1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2023, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/boot.h> 9 #include <kernel/embedded_ts.h> 10 #include <kernel/ldelf_loader.h> 11 #include <kernel/secure_partition.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/spmc_sp_handler.h> 14 #include <kernel/thread_private.h> 15 #include <kernel/thread_spmc.h> 16 #include <kernel/tpm.h> 17 #include <kernel/ts_store.h> 18 #include <ldelf.h> 19 #include <libfdt.h> 20 #include <mm/core_mmu.h> 21 #include <mm/fobj.h> 22 #include <mm/mobj.h> 23 #include <mm/vm.h> 24 #include <optee_ffa.h> 25 #include <stdio.h> 26 #include <string.h> 27 #include <tee_api_types.h> 28 #include <tee/uuid.h> 29 #include <trace.h> 30 #include <types_ext.h> 31 #include <utee_defines.h> 32 #include <util.h> 33 #include <zlib.h> 34 35 #define SP_MANIFEST_ATTR_READ BIT(0) 36 #define SP_MANIFEST_ATTR_WRITE BIT(1) 37 #define SP_MANIFEST_ATTR_EXEC BIT(2) 38 #define SP_MANIFEST_ATTR_NSEC BIT(3) 39 40 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 41 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 42 SP_MANIFEST_ATTR_WRITE) 43 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 44 SP_MANIFEST_ATTR_EXEC) 45 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 46 SP_MANIFEST_ATTR_WRITE | \ 47 SP_MANIFEST_ATTR_EXEC) 48 49 #define SP_MANIFEST_FLAG_NOBITS BIT(0) 50 51 #define SP_MANIFEST_NS_INT_QUEUED (0x0) 52 #define SP_MANIFEST_NS_INT_MANAGED_EXIT (0x1) 53 #define SP_MANIFEST_NS_INT_SIGNALED (0x2) 54 55 #define SP_PKG_HEADER_MAGIC (0x474b5053) 56 #define SP_PKG_HEADER_VERSION_V1 (0x1) 57 #define SP_PKG_HEADER_VERSION_V2 (0x2) 58 59 struct sp_pkg_header { 60 uint32_t magic; 61 uint32_t version; 62 uint32_t pm_offset; 63 uint32_t pm_size; 64 uint32_t img_offset; 65 uint32_t img_size; 66 }; 67 68 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 69 70 static const struct ts_ops sp_ops; 71 72 /* List that holds all of the loaded SP's */ 73 static struct sp_sessions_head open_sp_sessions = 74 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 75 76 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 77 { 78 const struct sp_image *sp = NULL; 79 const struct fip_sp *fip_sp = NULL; 80 81 for_each_secure_partition(sp) { 82 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 83 return &sp->image; 84 } 85 86 for_each_fip_sp(fip_sp) { 87 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 88 return &fip_sp->sp_img.image; 89 } 90 91 return NULL; 92 } 93 94 bool is_sp_ctx(struct ts_ctx *ctx) 95 { 96 return ctx && (ctx->ops == &sp_ops); 97 } 98 99 static void set_sp_ctx_ops(struct ts_ctx *ctx) 100 { 101 ctx->ops = &sp_ops; 102 } 103 104 struct sp_session *sp_get_session(uint32_t session_id) 105 { 106 struct sp_session *s = NULL; 107 108 TAILQ_FOREACH(s, &open_sp_sessions, link) { 109 if (s->endpoint_id == session_id) 110 return s; 111 } 112 113 return NULL; 114 } 115 116 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size, 117 const TEE_UUID *ffa_uuid, size_t *elem_count, 118 bool count_only) 119 { 120 TEE_Result res = TEE_SUCCESS; 121 uint32_t part_props = FFA_PART_PROP_DIRECT_REQ_RECV | 122 FFA_PART_PROP_DIRECT_REQ_SEND; 123 struct sp_session *s = NULL; 124 125 TAILQ_FOREACH(s, &open_sp_sessions, link) { 126 if (ffa_uuid && 127 memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid))) 128 continue; 129 130 if (s->state == sp_dead) 131 continue; 132 if (!count_only && !res) { 133 uint32_t uuid_words[4] = { 0 }; 134 135 tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid); 136 res = spmc_fill_partition_entry(ffa_vers, buf, buf_size, 137 *elem_count, 138 s->endpoint_id, 1, 139 part_props, uuid_words); 140 } 141 *elem_count += 1; 142 } 143 144 return res; 145 } 146 147 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 148 struct user_mode_ctx *uctx) 149 { 150 /* 151 * Check that we have access to the region if it is supposed to be 152 * mapped to the current context. 153 */ 154 if (uctx) { 155 struct vm_region *region = NULL; 156 157 /* Make sure that each mobj belongs to the SP */ 158 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 159 if (region->mobj == mem->mobj) 160 break; 161 } 162 163 if (!region) 164 return false; 165 } 166 167 /* Check that it is not shared with another SP */ 168 return !sp_mem_is_shared(mem); 169 } 170 171 static uint16_t new_session_id(struct sp_sessions_head *open_sessions) 172 { 173 struct sp_session *last = NULL; 174 uint16_t id = SPMC_ENDPOINT_ID + 1; 175 176 last = TAILQ_LAST(open_sessions, sp_sessions_head); 177 if (last) 178 id = last->endpoint_id + 1; 179 180 assert(id > SPMC_ENDPOINT_ID); 181 return id; 182 } 183 184 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s) 185 { 186 TEE_Result res = TEE_SUCCESS; 187 struct sp_ctx *spc = NULL; 188 189 /* Register context */ 190 spc = calloc(1, sizeof(struct sp_ctx)); 191 if (!spc) 192 return TEE_ERROR_OUT_OF_MEMORY; 193 194 spc->open_session = s; 195 s->ts_sess.ctx = &spc->ts_ctx; 196 spc->ts_ctx.uuid = *bin_uuid; 197 198 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 199 if (res) 200 goto err; 201 202 set_sp_ctx_ops(&spc->ts_ctx); 203 204 return TEE_SUCCESS; 205 206 err: 207 free(spc); 208 return res; 209 } 210 211 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 212 const TEE_UUID *bin_uuid, 213 struct sp_session **sess) 214 { 215 TEE_Result res = TEE_SUCCESS; 216 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 217 218 if (!s) 219 return TEE_ERROR_OUT_OF_MEMORY; 220 221 s->endpoint_id = new_session_id(open_sessions); 222 if (!s->endpoint_id) { 223 res = TEE_ERROR_OVERFLOW; 224 goto err; 225 } 226 227 DMSG("Loading Secure Partition %pUl", (void *)bin_uuid); 228 res = sp_create_ctx(bin_uuid, s); 229 if (res) 230 goto err; 231 232 TAILQ_INSERT_TAIL(open_sessions, s, link); 233 *sess = s; 234 return TEE_SUCCESS; 235 236 err: 237 free(s); 238 return res; 239 } 240 241 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 242 { 243 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 244 245 memset(sp_regs, 0, sizeof(*sp_regs)); 246 sp_regs->sp = ctx->uctx.stack_ptr; 247 sp_regs->pc = ctx->uctx.entry_func; 248 249 return TEE_SUCCESS; 250 } 251 252 TEE_Result sp_map_shared(struct sp_session *s, 253 struct sp_mem_receiver *receiver, 254 struct sp_mem *smem, 255 uint64_t *va) 256 { 257 TEE_Result res = TEE_SUCCESS; 258 struct sp_ctx *ctx = NULL; 259 uint32_t perm = TEE_MATTR_UR; 260 struct sp_mem_map_region *reg = NULL; 261 262 ctx = to_sp_ctx(s->ts_sess.ctx); 263 264 /* Get the permission */ 265 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 266 perm |= TEE_MATTR_UX; 267 268 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 269 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 270 return TEE_ERROR_ACCESS_CONFLICT; 271 272 perm |= TEE_MATTR_UW; 273 } 274 /* 275 * Currently we don't support passing a va. We can't guarantee that the 276 * full region will be mapped in a contiguous region. A smem->region can 277 * have multiple mobj for one share. Currently there doesn't seem to be 278 * an option to guarantee that these will be mapped in a contiguous va 279 * space. 