1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2022, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/boot.h> 9 #include <kernel/embedded_ts.h> 10 #include <kernel/ldelf_loader.h> 11 #include <kernel/secure_partition.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/spmc_sp_handler.h> 14 #include <kernel/thread_private.h> 15 #include <kernel/thread_spmc.h> 16 #include <kernel/tpm.h> 17 #include <kernel/ts_store.h> 18 #include <ldelf.h> 19 #include <libfdt.h> 20 #include <mm/core_mmu.h> 21 #include <mm/fobj.h> 22 #include <mm/mobj.h> 23 #include <mm/vm.h> 24 #include <optee_ffa.h> 25 #include <stdio.h> 26 #include <string.h> 27 #include <tee_api_types.h> 28 #include <tee/uuid.h> 29 #include <trace.h> 30 #include <types_ext.h> 31 #include <utee_defines.h> 32 #include <util.h> 33 #include <zlib.h> 34 35 #define SP_MANIFEST_ATTR_READ BIT(0) 36 #define SP_MANIFEST_ATTR_WRITE BIT(1) 37 #define SP_MANIFEST_ATTR_EXEC BIT(2) 38 #define SP_MANIFEST_ATTR_NSEC BIT(3) 39 40 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 41 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 42 SP_MANIFEST_ATTR_WRITE) 43 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 44 SP_MANIFEST_ATTR_EXEC) 45 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 46 SP_MANIFEST_ATTR_WRITE | \ 47 SP_MANIFEST_ATTR_EXEC) 48 49 #define SP_PKG_HEADER_MAGIC (0x474b5053) 50 #define SP_PKG_HEADER_VERSION (0x1) 51 52 struct sp_pkg_header { 53 uint32_t magic; 54 uint32_t version; 55 uint32_t pm_offset; 56 uint32_t pm_size; 57 uint32_t img_offset; 58 uint32_t img_size; 59 }; 60 61 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 62 63 const struct ts_ops sp_ops; 64 65 /* List that holds all of the loaded SP's */ 66 static struct sp_sessions_head open_sp_sessions = 67 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 68 69 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 70 { 71 const struct sp_image *sp = NULL; 72 const struct fip_sp *fip_sp = NULL; 73 74 for_each_secure_partition(sp) { 75 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 76 return &sp->image; 77 } 78 79 for_each_fip_sp(fip_sp) { 80 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 81 return &fip_sp->sp_img.image; 82 } 83 84 return NULL; 85 } 86 87 bool is_sp_ctx(struct ts_ctx *ctx) 88 { 89 return ctx && (ctx->ops == &sp_ops); 90 } 91 92 static void set_sp_ctx_ops(struct ts_ctx *ctx) 93 { 94 ctx->ops = &sp_ops; 95 } 96 97 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id) 98 { 99 struct sp_session *s = NULL; 100 101 TAILQ_FOREACH(s, &open_sp_sessions, link) { 102 if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) { 103 if (s->state == sp_dead) 104 return TEE_ERROR_TARGET_DEAD; 105 106 *session_id = s->endpoint_id; 107 return TEE_SUCCESS; 108 } 109 } 110 111 return TEE_ERROR_ITEM_NOT_FOUND; 112 } 113 114 struct sp_session *sp_get_session(uint32_t session_id) 115 { 116 struct sp_session *s = NULL; 117 118 TAILQ_FOREACH(s, &open_sp_sessions, link) { 119 if (s->endpoint_id == session_id) 120 return s; 121 } 122 123 return NULL; 124 } 125 126 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi, 127 size_t *elem_count) 128 { 129 size_t in_count = *elem_count; 130 struct sp_session *s = NULL; 131 size_t count = 0; 132 133 TAILQ_FOREACH(s, &open_sp_sessions, link) { 134 if (s->state == sp_dead) 135 continue; 136 if (count < in_count) { 137 spmc_fill_partition_entry(fpi, s->endpoint_id, 1); 138 fpi++; 139 } 140 count++; 141 } 142 143 *elem_count = count; 144 if (count > in_count) 145 return TEE_ERROR_SHORT_BUFFER; 146 147 return TEE_SUCCESS; 148 } 149 150 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 151 struct user_mode_ctx *uctx) 152 { 153 /* 154 * Check that we have access to the region if it is supposed to be 155 * mapped to the current context. 