned int idx = 0; 425 vaddr_t va = 0; 426 427 if (!s || !uctx) 428 return TEE_ERROR_BAD_PARAMETERS; 429 430 DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid); 431 432 vm_set_ctx(uctx->ts_ctx); 433 434 /* Find TS store and open SP binary */ 435 res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle); 436 if (res != TEE_SUCCESS) { 437 EMSG("Failed to open SP binary"); 438 return res; 439 } 440 441 /* Query binary size and calculate page count */ 442 res = store_ops->get_size(handle, &bin_size); 443 if (res != TEE_SUCCESS) 444 goto err; 445 446 if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) { 447 res = TEE_ERROR_OVERFLOW; 448 goto err; 449 } 450 451 bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE; 452 453 /* Allocate memory */ 454 mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded); 455 if (!mm) { 456 res = TEE_ERROR_OUT_OF_MEMORY; 457 goto err; 458 } 459 460 base_addr = tee_mm_get_smem(mm); 461 462 /* Create mobj */ 463 mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true); 464 if (!mobj) { 465 res = TEE_ERROR_OUT_OF_MEMORY; 466 goto err_free_tee_mm; 467 } 468 469 res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count); 470 if (res) 471 goto err_free_mobj; 472 473 /* Map memory area for the SP binary */ 474 res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX, 475 vm_flags, mobj, 0); 476 if (res) 477 goto err_free_mobj; 478 479 /* Read SP binary into the previously mapped memory area */ 480 res = store_ops->read(handle, (void *)va, bin_size); 481 if (res) 482 goto err_unmap; 483 484 /* Set memory protection to allow execution */ 485 res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX); 486 if (res) 487 goto err_unmap; 488 489 mobj_put(mobj); 490 store_ops->close(handle); 491 492 /* The entry point must be at the beginning of the SP binary. */ 493 uctx->entry_func = va; 494 uctx->load_addr = va; 495 uctx->is_32bit = false; 496 497 s->handle_scall = s->ctx->ops->handle_scall; 498 499 return TEE_SUCCESS; 500 501 err_unmap: 502 vm_unmap(uctx, va, bin_size_rounded); 503 504 err_free_mobj: 505 mobj_put(mobj); 506 507 err_free_tee_mm: 508 tee_mm_free(mm); 509 510 err: 511 store_ops->close(handle); 512 513 return res; 514 } 515 516 static TEE_Result sp_open_session(struct sp_session **sess, 517 struct sp_sessions_head *open_sessions, 518 const TEE_UUID *uuid, 519 const void *fdt) 520 { 521 TEE_Result res = TEE_SUCCESS; 522 struct sp_session *s = NULL; 523 struct sp_ctx *ctx = NULL; 524 bool is_elf_format = false; 525 526 if (!find_secure_partition(uuid)) 527 return TEE_ERROR_ITEM_NOT_FOUND; 528 529 res = sp_create_session(open_sessions, uuid, &s); 530 if (res != TEE_SUCCESS) { 531 DMSG("sp_create_session failed %#"PRIx32, res); 532 return res; 533 } 534 535 ctx = to_sp_ctx(s->ts_sess.ctx); 536 assert(ctx); 537 if (!ctx) 538 return TEE_ERROR_TARGET_DEAD; 539 *sess = s; 540 541 ts_push_current_session(&s->ts_sess); 542 543 res = sp_is_elf_format(fdt, 0, &is_elf_format); 544 if (res == TEE_SUCCESS) { 545 if (is_elf_format) { 546 /* Load the SP using ldelf. */ 547 ldelf_load_ldelf(&ctx->uctx); 548 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 549 } else { 550 /* Raw binary format SP */ 551 res = load_binary_sp(&s->ts_sess, &ctx->uctx); 552 } 553 } else { 554 EMSG("Failed to detect SP format"); 555 } 556 557 if (res != TEE_SUCCESS) { 558 EMSG("Failed loading SP %#"PRIx32, res); 559 ts_pop_current_session(); 560 return TEE_ERROR_TARGET_DEAD; 561 } 562 563 /* Make the SP ready for its first run */ 564 s->state = sp_idle; 565 s->caller_id = 0; 566 sp_init_set_registers(ctx); 567 ts_pop_current_session(); 568 569 return TEE_SUCCESS; 570 } 571 572 static TEE_Result check_fdt(const void * const fdt, const TEE_UUID *uuid) 573 { 574 const struct fdt_property *description = NULL; 575 int description_name_len = 0; 576 TEE_UUID fdt_uuid = { }; 577 578 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 579 EMSG("Failed loading SP, manifest not found"); 580 return TEE_ERROR_BAD_PARAMETERS; 581 } 582 583 description = fdt_get_property(fdt, 0, "description", 584 &description_name_len); 585 if (description) 586 DMSG("Loading SP: %s", description->data); 587 588 if (sp_dt_get_uuid(fdt, 0, "uuid", &fdt_uuid)) { 589 EMSG("Missing or invalid UUID in SP manifest"); 590 return TEE_ERROR_BAD_FORMAT; 591 } 592 593 if (memcmp(uuid, &fdt_uuid, sizeof(fdt_uuid))) { 594 EMSG("Failed loading SP, UUID mismatch"); 595 return TEE_ERROR_BAD_FORMAT; 596 } 597 598 return TEE_SUCCESS; 599 } 600 601 /* 602 * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy 603 * the fdt into the allocated page(s) and return a pointer to the new location 604 * of the fdt. This pointer can be used to update data inside the fdt. 605 */ 606 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args, 607 const void * const input_fdt, vaddr_t *va, 608 size_t *num_pgs, void **fdt_copy) 609 { 610 struct sp_ffa_init_info *info = NULL; 611 int nvp_count = 1; 612 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 613 size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count; 614 size_t info_size = sizeof(*info) + nvp_size; 615 size_t fdt_size = total_size - info_size; 616 TEE_Result res = TEE_SUCCESS; 617 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 618 struct fobj *f = NULL; 619 struct mobj *m = NULL; 620 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 621 622 *num_pgs = total_size / SMALL_PAGE_SIZE; 623 624 f = fobj_sec_mem_alloc(*num_pgs); 625 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 626 627 fobj_put(f); 628 if (!m) 629 return TEE_ERROR_OUT_OF_MEMORY; 630 631 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 632 mobj_put(m); 633 if (res) 634 return res; 635 636 info = (struct sp_ffa_init_info *)*va; 637 638 /* magic field is 4 bytes, we don't copy /0 byte. */ 639 memcpy(&info->magic, "FF-A", 4); 640 info->count = nvp_count; 641 args->a0 = (vaddr_t)info; 642 643 /* 644 * Store the fdt after the boot_info and store the pointer in the 645 * first element. 646 */ 647 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 648 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 649 info->nvp[0].value = *va + info_size; 650 info->nvp[0].size = fdt_size; 651 *fdt_copy = (void *)info->nvp[0].value; 652 653 if (fdt_open_into(input_fdt, *fdt_copy, fdt_size)) 654 return TEE_ERROR_GENERIC; 655 656 return TEE_SUCCESS; 657 } 658 659 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx, 660 const void *fdt) 661 { 662 int node = 0; 663 int subnode = 0; 664 tee_mm_entry_t *mm = NULL; 665 TEE_Result res = TEE_SUCCESS; 666 667 /* 668 * Memory regions are optional in the SP manifest, it's not an error if 669 * we don't find any. 670 */ 671 node = fdt_node_offset_by_compatible(fdt, 0, 672 "arm,ffa-manifest-memory-regions"); 673 if (node < 0) 674 return TEE_SUCCESS; 675 676 fdt_for_each_subnode(subnode, fdt, node) { 677 uint64_t load_rel_offset = 0; 678 uint32_t attributes = 0; 679 uint64_t base_addr = 0; 680 uint32_t pages_cnt = 0; 681 uint32_t flags = 0; 682 uint32_t perm = 0; 683 size_t size = 0; 684 vaddr_t va = 0; 685 686 mm = NULL; 687 688 /* Load address relative offset of a memory region */ 689 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 690 &load_rel_offset)) { 691 va = ctx->uctx.load_addr + load_rel_offset; 692 } else { 693 /* Skip non load address relative memory regions */ 694 continue; 695 } 696 697 if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 698 EMSG("Both base-address and load-address-relative-offset fields are set"); 699 return TEE_ERROR_BAD_FORMAT; 700 } 701 702 /* Size of memory region as count of 4K pages */ 703 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 704 EMSG("Mandatory field is missing: pages-count"); 705 return TEE_ERROR_BAD_FORMAT; 706 } 707 708 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 709 return TEE_ERROR_OVERFLOW; 710 711 /* Memory region attributes */ 712 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 713 EMSG("Mandatory field is missing: attributes"); 714 return TEE_ERROR_BAD_FORMAT; 715 } 716 717 /* Check instruction and data access permissions */ 718 switch (attributes & SP_MANIFEST_ATTR_RWX) { 719 case SP_MANIFEST_ATTR_RO: 720 perm = TEE_MATTR_UR; 721 break; 722 case SP_MANIFEST_ATTR_RW: 723 perm = TEE_MATTR_URW; 724 break; 725 case SP_MANIFEST_ATTR_RX: 726 perm = TEE_MATTR_URX; 727 break; 728 default: 729 EMSG("Invalid memory access permissions"); 730 return TEE_ERROR_BAD_FORMAT; 731 } 732 733 res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags); 734 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) { 735 EMSG("Optional field with invalid value: flags"); 736 return TEE_ERROR_BAD_FORMAT; 737 } 738 739 /* Load relative regions must be secure */ 740 if (attributes & SP_MANIFEST_ATTR_NSEC) { 741 EMSG("Invalid memory security attribute"); 742 return TEE_ERROR_BAD_FORMAT; 743 } 744 745 if (flags & SP_MANIFEST_FLAG_NOBITS) { 746 /* 747 * NOBITS flag is set, which means that loaded binary 748 * doesn't contain this area, so it's need to be 749 * allocated. 