280 */ 281 if (*va) 282 return TEE_ERROR_NOT_SUPPORTED; 283 284 SLIST_FOREACH(reg, &smem->regions, link) { 285 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 286 perm, 0, reg->mobj, reg->page_offset); 287 288 if (res != TEE_SUCCESS) { 289 EMSG("Failed to map memory region %#"PRIx32, res); 290 return res; 291 } 292 } 293 return TEE_SUCCESS; 294 } 295 296 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 297 { 298 TEE_Result res = TEE_SUCCESS; 299 vaddr_t vaddr = 0; 300 size_t len = 0; 301 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 302 struct sp_mem_map_region *reg = NULL; 303 304 SLIST_FOREACH(reg, &smem->regions, link) { 305 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 306 reg->mobj); 307 len = reg->page_count * SMALL_PAGE_SIZE; 308 309 res = vm_unmap(&ctx->uctx, vaddr, len); 310 if (res != TEE_SUCCESS) 311 return res; 312 } 313 314 return TEE_SUCCESS; 315 } 316 317 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 318 uint64_t *value) 319 { 320 const fdt64_t *p = NULL; 321 int len = 0; 322 323 p = fdt_getprop(fdt, node, property, &len); 324 if (!p) 325 return TEE_ERROR_ITEM_NOT_FOUND; 326 327 if (len != sizeof(*p)) 328 return TEE_ERROR_BAD_FORMAT; 329 330 *value = fdt64_ld(p); 331 332 return TEE_SUCCESS; 333 } 334 335 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 336 uint32_t *value) 337 { 338 const fdt32_t *p = NULL; 339 int len = 0; 340 341 p = fdt_getprop(fdt, node, property, &len); 342 if (!p) 343 return TEE_ERROR_ITEM_NOT_FOUND; 344 345 if (len != sizeof(*p)) 346 return TEE_ERROR_BAD_FORMAT; 347 348 *value = fdt32_to_cpu(*p); 349 350 return TEE_SUCCESS; 351 } 352 353 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 354 const char *property, TEE_UUID *uuid) 355 { 356 uint32_t uuid_array[4] = { 0 }; 357 const fdt32_t *p = NULL; 358 int len = 0; 359 int i = 0; 360 361 p = fdt_getprop(fdt, node, property, &len); 362 if (!p) 363 return TEE_ERROR_ITEM_NOT_FOUND; 364 365 if (len != sizeof(TEE_UUID)) 366 return TEE_ERROR_BAD_FORMAT; 367 368 for (i = 0; i < 4; i++) 369 uuid_array[i] = fdt32_to_cpu(p[i]); 370 371 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 372 373 return TEE_SUCCESS; 374 } 375 376 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node, 377 bool *is_elf_format) 378 { 379 TEE_Result res = TEE_SUCCESS; 380 uint32_t elf_format = 0; 381 382 res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format); 383 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) 384 return res; 385 386 *is_elf_format = (elf_format != 0); 387 388 return TEE_SUCCESS; 389 } 390 391 static TEE_Result sp_binary_open(const TEE_UUID *uuid, 392 const struct ts_store_ops **ops, 393 struct ts_store_handle **handle) 394 { 395 TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND; 396 397 SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) { 398 res = (*ops)->open(uuid, handle); 399 if (res != TEE_ERROR_ITEM_NOT_FOUND && 400 res != TEE_ERROR_STORAGE_NOT_AVAILABLE) 401 break; 402 } 403 404 return res; 405 } 406 407 static TEE_Result load_binary_sp(struct ts_session *s, 408 struct user_mode_ctx *uctx) 409 { 410 size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0; 411 const struct ts_store_ops *store_ops = NULL; 412 struct ts_store_handle *handle = NULL; 413 TEE_Result res = TEE_SUCCESS; 414 tee_mm_entry_t *mm = NULL; 415 struct mobj *mobj = NULL; 416 uaddr_t base_addr = 0; 417 uint32_t vm_flags = 0; 418 unsigned int idx = 0; 419 vaddr_t va = 0; 420 421 if (!s || !uctx) 422 return TEE_ERROR_BAD_PARAMETERS; 423 424 DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid); 425 426 vm_set_ctx(uctx->ts_ctx); 427 428 /* Find TS store and open SP binary */ 429 res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle); 430 if (res != TEE_SUCCESS) { 431 EMSG("Failed to open SP binary"); 432 return res; 433 } 434 435 /* Query binary size and calculate page count */ 436 res = store_ops->get_size(handle, &bin_size); 437 if (res != TEE_SUCCESS) 438 goto err; 439 440 if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) { 441 res = TEE_ERROR_OVERFLOW; 442 goto err; 443 } 444 445 bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE; 446 447 /* Allocate memory */ 448 mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded); 449 if (!mm) { 450 res = TEE_ERROR_OUT_OF_MEMORY; 451 goto err; 452 } 453 454 base_addr = tee_mm_get_smem(mm); 455 456 /* Create mobj */ 457 mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true); 458 if (!mobj) { 459 res = TEE_ERROR_OUT_OF_MEMORY; 460 goto err_free_tee_mm; 461 } 462 463 res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count); 464 if (res) 465 goto err_free_mobj; 466 467 /* Map memory area for the SP binary */ 468 res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX, 469 vm_flags, mobj, 0); 470 if (res) 471 goto err_free_mobj; 472 473 /* Read SP binary into the previously mapped memory area */ 474 res = store_ops->read(handle, (void *)va, bin_size); 475 if (res) 476 goto err_unmap; 477 478 /* Set memory protection to allow execution */ 479 res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX); 480 if (res) 481 goto err_unmap; 482 483 mobj_put(mobj); 484 store_ops->close(handle); 485 486 /* The entry point must be at the beginning of the SP binary. */ 487 uctx->entry_func = va; 488 uctx->load_addr = va; 489 uctx->is_32bit = false; 490 491 s->handle_scall = s->ctx->ops->handle_scall; 492 493 return