156 */ 157 if (uctx) { 158 struct vm_region *region = NULL; 159 160 /* Make sure that each mobj belongs to the SP */ 161 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 162 if (region->mobj == mem->mobj) 163 break; 164 } 165 166 if (!region) 167 return false; 168 } 169 170 /* Check that it is not shared with another SP */ 171 return !sp_mem_is_shared(mem); 172 } 173 174 static uint16_t new_session_id(struct sp_sessions_head *open_sessions) 175 { 176 struct sp_session *last = NULL; 177 uint16_t id = SPMC_ENDPOINT_ID + 1; 178 179 last = TAILQ_LAST(open_sessions, sp_sessions_head); 180 if (last) 181 id = last->endpoint_id + 1; 182 183 assert(id > SPMC_ENDPOINT_ID); 184 return id; 185 } 186 187 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s) 188 { 189 TEE_Result res = TEE_SUCCESS; 190 struct sp_ctx *spc = NULL; 191 192 /* Register context */ 193 spc = calloc(1, sizeof(struct sp_ctx)); 194 if (!spc) 195 return TEE_ERROR_OUT_OF_MEMORY; 196 197 spc->open_session = s; 198 s->ts_sess.ctx = &spc->ts_ctx; 199 spc->ts_ctx.uuid = *uuid; 200 201 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 202 if (res) 203 goto err; 204 205 set_sp_ctx_ops(&spc->ts_ctx); 206 207 return TEE_SUCCESS; 208 209 err: 210 free(spc); 211 return res; 212 } 213 214 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 215 const TEE_UUID *uuid, 216 struct sp_session **sess) 217 { 218 TEE_Result res = TEE_SUCCESS; 219 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 220 221 if (!s) 222 return TEE_ERROR_OUT_OF_MEMORY; 223 224 s->endpoint_id = new_session_id(open_sessions); 225 if (!s->endpoint_id) { 226 res = TEE_ERROR_OVERFLOW; 227 goto err; 228 } 229 230 DMSG("Loading Secure Partition %pUl", (void *)uuid); 231 res = sp_create_ctx(uuid, s); 232 if (res) 233 goto err; 234 235 TAILQ_INSERT_TAIL(open_sessions, s, link); 236 *sess = s; 237 return TEE_SUCCESS; 238 239 err: 240 free(s); 241 return res; 242 } 243 244 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 245 { 246 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 247 248 memset(sp_regs, 0, sizeof(*sp_regs)); 249 sp_regs->sp = ctx->uctx.stack_ptr; 250 sp_regs->pc = ctx->uctx.entry_func; 251 252 return TEE_SUCCESS; 253 } 254 255 TEE_Result sp_map_shared(struct sp_session *s, 256 struct sp_mem_receiver *receiver, 257 struct sp_mem *smem, 258 uint64_t *va) 259 { 260 TEE_Result res = TEE_SUCCESS; 261 struct sp_ctx *ctx = NULL; 262 uint32_t perm = TEE_MATTR_UR; 263 struct sp_mem_map_region *reg = NULL; 264 265 ctx = to_sp_ctx(s->ts_sess.ctx); 266 267 /* Get the permission */ 268 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 269 perm |= TEE_MATTR_UX; 270 271 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 272 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 273 return TEE_ERROR_ACCESS_CONFLICT; 274 275 perm |= TEE_MATTR_UW; 276 } 277 /* 278 * Currently we don't support passing a va. We can't guarantee that the 279 * full region will be mapped in a contiguous region. A smem->region can 280 * have multiple mobj for one share. Currently there doesn't seem to be 281 * an option to guarantee that these will be mapped in a contiguous va 282 * space. 283 */ 284 if (*va) 285 return TEE_ERROR_NOT_SUPPORTED; 286 287 SLIST_FOREACH(reg, &smem->regions, link) { 288 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 289 perm, 0, reg->mobj, reg->page_offset); 290 291 if (res != TEE_SUCCESS) { 292 EMSG("Failed to map memory region %#"PRIx32, res); 293 return res; 294 } 295 } 296 return TEE_SUCCESS; 297 } 298 299 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 300 { 301 TEE_Result res = TEE_SUCCESS; 302 vaddr_t vaddr = 0; 303 size_t len = 0; 304 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 305 struct sp_mem_map_region *reg = NULL; 306 307 SLIST_FOREACH(reg, &smem->regions, link) { 308 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 309 reg->mobj); 310 len = reg->page_count * SMALL_PAGE_SIZE; 311 312 res = vm_unmap(&ctx->uctx, vaddr, len); 313 if (res != TEE_SUCCESS) 314 return res; 315 } 316 317 return TEE_SUCCESS; 318 } 319 320 static TEE_Result sp_open_session(struct sp_session **sess, 321 struct sp_sessions_head *open_sessions, 322 const TEE_UUID *uuid) 323 { 324 TEE_Result res = TEE_SUCCESS; 325 struct sp_session *s = NULL; 326 struct sp_ctx *ctx = NULL; 327 328 if (!find_secure_partition(uuid)) 329 return TEE_ERROR_ITEM_NOT_FOUND; 330 331 res = sp_create_session(open_sessions, uuid, &s); 332 if (res != TEE_SUCCESS) { 333 DMSG("sp_create_session failed %#"PRIx32, res); 334 return res; 335 } 336 337 ctx = to_sp_ctx(s->ts_sess.ctx); 338 assert(ctx); 339 if (!ctx) 340 return TEE_ERROR_TARGET_DEAD; 341 *sess = s; 342 343 ts_push_current_session(&s->ts_sess); 344 /* Load the SP using ldelf. */ 345 ldelf_load_ldelf(&ctx->uctx); 346 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 347 348 if (res != TEE_SUCCESS) { 349 EMSG("Failed. loading SP using ldelf %#"PRIx32, res); 350 ts_pop_current_session(); 351 return TEE_ERROR_TARGET_DEAD; 352 } 353 354 /* Make the SP ready for its first run */ 355 s->state = sp_idle; 356 s->caller_id = 0; 357 sp_init_set_registers(ctx); 358 ts_pop_current_session(); 359 360 return TEE_SUCCESS; 361 } 362 363 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 364 uint64_t *value) 365 { 366 const fdt64_t *p = NULL; 367 int len = 0; 368 369 p = fdt_getprop(fdt, node, property, &len); 370 if (!p || len != sizeof(*p)) 371 return TEE_ERROR_ITEM_NOT_FOUND; 372 373 *value = fdt64_ld(p); 374 375 return TEE_SUCCESS; 376 } 377 378 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 379 uint32_t *value) 380 { 381 const fdt32_t *p = NULL; 382 int len = 0; 383 384 p = fdt_getprop(fdt, node, property, &len); 385 if (!p || len != sizeof(*p)) 386 return TEE_ERROR_ITEM_NOT_FOUND; 387 388 *value = fdt32_to_cpu(*p); 389 390 return TEE_SUCCESS; 391 } 392 393 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 394 const char *property, TEE_UUID *uuid) 395 { 396 uint32_t uuid_array[4] = { 0 }; 397 const fdt32_t *p = NULL; 398 int len = 0; 399 int i = 0; 400 401 p = fdt_getprop(fdt, node, property, &len); 402 if (!p || len != sizeof(TEE_UUID)) 403 return TEE_ERROR_ITEM_NOT_FOUND; 404 405 for (i = 0; i < 4; i++) 406 uuid_array[i] = fdt32_to_cpu(p[i]); 407 408 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 409 410 return TEE_SUCCESS; 411 } 412 413 static TEE_Result check_fdt(const void * const fdt, const TEE_UUID *uuid) 414 { 415 const struct fdt_property *description = NULL; 416 int description_name_len = 0; 417 TEE_UUID fdt_uuid = { }; 418 419 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 420 EMSG("Failed loading SP, manifest not found"); 421 return TEE_ERROR_BAD_PARAMETERS; 422 } 423 424 description = fdt_get_property(fdt, 0, "description", 425 &description_name_len); 426 if (description) 427 DMSG("Loading SP: %s", description->data); 428 429 if (sp_dt_get_uuid(fdt, 0, "uuid", &fdt_uuid)) { 430 EMSG("Missing or invalid UUID in SP manifest"); 431 return TEE_ERROR_BAD_FORMAT; 432 } 433 434 if (memcmp(uuid, &fdt_uuid, sizeof(fdt_uuid))) { 435 EMSG("Failed loading SP, UUID mismatch"); 436 return TEE_ERROR_BAD_FORMAT; 437 } 438 439 return TEE_SUCCESS; 440 } 441 442 /* 443 * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy 444 * the fdt into the allocated page(s) and return a pointer to the new location 445 * of the fdt. This pointer can be used to update data inside the fdt. 446 */ 447 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args, 448 const void * const input_fdt, vaddr_t *va, 