750 */ 751 struct mobj *m = NULL; 752 unsigned int idx = 0; 753 754 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 755 if (!mm) 756 return TEE_ERROR_OUT_OF_MEMORY; 757 758 base_addr = tee_mm_get_smem(mm); 759 760 m = sp_mem_new_mobj(pages_cnt, 761 TEE_MATTR_MEM_TYPE_CACHED, true); 762 if (!m) { 763 res = TEE_ERROR_OUT_OF_MEMORY; 764 goto err_mm_free; 765 } 766 767 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 768 if (res) { 769 mobj_put(m); 770 goto err_mm_free; 771 } 772 773 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 774 mobj_put(m); 775 if (res) 776 goto err_mm_free; 777 } else { 778 /* 779 * If NOBITS is not present the memory area is already 780 * mapped and only need to set the correct permissions. 781 */ 782 res = vm_set_prot(&ctx->uctx, va, size, perm); 783 if (res) 784 return res; 785 } 786 } 787 788 return TEE_SUCCESS; 789 790 err_mm_free: 791 tee_mm_free(mm); 792 return res; 793 } 794 795 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 796 { 797 int node = 0; 798 int subnode = 0; 799 TEE_Result res = TEE_SUCCESS; 800 const char *dt_device_match_table = { 801 "arm,ffa-manifest-device-regions", 802 }; 803 804 /* 805 * Device regions are optional in the SP manifest, it's not an error if 806 * we don't find any 807 */ 808 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 809 if (node < 0) 810 return TEE_SUCCESS; 811 812 fdt_for_each_subnode(subnode, fdt, node) { 813 uint64_t base_addr = 0; 814 uint32_t pages_cnt = 0; 815 uint32_t attributes = 0; 816 struct mobj *m = NULL; 817 bool is_secure = true; 818 uint32_t perm = 0; 819 vaddr_t va = 0; 820 unsigned int idx = 0; 821 822 /* 823 * Physical base address of a device MMIO region. 824 * Currently only physically contiguous region is supported. 825 */ 826 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 827 EMSG("Mandatory field is missing: base-address"); 828 return TEE_ERROR_BAD_FORMAT; 829 } 830 831 /* Total size of MMIO region as count of 4K pages */ 832 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 833 EMSG("Mandatory field is missing: pages-count"); 834 return TEE_ERROR_BAD_FORMAT; 835 } 836 837 /* Data access, instruction access and security attributes */ 838 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 839 EMSG("Mandatory field is missing: attributes"); 840 return TEE_ERROR_BAD_FORMAT; 841 } 842 843 /* Check instruction and data access permissions */ 844 switch (attributes & SP_MANIFEST_ATTR_RWX) { 845 case SP_MANIFEST_ATTR_RO: 846 perm = TEE_MATTR_UR; 847 break; 848 case SP_MANIFEST_ATTR_RW: 849 perm = TEE_MATTR_URW; 850 break; 851 default: 852 EMSG("Invalid memory access permissions"); 853 return TEE_ERROR_BAD_FORMAT; 854 } 855 856 /* 857 * The SP is a secure endpoint, security attribute can be 858 * secure or non-secure 859 */ 860 if (attributes & SP_MANIFEST_ATTR_NSEC) 861 is_secure = false; 862 863 /* Memory attributes must be Device-nGnRnE */ 864 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 865 is_secure); 866 if (!m) 867 return TEE_ERROR_OUT_OF_MEMORY; 868 869 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 870 if (res) { 871 mobj_put(m); 872 return res; 873 } 874 875 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 876 perm, 0, m, 0); 877 mobj_put(m); 878 if (res) 879 return res; 880 881 /* 882 * Overwrite the device region's PA in the fdt with the VA. This 883 * fdt will be passed to the SP. 884 */ 885 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 886 887 /* 888 * Unmap the region if the overwrite failed since the SP won't 889 * be able to access it without knowing the VA. 890 */ 891 if (res) { 892 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 893 return res; 894 } 895 } 896 897 return TEE_SUCCESS; 898 } 899 900 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, 901 uint32_t new_endpoint_id) 902 { 903 struct sp_session *session = sp_get_session(endpoint_id); 904 uint32_t manifest_endpoint_id = 0; 905 906 /* 907 * We don't know in which order the SPs are loaded. The endpoint ID 908 * defined in the manifest could already be generated by 909 * new_session_id() and used by another SP. If this is the case, we swap 910 * the ID's of the two SPs. We also have to make sure that the ID's are 911 * not defined twice in the manifest. 