TEE_SUCCESS; 494 495 err_unmap: 496 vm_unmap(uctx, va, bin_size_rounded); 497 498 err_free_mobj: 499 mobj_put(mobj); 500 501 err_free_tee_mm: 502 tee_mm_free(mm); 503 504 err: 505 store_ops->close(handle); 506 507 return res; 508 } 509 510 static TEE_Result sp_open_session(struct sp_session **sess, 511 struct sp_sessions_head *open_sessions, 512 const TEE_UUID *ffa_uuid, 513 const TEE_UUID *bin_uuid, 514 const void *fdt) 515 { 516 TEE_Result res = TEE_SUCCESS; 517 struct sp_session *s = NULL; 518 struct sp_ctx *ctx = NULL; 519 bool is_elf_format = false; 520 521 if (!find_secure_partition(bin_uuid)) 522 return TEE_ERROR_ITEM_NOT_FOUND; 523 524 res = sp_create_session(open_sessions, bin_uuid, &s); 525 if (res != TEE_SUCCESS) { 526 DMSG("sp_create_session failed %#"PRIx32, res); 527 return res; 528 } 529 530 ctx = to_sp_ctx(s->ts_sess.ctx); 531 assert(ctx); 532 if (!ctx) 533 return TEE_ERROR_TARGET_DEAD; 534 *sess = s; 535 536 ts_push_current_session(&s->ts_sess); 537 538 res = sp_is_elf_format(fdt, 0, &is_elf_format); 539 if (res == TEE_SUCCESS) { 540 if (is_elf_format) { 541 /* Load the SP using ldelf. */ 542 ldelf_load_ldelf(&ctx->uctx); 543 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 544 } else { 545 /* Raw binary format SP */ 546 res = load_binary_sp(&s->ts_sess, &ctx->uctx); 547 } 548 } else { 549 EMSG("Failed to detect SP format"); 550 } 551 552 if (res != TEE_SUCCESS) { 553 EMSG("Failed loading SP %#"PRIx32, res); 554 ts_pop_current_session(); 555 return TEE_ERROR_TARGET_DEAD; 556 } 557 558 /* Make the SP ready for its first run */ 559 s->state = sp_idle; 560 s->caller_id = 0; 561 sp_init_set_registers(ctx); 562 memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)); 563 ts_pop_current_session(); 564 565 return TEE_SUCCESS; 566 } 567 568 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid) 569 { 570 const struct fdt_property *description = NULL; 571 int description_name_len = 0; 572 573 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 574 EMSG("Failed loading SP, manifest not found"); 575 return TEE_ERROR_BAD_PARAMETERS; 576 } 577 578 description = fdt_get_property(fdt, 0, "description", 579 &description_name_len); 580 if (description) 581 DMSG("Loading SP: %s", description->data); 582 583 if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) { 584 EMSG("Missing or invalid UUID in SP manifest"); 585 return TEE_ERROR_BAD_FORMAT; 586 } 587 588 return TEE_SUCCESS; 589 } 590 591 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt, 592 void **fdt_copy, size_t *mapped_size) 593 { 594 size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE); 595 size_t num_pages = total_size / SMALL_PAGE_SIZE; 596 uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; 597 TEE_Result res = TEE_SUCCESS; 598 struct mobj *m = NULL; 599 struct fobj *f = NULL; 600 vaddr_t va = 0; 601 602 f = fobj_sec_mem_alloc(num_pages); 603 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 604 fobj_put(f); 605 if (!m) 606 return TEE_ERROR_OUT_OF_MEMORY; 607 608 res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0); 609 mobj_put(m); 610 if (res) 611 return res; 612 613 if (fdt_open_into(fdt, (void *)va, total_size)) 614 return TEE_ERROR_GENERIC; 615 616 *fdt_copy = (void *)va; 617 *mapped_size = total_size; 618 619 return res; 620 } 621 622 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt) 623 { 624 struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf; 625 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 626 627 memcpy(&info->magic, "FF-A", 4); 628 info->count = 1; 629 630 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 631 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 632 info->nvp[0].value = (uintptr_t)fdt; 633 info->nvp[0].size = fdt_totalsize(fdt); 634 } 635 636 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt) 637 { 638 size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8); 639 struct ffa_boot_info_header_1_1 *header = 640 (struct ffa_boot_info_header_1_1 *)buf; 641 struct ffa_boot_info_1_1 *desc = 642 (struct ffa_boot_info_1_1 *)(buf + desc_offs); 643 644 header->signature = FFA_BOOT_INFO_SIGNATURE; 645 header->version = FFA_BOOT_INFO_VERSION; 646 header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1); 647 header->desc_size = sizeof(struct ffa_boot_info_1_1); 648 header->desc_count = 1; 649 header->desc_offset = desc_offs; 650 651 memset(&desc[0].name, 0, sizeof(desc[0].name)); 652 /* Type: Standard boot info (bit[7] == 0), FDT type */ 653 desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT; 654 /* Flags: Contents field contains an address */ 655 desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR << 656 FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT; 657 desc[0].size = fdt_totalsize(fdt); 658 desc[0].contents = (uintptr_t)fdt; 659 } 660 661 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt, 662 struct thread_smc_args *args, 663 vaddr_t *va, size_t *mapped_size) 664 { 665 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 666 size_t num_pages = total_size / SMALL_PAGE_SIZE; 667 uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; 668 TEE_Result res = TEE_SUCCESS; 669 uint32_t sp_ffa_version = 0; 670 struct fobj *f = NULL; 671 struct mobj *m = NULL; 672 uint32_t info_reg = 0; 673 674 res = sp_dt_get_u32(fdt, 0, "ffa-version", &sp_ffa_version); 675 if (res) 676 return res; 677 678 f = fobj_sec_mem_alloc(num_pages); 679 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 680 fobj_put(f); 681 if (!m) 682 return TEE_ERROR_OUT_OF_MEMORY; 683 684 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 685 mobj_put(m); 686 if (res) 687 return res; 688 689 *mapped_size = total_size; 690 691 switch (sp_ffa_version) { 692 case MAKE_FFA_VERSION(1, 0): 693 fill_boot_info_1_0(*va, fdt); 694 break; 695 case MAKE_FFA_VERSION(1, 1): 696 fill_boot_info_1_1(*va, fdt); 697 break; 698 default: 699 EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version); 700 return TEE_ERROR_NOT_SUPPORTED; 701 } 702 703 res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg); 704 if (res) { 705 if (res == TEE_ERROR_ITEM_NOT_FOUND) { 706 /* If the property is not present, set default to x0 */ 707 info_reg = 0; 708 } else { 709 return TEE_ERROR_BAD_FORMAT; 710 } 711 } 712 713 switch (info_reg) { 