449 size_t *num_pgs, void **fdt_copy) 450 { 451 struct sp_ffa_init_info *info = NULL; 452 int nvp_count = 1; 453 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 454 size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count; 455 size_t info_size = sizeof(*info) + nvp_size; 456 size_t fdt_size = total_size - info_size; 457 TEE_Result res = TEE_SUCCESS; 458 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 459 struct fobj *f = NULL; 460 struct mobj *m = NULL; 461 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 462 463 *num_pgs = total_size / SMALL_PAGE_SIZE; 464 465 f = fobj_sec_mem_alloc(*num_pgs); 466 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 467 468 fobj_put(f); 469 if (!m) 470 return TEE_ERROR_OUT_OF_MEMORY; 471 472 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 473 mobj_put(m); 474 if (res) 475 return res; 476 477 info = (struct sp_ffa_init_info *)*va; 478 479 /* magic field is 4 bytes, we don't copy /0 byte. */ 480 memcpy(&info->magic, "FF-A", 4); 481 info->count = nvp_count; 482 args->a0 = (vaddr_t)info; 483 484 /* 485 * Store the fdt after the boot_info and store the pointer in the 486 * first element. 487 */ 488 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 489 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 490 info->nvp[0].value = *va + info_size; 491 info->nvp[0].size = fdt_size; 492 *fdt_copy = (void *)info->nvp[0].value; 493 494 if (fdt_open_into(input_fdt, *fdt_copy, fdt_size)) 495 return TEE_ERROR_GENERIC; 496 497 return TEE_SUCCESS; 498 } 499 500 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 501 { 502 int node = 0; 503 int subnode = 0; 504 TEE_Result res = TEE_SUCCESS; 505 const char *dt_device_match_table = { 506 "arm,ffa-manifest-device-regions", 507 }; 508 509 /* 510 * Device regions are optional in the SP manifest, it's not an error if 511 * we don't find any 512 */ 513 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 514 if (node < 0) 515 return TEE_SUCCESS; 516 517 fdt_for_each_subnode(subnode, fdt, node) { 518 uint64_t base_addr = 0; 519 uint32_t pages_cnt = 0; 520 uint32_t attributes = 0; 521 struct mobj *m = NULL; 522 bool is_secure = true; 523 uint32_t perm = 0; 524 vaddr_t va = 0; 525 unsigned int idx = 0; 526 527 /* 528 * Physical base address of a device MMIO region. 529 * Currently only physically contiguous region is supported. 530 */ 531 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 532 EMSG("Mandatory field is missing: base-address"); 533 return TEE_ERROR_BAD_FORMAT; 534 } 535 536 /* Total size of MMIO region as count of 4K pages */ 537 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 538 EMSG("Mandatory field is missing: pages-count"); 539 return TEE_ERROR_BAD_FORMAT; 540 } 541 542 /* Data access, instruction access and security attributes */ 543 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 544 EMSG("Mandatory field is missing: attributes"); 545 return TEE_ERROR_BAD_FORMAT; 546 } 547 548 /* Check instruction and data access permissions */ 549 switch (attributes & SP_MANIFEST_ATTR_RWX) { 550 case SP_MANIFEST_ATTR_RO: 551 perm = TEE_MATTR_UR; 552 break; 553 case SP_MANIFEST_ATTR_RW: 554 perm = TEE_MATTR_URW; 555 break; 556 default: 557 EMSG("Invalid memory access permissions"); 558 return TEE_ERROR_BAD_FORMAT; 559 } 560 561 /* 562 * The SP is a secure endpoint, security attribute can be 563 * secure or non-secure 564 */ 565 if (attributes & SP_MANIFEST_ATTR_NSEC) 566 is_secure = false; 567 568 /* Memory attributes must be Device-nGnRnE */ 569 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 570 is_secure); 571 if (!m) 572 return TEE_ERROR_OUT_OF_MEMORY; 573 574 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 575 if (res) { 576 mobj_put(m); 577 return res; 578 } 579 580 