912 */ 913 914 /* The endpoint ID was not assigned yet */ 915 if (!session) 916 return TEE_SUCCESS; 917 918 /* 919 * Read the manifest file from the SP who originally had the endpoint. 920 * We can safely swap the endpoint ID's if the manifest file doesn't 921 * have an endpoint ID defined. 922 */ 923 if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { 924 assert(manifest_endpoint_id == endpoint_id); 925 EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); 926 return TEE_ERROR_ACCESS_CONFLICT; 927 } 928 929 session->endpoint_id = new_endpoint_id; 930 931 return TEE_SUCCESS; 932 } 933 934 static TEE_Result read_manifest_endpoint_id(struct sp_session *s) 935 { 936 uint32_t endpoint_id = 0; 937 938 /* 939 * The endpoint ID can be optionally defined in the manifest file. We 940 * have to map the ID inside the manifest to the SP if it's defined. 941 * If not, the endpoint ID generated inside new_session_id() will be 942 * used. 943 */ 944 if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { 945 TEE_Result res = TEE_ERROR_GENERIC; 946 947 if (endpoint_id <= SPMC_ENDPOINT_ID) 948 return TEE_ERROR_BAD_FORMAT; 949 950 res = swap_sp_endpoints(endpoint_id, s->endpoint_id); 951 if (res) 952 return res; 953 954 DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", 955 endpoint_id); 956 /* Assign the endpoint ID to the current SP */ 957 s->endpoint_id = endpoint_id; 958 } 959 return TEE_SUCCESS; 960 } 961 962 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 963 { 964 int node = 0; 965 int subnode = 0; 966 tee_mm_entry_t *mm = NULL; 967 TEE_Result res = TEE_SUCCESS; 968 969 /* 970 * Memory regions are optional in the SP manifest, it's not an error if 971 * we don't find any. 972 */ 973 node = fdt_node_offset_by_compatible(fdt, 0, 974 "arm,ffa-manifest-memory-regions"); 975 if (node < 0) 976 return TEE_SUCCESS; 977 978 fdt_for_each_subnode(subnode, fdt, node) { 979 uint64_t load_rel_offset = 0; 980 bool alloc_needed = false; 981 uint32_t attributes = 0; 982 uint64_t base_addr = 0; 983 uint32_t pages_cnt = 0; 984 bool is_secure = true; 985 struct mobj *m = NULL; 986 unsigned int idx = 0; 987 uint32_t perm = 0; 988 size_t size = 0; 989 vaddr_t va = 0; 990 991 mm = NULL; 992 993 /* Load address relative offset of a memory region */ 994 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 995 &load_rel_offset)) { 996 /* 997 * At this point the memory region is already mapped by 998 * handle_fdt_load_relative_mem_regions. 999 * Only need to set the base-address in the manifest and 1000 * then skip the rest of the mapping process. 1001 */ 1002 va = ctx->uctx.load_addr + load_rel_offset; 1003 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1004 if (res) 1005 return res; 1006 1007 continue; 1008 } 1009 1010 /* 1011 * Base address of a memory region. 1012 * If not present, we have to allocate the specified memory. 1013 * If present, this field could specify a PA or VA. Currently 1014 * only a PA is supported. 1015 */ 1016 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 1017 alloc_needed = true; 1018 1019 /* Size of memory region as count of 4K pages */ 1020 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 1021 EMSG("Mandatory field is missing: pages-count"); 1022 return TEE_ERROR_BAD_FORMAT; 1023 } 1024 1025 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 1026 return TEE_ERROR_OVERFLOW; 1027 1028 /* 1029 * Memory region attributes: 1030 * - Instruction/data access permissions 1031 * - Cacheability/shareability attributes 1032 * - Security attributes 1033 * 1034 * Cacheability/shareability attributes can be ignored for now. 1035 * OP-TEE only supports a single type for normal cached memory 1036 * and currently there is no use case that would require to 1037 * change this. 1038 */ 1039 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 1040 EMSG("Mandatory field is missing: attributes"); 1041 return TEE_ERROR_BAD_FORMAT; 1042 } 1043 1044 /* Check instruction and data access permissions */ 1045 switch (attributes & SP_MANIFEST_ATTR_RWX) { 1046 case SP_MANIFEST_ATTR_RO: 1047 perm = TEE_MATTR_UR; 1048 break; 1049 case SP_MANIFEST_ATTR_RW: 1050 perm = TEE_MATTR_URW; 1051 break; 1052 case SP_MANIFEST_ATTR_RX: 1053 perm = TEE_MATTR_URX; 1054 break; 1055 default: 1056 EMSG("Invalid memory access permissions"); 1057 return TEE_ERROR_BAD_FORMAT; 1058 } 1059 1060 /* 1061 * The SP is a secure endpoint, security attribute can be 1062 * secure or non-secure. 