714 case 0: 715 args->a0 = *va; 716 break; 717 case 1: 718 args->a1 = *va; 719 break; 720 case 2: 721 args->a2 = *va; 722 break; 723 case 3: 724 args->a3 = *va; 725 break; 726 default: 727 EMSG("Invalid register selected for passing boot info"); 728 return TEE_ERROR_BAD_FORMAT; 729 } 730 731 return TEE_SUCCESS; 732 } 733 734 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx, 735 const void *fdt) 736 { 737 int node = 0; 738 int subnode = 0; 739 tee_mm_entry_t *mm = NULL; 740 TEE_Result res = TEE_SUCCESS; 741 742 /* 743 * Memory regions are optional in the SP manifest, it's not an error if 744 * we don't find any. 745 */ 746 node = fdt_node_offset_by_compatible(fdt, 0, 747 "arm,ffa-manifest-memory-regions"); 748 if (node < 0) 749 return TEE_SUCCESS; 750 751 fdt_for_each_subnode(subnode, fdt, node) { 752 uint64_t load_rel_offset = 0; 753 uint32_t attributes = 0; 754 uint64_t base_addr = 0; 755 uint32_t pages_cnt = 0; 756 uint32_t flags = 0; 757 uint32_t perm = 0; 758 size_t size = 0; 759 vaddr_t va = 0; 760 761 mm = NULL; 762 763 /* Load address relative offset of a memory region */ 764 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 765 &load_rel_offset)) { 766 va = ctx->uctx.load_addr + load_rel_offset; 767 } else { 768 /* Skip non load address relative memory regions */ 769 continue; 770 } 771 772 if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 773 EMSG("Both base-address and load-address-relative-offset fields are set"); 774 return TEE_ERROR_BAD_FORMAT; 775 } 776 777 /* Size of memory region as count of 4K pages */ 778 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 779 EMSG("Mandatory field is missing: pages-count"); 780 return TEE_ERROR_BAD_FORMAT; 781 } 782 783 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 784 return TEE_ERROR_OVERFLOW; 785 786 /* Memory region attributes */ 787 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 788 EMSG("Mandatory field is missing: attributes"); 789 return TEE_ERROR_BAD_FORMAT; 790 } 791 792 /* Check instruction and data access permissions */ 793 switch (attributes & SP_MANIFEST_ATTR_RWX) { 794 case SP_MANIFEST_ATTR_RO: 795 perm = TEE_MATTR_UR; 796 break; 797 case SP_MANIFEST_ATTR_RW: 798 perm = TEE_MATTR_URW; 799 break; 800 case SP_MANIFEST_ATTR_RX: 801 perm = TEE_MATTR_URX; 802 break; 803 default: 804 EMSG("Invalid memory access permissions"); 805 return TEE_ERROR_BAD_FORMAT; 806 } 807 808 res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags); 809 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) { 810 EMSG("Optional field with invalid value: flags"); 811 return TEE_ERROR_BAD_FORMAT; 812 } 813 814 /* Load relative regions must be secure */ 815 if (attributes & SP_MANIFEST_ATTR_NSEC) { 816 EMSG("Invalid memory security attribute"); 817 return TEE_ERROR_BAD_FORMAT; 818 } 819 820 if (flags & SP_MANIFEST_FLAG_NOBITS) { 821 /* 822 * NOBITS flag is set, which means that loaded binary 823 * doesn't contain this area, so it's need to be 824 * allocated. 825 */ 826 struct mobj *m = NULL; 827 unsigned int idx = 0; 828 829 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 830 if (!mm) 831 return TEE_ERROR_OUT_OF_MEMORY; 832 833 base_addr = tee_mm_get_smem(mm); 834 835 m = sp_mem_new_mobj(pages_cnt, 836 TEE_MATTR_MEM_TYPE_CACHED, true); 837 if (!m) { 838 res = TEE_ERROR_OUT_OF_MEMORY; 839 goto err_mm_free; 840 } 841 842 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 843 if (res) { 844 mobj_put(m); 845 goto err_mm_free; 846 } 847 848 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 849 mobj_put(m); 850 if (res) 851 goto err_mm_free; 852 } else { 853 /* 854 * If NOBITS is not present the memory area is already 855 * mapped and only need to set the correct permissions. 856 */ 857 res = vm_set_prot(&ctx->uctx, va, size, perm); 858 if (res) 859 return res; 860 } 861 } 862 863 return TEE_SUCCESS; 864 865 err_mm_free: 866 tee_mm_free(mm); 867 return res; 868 } 869 870 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 871 { 872 int node = 0; 873 int subnode = 0; 874 TEE_Result res = TEE_SUCCESS; 875 const char *dt_device_match_table = { 876 "arm,ffa-manifest-device-regions", 877 }; 878 879 /* 880 * Device regions are optional in the SP manifest, it's not an error if 881 * we don't find any 882 */ 883 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 884 if (node < 0) 885 return TEE_SUCCESS; 886 887 fdt_for_each_subnode(subnode, fdt, node) { 888 uint64_t base_addr = 0; 889 uint32_t pages_cnt = 0; 890 uint32_t attributes = 0; 891 struct mobj *m = NULL; 892 bool is_secure = true; 893 uint32_t perm = 0; 894 vaddr_t va = 0; 895 unsigned int idx = 0; 896 897 /* 898 * Physical base address of a device MMIO region. 899 * Currently only physically contiguous region is supported. 900 */ 901 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 902 EMSG("Mandatory field is missing: base-address"); 903 return TEE_ERROR_BAD_FORMAT; 904 } 905 906 /* Total size of MMIO region as count of 4K pages */ 907 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 908 EMSG("Mandatory field is missing: pages-count"); 909 return TEE_ERROR_BAD_FORMAT; 910 } 911 912 /* Data access, instruction access and security attributes */ 913 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 914 EMSG("Mandatory field is missing: attributes"); 915 return TEE_ERROR_BAD_FORMAT; 916 } 917 918 /* Check instruction and data access permissions */ 919 switch (attributes & SP_MANIFEST_ATTR_RWX) { 920 case SP_MANIFEST_ATTR_RO: 921 perm = TEE_MATTR_UR; 922 break; 923 case SP_MANIFEST_ATTR_RW: 924 perm = TEE_MATTR_URW; 925 break; 926 default: 927 EMSG("Invalid memory access permissions"); 928 return TEE_ERROR_BAD_FORMAT; 929 } 930 931 /* 932 * The SP is a secure endpoint, security attribute can be 933 * secure or non-secure 934 */ 935 if (attributes & SP_MANIFEST_ATTR_NSEC) 936 is_secure = false; 937 938 /* Memory attributes must be Device-nGnRnE */ 939 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 940 is_secure); 941 if (!m) 942 return TEE_ERROR_OUT_OF_MEMORY; 943 944 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 945 if (res) { 946 mobj_put(m); 947 return res; 948 } 949 950 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 951 perm, 0, m, 0); 952 mobj_put(m); 953 if (res) 954 