1063 * The SPMC cannot allocate non-secure memory, i.e. if the base 1064 * address is missing this attribute must be secure. 1065 */ 1066 if (attributes & SP_MANIFEST_ATTR_NSEC) { 1067 if (alloc_needed) { 1068 EMSG("Invalid memory security attribute"); 1069 return TEE_ERROR_BAD_FORMAT; 1070 } 1071 is_secure = false; 1072 } 1073 1074 if (alloc_needed) { 1075 /* Base address is missing, we have to allocate */ 1076 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 1077 if (!mm) 1078 return TEE_ERROR_OUT_OF_MEMORY; 1079 1080 base_addr = tee_mm_get_smem(mm); 1081 } 1082 1083 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 1084 is_secure); 1085 if (!m) { 1086 res = TEE_ERROR_OUT_OF_MEMORY; 1087 goto err_mm_free; 1088 } 1089 1090 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 1091 if (res) { 1092 mobj_put(m); 1093 goto err_mm_free; 1094 } 1095 1096 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 1097 mobj_put(m); 1098 if (res) 1099 goto err_mm_free; 1100 1101 /* 1102 * Overwrite the memory region's base address in the fdt with 1103 * the VA. This fdt will be passed to the SP. 1104 * If the base-address field was not present in the original 1105 * fdt, this function will create it. This doesn't cause issues 1106 * since the necessary extra space has been allocated when 1107 * opening the fdt. 1108 */ 1109 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1110 1111 /* 1112 * Unmap the region if the overwrite failed since the SP won't 1113 * be able to access it without knowing the VA. 1114 */ 1115 if (res) { 1116 vm_unmap(&ctx->uctx, va, size); 1117 goto err_mm_free; 1118 } 1119 } 1120 1121 return TEE_SUCCESS; 1122 1123 err_mm_free: 1124 tee_mm_free(mm); 1125 return res; 1126 } 1127 1128 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 1129 { 1130 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 1131 uint32_t dummy_size __maybe_unused = 0; 1132 TEE_Result res = TEE_SUCCESS; 1133 size_t page_count = 0; 1134 struct fobj *f = NULL; 1135 struct mobj *m = NULL; 1136 vaddr_t log_addr = 0; 1137 size_t log_size = 0; 1138 int node = 0; 1139 1140 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 1141 if (node < 0) 1142 return TEE_SUCCESS; 1143 1144 /* Checking the existence and size of the event log properties */ 1145 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 1146 EMSG("tpm_event_log_addr not found or has invalid size"); 1147 return TEE_ERROR_BAD_FORMAT; 1148 } 1149 1150 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 1151 EMSG("tpm_event_log_size not found or has invalid size"); 1152 return TEE_ERROR_BAD_FORMAT; 1153 } 1154 1155 /* Validating event log */ 1156 res = tpm_get_event_log_size(&log_size); 1157 if (res) 1158 return res; 1159 1160 if (!log_size) { 1161 EMSG("Empty TPM event log was provided"); 1162 return TEE_ERROR_ITEM_NOT_FOUND; 1163 } 1164 1165 /* Allocating memory area for the event log to share with the SP */ 1166 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 1167 1168 f = fobj_sec_mem_alloc(page_count); 1169 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 1170 fobj_put(f); 1171 if (!m) 1172 return TEE_ERROR_OUT_OF_MEMORY; 1173 1174 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 1175 mobj_put(m); 1176 if (res) 1177 return res; 1178 1179 /* Copy event log */ 1180 res = tpm_get_event_log((void *)log_addr, &log_size); 1181 if (res) 1182 goto err_unmap; 1183 1184 /* Setting event log details in the manifest */ 1185 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 1186 if (res) 1187 goto err_unmap; 1188 1189 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 1190 if (res) 1191 goto err_unmap; 1192 1193 return TEE_SUCCESS; 1194 1195 err_unmap: 1196 vm_unmap(&ctx->uctx, log_addr, log_size); 1197 1198 return res; 1199 } 1200 1201 static TEE_Result sp_init_uuid(const TEE_UUID *uuid, const void * const fdt) 1202 { 1203 TEE_Result res = TEE_SUCCESS; 1204 struct sp_session *sess = NULL; 1205 1206 res = check_fdt(fdt, uuid); 1207 if (res) 1208 return res; 1209 1210 res = sp_open_session(&sess, &open_sp_sessions, uuid, fdt); 1211 if (res) 1212 return res; 1213 1214 sess->fdt = fdt; 1215 res = read_manifest_endpoint_id(sess); 1216 if (res) 1217 return res; 1218 DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); 1219 1220 return TEE_SUCCESS; 1221 } 1222 1223 static TEE_Result sp_first_run(struct sp_session *sess) 1224 { 1225 TEE_Result res = TEE_SUCCESS; 1226 struct thread_smc_args args = { }; 1227 vaddr_t va = 0; 1228 size_t num_pgs = 0; 1229 struct sp_ctx *ctx = NULL; 1230 void *fdt_copy = NULL; 1231 1232 ctx = to_sp_ctx(sess->ts_sess.ctx); 1233 ts_push_current_session(&sess->ts_sess); 1234 1235 /* 1236 * Load relative memory regions must be handled before doing any other 1237 * mapping to prevent conflicts in the VA space. 1238 */ 1239 res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt); 1240 if (res) { 1241 ts_pop_current_session(); 1242 return res; 1243 } 1244 1245 res = sp_init_info(ctx, &args, sess->fdt, &va, &num_pgs, &fdt_copy); 1246 if (res) 1247 goto out; 1248 1249 res = handle_fdt_dev_regions(ctx, fdt_copy); 1250 if (res) 1251 goto out; 1252 1253 res = handle_fdt_mem_regions(ctx, fdt_copy); 1254 if (res) 1255 goto out; 1256 1257 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 1258 res = handle_tpm_event_log(ctx, fdt_copy); 1259 if (res) 1260 goto out; 1261 } 1262 1263 ts_pop_current_session(); 1264 1265 sess->is_initialized = false; 1266 if (sp_enter(&args, sess)) { 1267 vm_unmap(&ctx->uctx, va, num_pgs); 1268 return FFA_ABORTED; 1269 } 1270 1271 spmc_sp_msg_handler(&args, sess); 1272 1273 sess->is_initialized = true; 1274 1275 ts_push_current_session(&sess->ts_sess); 1276 out: 1277 /* Free the boot info page from the SP memory */ 1278 vm_unmap(&ctx->uctx, va, num_pgs); 1279 ts_pop_current_session(); 1280 1281 return res; 1282 } 1283 1284 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 1285 { 1286 TEE_Result res = FFA_OK; 1287 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 1288 1289 ctx->sp_regs.x[0] = args->a0; 1290 ctx->sp_regs.x[1] = args->a1; 1291 ctx->sp_regs.x[2] = args->a2; 1292 ctx->sp_regs.x[3] = args->a3; 1293 ctx->sp_regs.x[4] = args->a4; 1294 ctx->sp_regs.x[5] = args->a5; 1295 ctx->sp_regs.x[6] = args->a6; 1296 ctx->sp_regs.x[7] = args->a7; 1297 1298 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 1299 1300 args->a0 = ctx->sp_regs.x[0]; 1301 args->a1 = ctx->sp_regs.x[1]; 1302 args->a2 = ctx->sp_regs.x[2]; 1303 args->a3 = ctx->sp_regs.x[3]; 1304 args->a4 = ctx->sp_regs.x[4]; 1305 args->a5 = ctx->sp_regs.x[5]; 1306 args->a6 = ctx->sp_regs.x[6]; 1307 args->a7 = ctx->sp_regs.x[7]; 1308 1309 return res; 1310 } 1311 1312 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 1313 uint32_t cmd __unused) 1314 { 1315 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 1316 TEE_Result res = TEE_SUCCESS; 1317 uint32_t exceptions = 0; 1318 uint64_t cpsr = 0; 1319 struct sp_session *sp_s = to_sp_session(s); 1320 struct ts_session *sess = NULL; 1321 struct thread_ctx_regs *sp_regs = NULL; 1322 uint32_t panicked = false; 1323 uint32_t panic_code = 0; 1324 1325 bm_timestamp(); 1326 1327 sp_regs = &ctx->sp_regs; 1328 ts_push_current_session(s); 1329 1330 cpsr = sp_regs->cpsr; 1331 sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1332 1333 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 1334 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 1335 sp_regs->cpsr = cpsr; 1336 thread_unmask_exceptions(exceptions); 1337 1338 thread_user_clear_vfp(&ctx->uctx); 1339 1340 if (panicked) { 1341 DMSG("SP panicked with code %#"PRIx32, panic_code); 1342 abort_print_current_ts(); 1343 1344 sess = ts_pop_current_session(); 1345 cpu_spin_lock(&sp_s->spinlock); 1346 sp_s->state = sp_dead; 1347 cpu_spin_unlock(&sp_s->spinlock); 1348 1349 return TEE_ERROR_TARGET_DEAD; 1350 } 1351 1352 sess = ts_pop_current_session(); 1353 assert(sess == s); 1354 1355 bm_timestamp(); 1356 1357 return res; 1358 } 1359 1360 /* We currently don't support 32 bits */ 1361 #ifdef ARM64 1362 static void sp_svc_store_registers(struct thread_scall_regs *regs, 1363 struct thread_ctx_regs *sp_regs) 