return res; 955 956 /* 957 * Overwrite the device region's PA in the fdt with the VA. This 958 * fdt will be passed to the SP. 959 */ 960 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 961 962 /* 963 * Unmap the region if the overwrite failed since the SP won't 964 * be able to access it without knowing the VA. 965 */ 966 if (res) { 967 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 968 return res; 969 } 970 } 971 972 return TEE_SUCCESS; 973 } 974 975 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, 976 uint32_t new_endpoint_id) 977 { 978 struct sp_session *session = sp_get_session(endpoint_id); 979 uint32_t manifest_endpoint_id = 0; 980 981 /* 982 * We don't know in which order the SPs are loaded. The endpoint ID 983 * defined in the manifest could already be generated by 984 * new_session_id() and used by another SP. If this is the case, we swap 985 * the ID's of the two SPs. We also have to make sure that the ID's are 986 * not defined twice in the manifest. 987 */ 988 989 /* The endpoint ID was not assigned yet */ 990 if (!session) 991 return TEE_SUCCESS; 992 993 /* 994 * Read the manifest file from the SP who originally had the endpoint. 995 * We can safely swap the endpoint ID's if the manifest file doesn't 996 * have an endpoint ID defined. 997 */ 998 if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { 999 assert(manifest_endpoint_id == endpoint_id); 1000 EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); 1001 return TEE_ERROR_ACCESS_CONFLICT; 1002 } 1003 1004 session->endpoint_id = new_endpoint_id; 1005 1006 return TEE_SUCCESS; 1007 } 1008 1009 static TEE_Result read_manifest_endpoint_id(struct sp_session *s) 1010 { 1011 uint32_t endpoint_id = 0; 1012 1013 /* 1014 * The endpoint ID can be optionally defined in the manifest file. We 1015 * have to map the ID inside the manifest to the SP if it's defined. 1016 * If not, the endpoint ID generated inside new_session_id() will be 1017 * used. 1018 */ 1019 if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { 1020 TEE_Result res = TEE_ERROR_GENERIC; 1021 1022 if (endpoint_id <= SPMC_ENDPOINT_ID) 1023 return TEE_ERROR_BAD_FORMAT; 1024 1025 res = swap_sp_endpoints(endpoint_id, s->endpoint_id); 1026 if (res) 1027 return res; 1028 1029 DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", 1030 endpoint_id); 1031 /* Assign the endpoint ID to the current SP */ 1032 s->endpoint_id = endpoint_id; 1033 } 1034 return TEE_SUCCESS; 1035 } 1036 1037 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 1038 { 1039 int node = 0; 1040 int subnode = 0; 1041 tee_mm_entry_t *mm = NULL; 1042 TEE_Result res = TEE_SUCCESS; 1043 1044 /* 1045 * Memory regions are optional in the SP manifest, it's not an error if 1046 * we don't find any. 1047 */ 1048 node = fdt_node_offset_by_compatible(fdt, 0, 1049 "arm,ffa-manifest-memory-regions"); 1050 if (node < 0) 1051 return TEE_SUCCESS; 1052 1053 fdt_for_each_subnode(subnode, fdt, node) { 1054 uint64_t load_rel_offset = 0; 1055 bool alloc_needed = false; 1056 uint32_t attributes = 0; 1057 uint64_t base_addr = 0; 1058 uint32_t pages_cnt = 0; 1059 bool is_secure = true; 1060 struct mobj *m = NULL; 1061 unsigned int idx = 0; 1062 uint32_t perm = 0; 1063 size_t size = 0; 1064 vaddr_t va = 0; 1065 1066 mm = NULL; 1067 1068 /* Load address relative offset of a memory region */ 1069 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 1070 &load_rel_offset)) { 1071 /* 1072 * At this point the memory region is already mapped by 1073 * handle_fdt_load_relative_mem_regions. 1074 * Only need to set the base-address in the manifest and 1075 * then skip the rest of the mapping process. 1076 */ 1077 va = ctx->uctx.load_addr + load_rel_offset; 1078 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1079 if (res) 1080 return res; 1081 1082 continue; 1083 } 1084 1085 /* 1086 * Base address of a memory region. 1087 * If not present, we have to allocate the specified memory. 1088 * If present, this field could specify a PA or VA. Currently 1089 * only a PA is supported. 1090 */ 1091 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 1092 alloc_needed = true; 1093 1094 /* Size of memory region as count of 4K pages */ 1095 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 1096 EMSG("Mandatory field is missing: pages-count"); 1097 return TEE_ERROR_BAD_FORMAT; 1098 } 1099 1100 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 1101 return TEE_ERROR_OVERFLOW; 1102 1103 /* 1104 * Memory region attributes: 1105 * - Instruction/data access permissions 1106 * - Cacheability/shareability attributes 1107 * - Security attributes 1108 * 1109 * Cacheability/shareability attributes can be ignored for now. 1110 * OP-TEE only supports a single type for normal cached memory 1111 * and currently there is no use case that would require to 1112 * change this. 1113 */ 1114 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 1115 EMSG("Mandatory field is missing: attributes"); 1116 return TEE_ERROR_BAD_FORMAT; 1117 } 1118 1119 /* Check instruction and data access permissions */ 1120 switch (attributes & SP_MANIFEST_ATTR_RWX) { 1121 case SP_MANIFEST_ATTR_RO: 1122 perm = TEE_MATTR_UR; 1123 break; 1124 case SP_MANIFEST_ATTR_RW: 1125 perm = TEE_MATTR_URW; 1126 break; 1127 case SP_MANIFEST_ATTR_RX: 1128 perm = TEE_MATTR_URX; 1129 break; 1130 default: 1131 EMSG("Invalid memory access permissions"); 1132 return TEE_ERROR_BAD_FORMAT; 1133 } 1134 1135 /* 1136 * The SP is a secure endpoint, security attribute can be 1137 * secure or non-secure. 1138 * The SPMC cannot allocate non-secure memory, i.e. if the base 1139 * address is missing this attribute must be secure. 