1364 { 1365 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 1366 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 1367 sp_regs->pc = regs->elr; 1368 sp_regs->sp = regs->sp_el0; 1369 } 1370 #endif 1371 1372 static bool sp_handle_scall(struct thread_scall_regs *regs) 1373 { 1374 struct ts_session *ts = ts_get_current_session(); 1375 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 1376 struct sp_session *s = uctx->open_session; 1377 1378 assert(s); 1379 1380 sp_svc_store_registers(regs, &uctx->sp_regs); 1381 1382 regs->x0 = 0; 1383 regs->x1 = 0; /* panic */ 1384 regs->x2 = 0; /* panic code */ 1385 1386 /* 1387 * All the registers of the SP are saved in the SP session by the SVC 1388 * handler. 1389 * We always return to S-El1 after handling the SVC. We will continue 1390 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 1391 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 1392 * saved registers to the thread_smc_args. The thread_smc_args object is 1393 * afterward used by the spmc_sp_msg_handler() to handle the 1394 * FF-A message send by the SP. 1395 */ 1396 return false; 1397 } 1398 1399 static void sp_dump_state(struct ts_ctx *ctx) 1400 { 1401 struct sp_ctx *utc = to_sp_ctx(ctx); 1402 1403 if (utc->uctx.dump_entry_func) { 1404 TEE_Result res = ldelf_dump_state(&utc->uctx); 1405 1406 if (!res || res == TEE_ERROR_TARGET_DEAD) 1407 return; 1408 } 1409 1410 user_mode_ctx_print_mappings(&utc->uctx); 1411 } 1412 1413 static const struct ts_ops sp_ops = { 1414 .enter_invoke_cmd = sp_enter_invoke_cmd, 1415 .handle_scall = sp_handle_scall, 1416 .dump_state = sp_dump_state, 1417 }; 1418 1419 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1420 { 1421 enum teecore_memtypes mtype = MEM_AREA_RAM_SEC; 1422 struct sp_pkg_header *sp_pkg_hdr = NULL; 1423 TEE_Result res = TEE_SUCCESS; 1424 tee_mm_entry_t *mm = NULL; 1425 struct fip_sp *sp = NULL; 1426 uint64_t sp_fdt_end = 0; 1427 size_t sp_pkg_size = 0; 1428 vaddr_t sp_pkg_va = 0; 1429 size_t num_pages = 0; 1430 1431 /* Map only the first page of the SP package to parse the header */ 1432 if (!tee_pbuf_is_sec(sp_pkg_pa, SMALL_PAGE_SIZE)) 1433 return TEE_ERROR_GENERIC; 1434 1435 mm = tee_mm_alloc(&tee_mm_sec_ddr, SMALL_PAGE_SIZE); 1436 if (!mm) 1437 return TEE_ERROR_OUT_OF_MEMORY; 1438 1439 sp_pkg_va = tee_mm_get_smem(mm); 1440 1441 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, 1, mtype)) { 1442 res = TEE_ERROR_GENERIC; 1443 goto err; 1444 } 1445 1446 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1447 1448 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1449 EMSG("Invalid SP package magic"); 1450 res = TEE_ERROR_BAD_FORMAT; 1451 goto err_unmap; 1452 } 1453 1454 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 && 1455 sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) { 1456 EMSG("Invalid SP header version"); 1457 res = TEE_ERROR_BAD_FORMAT; 1458 goto err_unmap; 1459 } 1460 1461 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1462 &sp_pkg_size)) { 1463 EMSG("Invalid SP package size"); 1464 res = TEE_ERROR_BAD_FORMAT; 1465 goto err_unmap; 1466 } 1467 1468 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1469 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1470 EMSG("Invalid SP manifest size"); 1471 res = TEE_ERROR_BAD_FORMAT; 1472 goto err_unmap; 1473 } 1474 1475 core_mmu_unmap_pages(sp_pkg_va, 1); 1476 tee_mm_free(mm); 1477 1478 /* Map the whole package */ 1479 if (!tee_pbuf_is_sec(sp_pkg_pa, sp_pkg_size)) 1480 return TEE_ERROR_GENERIC; 1481 1482 num_pages = ROUNDUP_DIV(sp_pkg_size, SMALL_PAGE_SIZE); 1483 1484 mm = tee_mm_alloc(&tee_mm_sec_ddr, sp_pkg_size); 1485 if (!mm) 1486 return TEE_ERROR_OUT_OF_MEMORY; 1487 1488 sp_pkg_va = tee_mm_get_smem(mm); 1489 1490 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, num_pages, 1491 mtype)) { 1492 res = TEE_ERROR_GENERIC; 1493 goto err; 1494 } 1495 1496 sp_pkg_hdr = (struct sp_pkg_header *)tee_mm_get_smem(mm); 1497 1498 sp = calloc(1, sizeof(struct fip_sp)); 1499 if (!sp) { 1500 res = TEE_ERROR_OUT_OF_MEMORY; 1501 goto err_unmap; 1502 } 1503 1504 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1505 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1506 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1507 sp->sp_img.image.flags = 0; 1508 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1509 