1140 */ 1141 if (attributes & SP_MANIFEST_ATTR_NSEC) { 1142 if (alloc_needed) { 1143 EMSG("Invalid memory security attribute"); 1144 return TEE_ERROR_BAD_FORMAT; 1145 } 1146 is_secure = false; 1147 } 1148 1149 if (alloc_needed) { 1150 /* Base address is missing, we have to allocate */ 1151 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 1152 if (!mm) 1153 return TEE_ERROR_OUT_OF_MEMORY; 1154 1155 base_addr = tee_mm_get_smem(mm); 1156 } 1157 1158 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 1159 is_secure); 1160 if (!m) { 1161 res = TEE_ERROR_OUT_OF_MEMORY; 1162 goto err_mm_free; 1163 } 1164 1165 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 1166 if (res) { 1167 mobj_put(m); 1168 goto err_mm_free; 1169 } 1170 1171 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 1172 mobj_put(m); 1173 if (res) 1174 goto err_mm_free; 1175 1176 /* 1177 * Overwrite the memory region's base address in the fdt with 1178 * the VA. This fdt will be passed to the SP. 1179 * If the base-address field was not present in the original 1180 * fdt, this function will create it. This doesn't cause issues 1181 * since the necessary extra space has been allocated when 1182 * opening the fdt. 1183 */ 1184 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1185 1186 /* 1187 * Unmap the region if the overwrite failed since the SP won't 1188 * be able to access it without knowing the VA. 1189 */ 1190 if (res) { 1191 vm_unmap(&ctx->uctx, va, size); 1192 goto err_mm_free; 1193 } 1194 } 1195 1196 return TEE_SUCCESS; 1197 1198 err_mm_free: 1199 tee_mm_free(mm); 1200 return res; 1201 } 1202 1203 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 1204 { 1205 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 1206 uint32_t dummy_size __maybe_unused = 0; 1207 TEE_Result res = TEE_SUCCESS; 1208 size_t page_count = 0; 1209 struct fobj *f = NULL; 1210 struct mobj *m = NULL; 1211 vaddr_t log_addr = 0; 1212 size_t log_size = 0; 1213 int node = 0; 1214 1215 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 1216 if (node < 0) 1217 return TEE_SUCCESS; 1218 1219 /* Checking the existence and size of the event log properties */ 1220 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 1221 EMSG("tpm_event_log_addr not found or has invalid size"); 1222 return TEE_ERROR_BAD_FORMAT; 1223 } 1224 1225 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 1226 EMSG("tpm_event_log_size not found or has invalid size"); 1227 return TEE_ERROR_BAD_FORMAT; 1228 } 1229 1230 /* Validating event log */ 1231 res = tpm_get_event_log_size(&log_size); 1232 if (res) 1233 return res; 1234 1235 if (!log_size) { 1236 EMSG("Empty TPM event log was provided"); 1237 return TEE_ERROR_ITEM_NOT_FOUND; 1238 } 1239 1240 /* Allocating memory area for the event log to share with the SP */ 1241 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 1242 1243 f = fobj_sec_mem_alloc(page_count); 1244 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 1245 fobj_put(f); 1246 if (!m) 1247 return TEE_ERROR_OUT_OF_MEMORY; 1248 1249 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 1250 mobj_put(m); 1251 if (res) 1252 return res; 1253 1254 /* Copy event log */ 1255 res = tpm_get_event_log((void *)log_addr, &log_size); 1256 if (res) 1257 goto err_unmap; 1258 1259 /* Setting event log details in the manifest */ 1260 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 1261 if (res) 1262 goto err_unmap; 1263 1264 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 1265 if (res) 1266 goto err_unmap; 1267 1268 return TEE_SUCCESS; 1269 1270 err_unmap: 1271 vm_unmap(&ctx->uctx, log_addr, log_size); 1272 1273 return res; 1274 } 1275 1276 /* 1277 * Note: this function is called only on the primary CPU. It assumes that the 1278 * features present on the primary CPU are available on all of the secondary 1279 * CPUs as well. 1280 */ 1281 static TEE_Result handle_hw_features(void *fdt) 1282 { 1283 uint32_t val __maybe_unused = 0; 1284 TEE_Result res = TEE_SUCCESS; 1285 int node = 0; 1286 1287 /* 1288 * HW feature descriptions are optional in the SP manifest, it's not an 1289 * error if we don't find any. 1290 */ 1291 node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features"); 1292 if (node < 0) 1293 return TEE_SUCCESS; 1294 1295 /* Modify the crc32 property only if it's already present */ 1296 if (!sp_dt_get_u32(fdt, node, "crc32", &val)) { 1297 res = fdt_setprop_u32(fdt, node, "crc32", 1298 feat_crc32_implemented()); 1299 if (res) 1300 return res; 1301 } 1302 1303 return TEE_SUCCESS; 1304 } 1305 1306 static TEE_Result read_ns_interrupts_action(const void *fdt, 1307 struct sp_session *s) 1308 { 1309 TEE_Result res = TEE_ERROR_BAD_PARAMETERS; 1310 1311 res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode); 1312 1313 if (res) { 1314 EMSG("Mandatory property is missing: ns-interrupts-action"); 1315 return res; 1316 } 1317 1318 switch (s->ns_int_mode) { 1319 case SP_MANIFEST_NS_INT_QUEUED: 1320 case SP_MANIFEST_NS_INT_SIGNALED: 1321 /* OK */ 1322 break; 1323 1324 case SP_MANIFEST_NS_INT_MANAGED_EXIT: 1325 EMSG("Managed exit is not implemented"); 1326 return TEE_ERROR_NOT_IMPLEMENTED; 1327 1328 default: 1329 EMSG("Invalid ns-interrupts-action value: %"PRIu32, 1330 s->ns_int_mode); 1331 return TEE_ERROR_BAD_PARAMETERS; 1332 } 1333 1334 return TEE_SUCCESS; 1335 } 1336 1337 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt) 1338 { 1339 TEE_Result res = TEE_SUCCESS; 1340 struct sp_session *sess = NULL; 1341 TEE_UUID ffa_uuid = {}; 1342 1343 res = fdt_get_uuid(fdt, &ffa_uuid); 1344 if (res) 1345 return res; 1346 1347 res = sp_open_session(&sess, 1348 &open_sp_sessions, 1349 &ffa_uuid, bin_uuid, fdt); 1350 if (res) 1351 return res; 1352 1353 sess->fdt = fdt; 1354 res = read_manifest_endpoint_id(sess); 1355 if (res) 1356 return res; 1357 DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); 1358 1359 res = read_ns_interrupts_action(fdt, sess); 1360 if (res) 1361 return res; 1362 1363 return TEE_SUCCESS; 1364 } 1365 1366 static TEE_Result sp_first_run(struct sp_session *sess) 1367 { 1368 TEE_Result res = TEE_SUCCESS; 1369 struct thread_smc_args args = { }; 1370 struct sp_ctx *ctx = NULL; 1371 vaddr_t boot_info_va = 0; 1372 size_t boot_info_size = 0; 1373 void *fdt_copy = NULL; 1374 size_t fdt_size = 0; 1375 1376 ctx = to_sp_ctx(sess->ts_sess.ctx); 1377 ts_push_current_session(&sess->ts_sess); 1378 sess->is_initialized = false; 1379 1380 /* 1381 * Load relative memory regions must be handled before doing any other 1382 * mapping to prevent conflicts in the VA space. 