sp->mm = mm; 1510 1511 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1512 1513 return TEE_SUCCESS; 1514 1515 err_unmap: 1516 core_mmu_unmap_pages(tee_mm_get_smem(mm), 1517 ROUNDUP_DIV(tee_mm_get_bytes(mm), 1518 SMALL_PAGE_SIZE)); 1519 err: 1520 tee_mm_free(mm); 1521 1522 return res; 1523 } 1524 1525 static TEE_Result fip_sp_map_all(void) 1526 { 1527 TEE_Result res = TEE_SUCCESS; 1528 uint64_t sp_pkg_addr = 0; 1529 const void *fdt = NULL; 1530 TEE_UUID sp_uuid = { }; 1531 int sp_pkgs_node = 0; 1532 int subnode = 0; 1533 int root = 0; 1534 1535 fdt = get_tos_fw_config_dt(); 1536 if (!fdt) { 1537 EMSG("No SPMC manifest found"); 1538 return TEE_ERROR_GENERIC; 1539 } 1540 1541 root = fdt_path_offset(fdt, "/"); 1542 if (root < 0) 1543 return TEE_ERROR_BAD_FORMAT; 1544 1545 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1546 return TEE_ERROR_BAD_FORMAT; 1547 1548 /* SP packages are optional, it's not an error if we don't find any */ 1549 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1550 if (sp_pkgs_node < 0) 1551 return TEE_SUCCESS; 1552 1553 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1554 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1555 if (res) { 1556 EMSG("Invalid FIP SP load address"); 1557 return res; 1558 } 1559 1560 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1561 if (res) { 1562 EMSG("Invalid FIP SP uuid"); 1563 return res; 1564 } 1565 1566 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1567 if (res) { 1568 EMSG("Invalid FIP SP package"); 1569 return res; 1570 } 1571 } 1572 1573 return TEE_SUCCESS; 1574 } 1575 1576 static void fip_sp_unmap_all(void) 1577 { 1578 while (!STAILQ_EMPTY(&fip_sp_list)) { 1579 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1580 1581 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1582 core_mmu_unmap_pages(tee_mm_get_smem(sp->mm), 1583 ROUNDUP_DIV(tee_mm_get_bytes(sp->mm), 1584 SMALL_PAGE_SIZE)); 1585 tee_mm_free(sp->mm); 1586 free(sp); 1587 } 1588 } 1589 1590 static TEE_Result sp_init_all(void) 1591 { 1592 TEE_Result res = TEE_SUCCESS; 1593 const struct sp_image *sp = NULL; 1594 const struct fip_sp *fip_sp = NULL; 1595 char __maybe_unused msg[60] = { '\0', }; 1596 struct sp_session *s = NULL; 1597 1598 for_each_secure_partition(sp) { 1599 if (sp->image.uncompressed_size) 1600 snprintf(msg, sizeof(msg), 1601 " (compressed, uncompressed %u)", 1602 sp->image.uncompressed_size); 1603 else 1604 msg[0] = '\0'; 1605 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1606 sp->image.size, msg); 1607 1608 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1609 1610 if (res != TEE_SUCCESS) { 1611 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1612 &sp->image.uuid, res); 1613 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1614 panic(); 1615 } 1616 } 1617 1618 res = fip_sp_map_all(); 1619 if (res) 1620 panic("Failed mapping FIP SPs"); 1621 1622 for_each_fip_sp(fip_sp) { 1623 sp = &fip_sp->sp_img; 1624 1625 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1626 sp->image.size); 1627 1628 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1629 1630 if (res != TEE_SUCCESS) { 1631 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1632 &sp->image.uuid, res); 1633 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1634 panic(); 1635 } 1636 } 1637 1638 /* Continue the initialization and run the SP */ 1639 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1640 res = sp_first_run(s); 1641 if (res != TEE_SUCCESS) { 1642 EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, 1643 s->endpoint_id, res); 1644 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1645 panic(); 1646 } 1647 } 1648 /* 1649 * At this point all FIP SPs are loaded by ldelf so the original images 1650 * (loaded by BL2 earlier) can be unmapped 1651 */ 1652 fip_sp_unmap_all(); 1653 1654 return TEE_SUCCESS; 1655 } 1656 1657 boot_final(sp_init_all); 1658 1659 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1660 struct ts_store_handle **h) 1661 { 1662 return emb_ts_open(uuid, h, find_secure_partition); 1663 } 1664 1665 REGISTER_SP_STORE(2) = { 1666 .description = "SP store", 1667 .open = secure_partition_open, 1668 .get_size = emb_ts_get_size, 1669 .get_tag = emb_ts_get_tag, 1670 .read = emb_ts_read, 1671 .close = emb_ts_close, 1672 }; 1673