1383 */ 1384 res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt); 1385 if (res) { 1386 ts_pop_current_session(); 1387 return res; 1388 } 1389 1390 res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size); 1391 if (res) 1392 goto out; 1393 1394 res = handle_fdt_dev_regions(ctx, fdt_copy); 1395 if (res) 1396 goto out; 1397 1398 res = handle_fdt_mem_regions(ctx, fdt_copy); 1399 if (res) 1400 goto out; 1401 1402 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 1403 res = handle_tpm_event_log(ctx, fdt_copy); 1404 if (res) 1405 goto out; 1406 } 1407 1408 res = handle_hw_features(fdt_copy); 1409 if (res) 1410 goto out; 1411 1412 res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va, 1413 &boot_info_size); 1414 if (res) 1415 goto out; 1416 1417 ts_pop_current_session(); 1418 1419 res = sp_enter(&args, sess); 1420 if (res) { 1421 ts_push_current_session(&sess->ts_sess); 1422 goto out; 1423 } 1424 1425 spmc_sp_msg_handler(&args, sess); 1426 1427 ts_push_current_session(&sess->ts_sess); 1428 sess->is_initialized = true; 1429 1430 out: 1431 /* Free the boot info page from the SP memory */ 1432 vm_unmap(&ctx->uctx, boot_info_va, boot_info_size); 1433 vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size); 1434 ts_pop_current_session(); 1435 1436 return res; 1437 } 1438 1439 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 1440 { 1441 TEE_Result res = TEE_SUCCESS; 1442 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 1443 1444 ctx->sp_regs.x[0] = args->a0; 1445 ctx->sp_regs.x[1] = args->a1; 1446 ctx->sp_regs.x[2] = args->a2; 1447 ctx->sp_regs.x[3] = args->a3; 1448 ctx->sp_regs.x[4] = args->a4; 1449 ctx->sp_regs.x[5] = args->a5; 1450 ctx->sp_regs.x[6] = args->a6; 1451 ctx->sp_regs.x[7] = args->a7; 1452 1453 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 1454 1455 args->a0 = ctx->sp_regs.x[0]; 1456 args->a1 = ctx->sp_regs.x[1]; 1457 args->a2 = ctx->sp_regs.x[2]; 1458 args->a3 = ctx->sp_regs.x[3]; 1459 args->a4 = ctx->sp_regs.x[4]; 1460 args->a5 = ctx->sp_regs.x[5]; 1461 args->a6 = ctx->sp_regs.x[6]; 1462 args->a7 = ctx->sp_regs.x[7]; 1463 1464 return res; 1465 } 1466 1467 /* 1468 * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive 1469 * active on NS interrupt than the callee, the callee must inherit the caller's 1470 * configuration. 1471 * Each SP's own NS action setting is stored in ns_int_mode. The effective 1472 * action will be MIN([self action], [caller's action]) which is stored in the 1473 * ns_int_mode_inherited field. 1474 */ 1475 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s, 1476 struct ts_session *caller, 1477 uint64_t *cpsr) 1478 { 1479 if (caller) { 1480 struct sp_session *caller_sp = to_sp_session(caller); 1481 1482 s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited, 1483 s->ns_int_mode); 1484 } else { 1485 s->ns_int_mode_inherited = s->ns_int_mode; 1486 } 1487 1488 if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED) 1489 *cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, 1490 ARM32_CPSR_F_SHIFT); 1491 else 1492 *cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, 1493 ARM32_CPSR_F_SHIFT); 1494 } 1495 1496 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 1497 uint32_t cmd __unused) 1498 { 1499 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 1500 TEE_Result res = TEE_SUCCESS; 1501 uint32_t exceptions = 0; 1502 struct sp_session *sp_s = to_sp_session(s); 1503 struct ts_session *sess = NULL; 1504 struct thread_ctx_regs *sp_regs = NULL; 1505 uint32_t thread_id = THREAD_ID_INVALID; 1506 struct ts_session *caller = NULL; 1507 uint32_t rpc_target_info = 0; 1508 uint32_t panicked = false; 1509 uint32_t panic_code = 0; 1510 1511 bm_timestamp(); 1512 1513 sp_regs = &ctx->sp_regs; 1514 ts_push_current_session(s); 1515 1516 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 1517 1518 /* Enable/disable foreign interrupts in CPSR/SPSR */ 1519 caller = ts_get_calling_session(); 1520 sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr); 1521 1522 /* 1523 * Store endpoint ID and thread ID in rpc_target_info. This will be used 1524 * as w1 in FFA_INTERRUPT in case of a foreign interrupt. 1525 */ 1526 rpc_target_info = thread_get_tsd()->rpc_target_info; 1527 thread_id = thread_get_id(); 1528 assert(thread_id <= UINT16_MAX); 1529 thread_get_tsd()->rpc_target_info = 1530 FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id); 1531 1532 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 1533 1534 /* Restore rpc_target_info */ 1535 thread_get_tsd()->rpc_target_info = rpc_target_info; 1536 1537 thread_unmask_exceptions(exceptions); 1538 1539 thread_user_clear_vfp(&ctx->uctx); 1540 1541 if (panicked) { 1542 DMSG("SP panicked with code %#"PRIx32, panic_code); 1543 abort_print_current_ts(); 1544 1545 sess = ts_pop_current_session(); 1546 cpu_spin_lock(&sp_s->spinlock); 1547 sp_s->state = sp_dead; 1548 cpu_spin_unlock(&sp_s->spinlock); 1549 1550 return TEE_ERROR_TARGET_DEAD; 1551 } 1552 1553 sess = ts_pop_current_session(); 1554 assert(sess == s); 1555 1556 bm_timestamp(); 1557 1558 return res; 1559 } 1560 1561 /* We currently don't support 32 bits */ 1562 #ifdef ARM64 1563 static void sp_svc_store_registers(struct thread_scall_regs *regs, 1564 struct thread_ctx_regs *sp_regs) 1565 { 1566 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 1567 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 1568 sp_regs->pc = regs->elr; 1569 sp_regs->sp = regs->sp_el0; 1570 } 1571 #endif 1572 1573 static bool sp_handle_scall(struct thread_scall_regs *regs) 1574 { 1575 struct ts_session *ts = ts_get_current_session(); 1576 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 1577 struct sp_session *s = uctx->open_session; 1578 1579 assert(s); 1580 1581 sp_svc_store_registers(regs, &uctx->sp_regs); 1582 1583 regs->x0 = 0; 1584 regs->x1 = 0; /* panic */ 1585 regs->x2 = 0; /* panic code */ 1586 1587 /* 1588 * All the registers of the SP are saved in the SP session by the SVC 1589 * handler. 1590 * We always return to S-El1 after handling the SVC. We will continue 1591 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 1592 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 1593 * saved registers to the thread_smc_args. The thread_smc_args object is 1594 * afterward used by the spmc_sp_msg_handler() to handle the 1595 * FF-A message send by the SP. 1596 */ 1597 return false; 1598 } 1599 1600 static void sp_dump_state(struct ts_ctx *ctx) 1601 { 1602 struct sp_ctx *utc = to_sp_ctx(ctx); 1603 1604 if (utc->uctx.dump_entry_func) { 1605 TEE_Result res = ldelf_dump_state(&utc->uctx); 1606 1607 if (!res || res == TEE_ERROR_TARGET_DEAD) 1608 return; 1609 } 1610 1611 user_mode_ctx_print_mappings(&utc->uctx); 1612 } 1613 1614 static const struct ts_ops sp_ops = { 1615 .enter_invoke_cmd = sp_enter_invoke_cmd, 1616 .handle_scall = sp_handle_scall, 1617 .dump_state = sp_dump_state, 1618 }; 1619 1620 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1621 { 1622 enum teecore_memtypes mtype = MEM_AREA_TA_RAM; 1623 struct sp_pkg_header *sp_pkg_hdr = NULL; 1624 struct fip_sp *sp = NULL; 1625 uint64_t sp_fdt_end = 0; 1626 size_t sp_pkg_size = 0; 1627 vaddr_t sp_pkg_va = 0; 1628 1629 /* Process the first page which contains the SP package header */ 1630 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE); 1631 if (!sp_pkg_va) { 1632 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1633 return TEE_ERROR_GENERIC; 1634 } 1635 1636 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1637 1638 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1639 EMSG("Invalid SP package magic"); 1640 return TEE_ERROR_BAD_FORMAT; 1641 } 1642 1643 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 && 1644 sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) { 1645 EMSG("Invalid SP header version"); 1646 return TEE_ERROR_BAD_FORMAT; 1647 } 1648 1649 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1650 &sp_pkg_size)) { 1651 EMSG("Invalid SP package size"); 1652 return TEE_ERROR_BAD_FORMAT; 1653 } 1654 1655 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1656 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1657 EMSG("Invalid SP manifest size"); 1658 return TEE_ERROR_BAD_FORMAT; 1659 } 1660 1661 /* Process the whole SP package now that the size is known */ 1662 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size); 1663 if (!sp_pkg_va) { 1664 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1665 return TEE_ERROR_GENERIC; 1666 } 1667 1668 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1669 1670 sp = calloc(1, sizeof(struct fip_sp)); 1671 if (!sp) 1672 return TEE_ERROR_OUT_OF_MEMORY; 1673 1674 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1675 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1676 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1677 sp->sp_img.image.flags = 0; 1678 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1679 1680 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1681 1682 return TEE_SUCCESS; 1683 } 1684 1685 static TEE_Result fip_sp_init_all(void) 1686 { 1687 TEE_Result res = TEE_SUCCESS; 1688 uint64_t sp_pkg_addr = 0; 1689 const void *fdt = NULL; 1690 TEE_UUID sp_uuid = { }; 1691 int sp_pkgs_node = 0; 1692 int subnode = 0; 1693 int root = 0; 1694 1695 fdt = get_tos_fw_config_dt(); 1696 if (!fdt) { 1697 EMSG("No SPMC manifest found"); 1698 return TEE_ERROR_GENERIC; 1699 } 1700 1701 root = fdt_path_offset(fdt, "/"); 1702 if (root < 0) 1703 return TEE_ERROR_BAD_FORMAT; 1704 1705 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1706 return TEE_ERROR_BAD_FORMAT; 1707 1708 /* SP packages are optional, it's not an error if we don't find any */ 1709 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1710 if (sp_pkgs_node < 0) 1711 return TEE_SUCCESS; 1712 1713 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1714 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1715 if (res) { 1716 EMSG("Invalid FIP SP load address"); 1717 return res; 1718 } 1719 1720 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1721 if (res) { 1722 EMSG("Invalid FIP SP uuid"); 1723 return res; 1724 } 1725 1726 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1727 if (res) { 1728 EMSG("Invalid FIP SP package"); 1729 return res; 1730 } 1731 } 1732 1733 return TEE_SUCCESS; 1734 } 1735 1736 static void fip_sp_deinit_all(void) 1737 { 1738 while (!STAILQ_EMPTY(&fip_sp_list)) { 1739 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1740 1741 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1742 free(sp); 1743 } 1744 } 1745 1746 static TEE_Result sp_init_all(void) 1747 { 1748 TEE_Result res = TEE_SUCCESS; 1749 const struct sp_image *sp = NULL; 1750 const struct fip_sp *fip_sp = NULL; 1751 char __maybe_unused msg[60] = { '\0', }; 1752 struct sp_session *s = NULL; 1753 1754 for_each_secure_partition(sp) { 1755 if (sp->image.uncompressed_size) 1756 snprintf(msg, sizeof(msg), 1757 " (compressed, uncompressed %u)", 1758 sp->image.uncompressed_size); 1759 else 1760 msg[0] = '\0'; 1761 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1762 sp->image.size, msg); 1763 1764 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1765 1766 if (res != TEE_SUCCESS) { 1767 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1768 &sp->image.uuid, res); 1769 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1770 panic(); 1771 } 1772 } 1773 1774 res = fip_sp_init_all(); 1775 if (res) 1776 panic("Failed initializing FIP SPs"); 1777 1778 for_each_fip_sp(fip_sp) { 1779 sp = &fip_sp->sp_img; 1780 1781 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1782 sp->image.size); 1783 1784 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1785 1786 if (res != TEE_SUCCESS) { 1787 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1788 &sp->image.uuid, res); 1789 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1790 panic(); 1791 } 1792 } 1793 1794 /* 1795 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP 1796 * loader, so the original images (loaded by BL2) are not needed anymore 1797 */ 1798 fip_sp_deinit_all(); 1799 1800 /* Continue the initialization and run the SP */ 1801 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1802 res = sp_first_run(s); 1803 if (res != TEE_SUCCESS) { 1804 EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, 1805 s->endpoint_id, res); 1806 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1807 panic(); 1808 } 1809 } 1810 1811 return TEE_SUCCESS; 1812 } 1813 1814 boot_final(sp_init_all); 1815 1816 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1817 struct ts_store_handle **h) 1818 { 1819 return emb_ts_open(uuid, h, find_secure_partition); 1820 } 1821 1822 REGISTER_SP_STORE(2) = { 1823 .description = "SP store", 1824 .open = secure_partition_open, 1825 .get_size = emb_ts_get_size, 1826 .get_tag = emb_ts_get_tag, 1827 .read = emb_ts_read, 1828 .close = emb_ts_close, 1829 }; 1830