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 581 perm, 0, m, 0); 582 mobj_put(m); 583 if (res) 584 return res; 585 586 /* 587 * Overwrite the device region's PA in the fdt with the VA. This 588 * fdt will be passed to the SP. 589 */ 590 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 591 592 /* 593 * Unmap the region if the overwrite failed since the SP won't 594 * be able to access it without knowing the VA. 595 */ 596 if (res) { 597 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 598 return res; 599 } 600 } 601 602 return TEE_SUCCESS; 603 } 604 605 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 606 { 607 int node = 0; 608 int subnode = 0; 609 tee_mm_entry_t *mm = NULL; 610 TEE_Result res = TEE_SUCCESS; 611 612 /* 613 * Memory regions are optional in the SP manifest, it's not an error if 614 * we don't find any. 615 */ 616 node = fdt_node_offset_by_compatible(fdt, 0, 617 "arm,ffa-manifest-memory-regions"); 618 if (node < 0) 619 return TEE_SUCCESS; 620 621 fdt_for_each_subnode(subnode, fdt, node) { 622 bool alloc_needed = false; 623 uint32_t attributes = 0; 624 uint64_t base_addr = 0; 625 uint32_t pages_cnt = 0; 626 bool is_secure = true; 627 struct mobj *m = NULL; 628 unsigned int idx = 0; 629 uint32_t perm = 0; 630 size_t size = 0; 631 vaddr_t va = 0; 632 633 mm = NULL; 634 635 /* 636 * Base address of a memory region. 637 * If not present, we have to allocate the specified memory. 638 * If present, this field could specify a PA or VA. Currently 639 * only a PA is supported. 640 */ 641 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 642 alloc_needed = true; 643 644 /* Size of memory region as count of 4K pages */ 645 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 646 EMSG("Mandatory field is missing: pages-count"); 647 return TEE_ERROR_BAD_FORMAT; 648 } 649 650 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 651 return TEE_ERROR_OVERFLOW; 652 653 /* 654 * Memory region attributes: 655 * - Instruction/data access permissions 656 * - Cacheability/shareability attributes 657 * - Security attributes 658 * 659 * Cacheability/shareability attributes can be ignored for now. 660 * OP-TEE only supports a single type for normal cached memory 661 * and currently there is no use case that would require to 662 * change this. 663 */ 664 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 665 EMSG("Mandatory field is missing: attributes"); 666 return TEE_ERROR_BAD_FORMAT; 667 } 668 669 /* Check instruction and data access permissions */ 670 switch (attributes & SP_MANIFEST_ATTR_RWX) { 671 case SP_MANIFEST_ATTR_RO: 672 perm = TEE_MATTR_UR; 673 break; 674 case SP_MANIFEST_ATTR_RW: 675 perm = TEE_MATTR_URW; 676 break; 677 case SP_MANIFEST_ATTR_RX: 678 perm = TEE_MATTR_URX; 679 break; 680 default: 681 EMSG("Invalid memory access permissions"); 682 return TEE_ERROR_BAD_FORMAT; 683 } 684 685 /* 686 * The SP is a secure endpoint, security attribute can be 687 * secure or non-secure. 688 * The SPMC cannot allocate non-secure memory, i.e. if the base 689 * address is missing this attribute must be secure. 690 */ 691 if (attributes & SP_MANIFEST_ATTR_NSEC) { 692 if (alloc_needed) { 693 EMSG("Invalid memory security attribute"); 694 return TEE_ERROR_BAD_FORMAT; 695 } 696 is_secure = false; 697 } 698 699 if (alloc_needed) { 700 /* Base address is missing, we have to allocate */ 701 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 702 if (!mm) 703 return TEE_ERROR_OUT_OF_MEMORY; 704 705 base_addr = tee_mm_get_smem(mm); 706 } 707 708 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 709 is_secure); 710 if (!m) { 711 res = TEE_ERROR_OUT_OF_MEMORY; 712 goto err_mm_free; 713 } 714 715 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 716 if (res) { 717 mobj_put(m); 718 goto err_mm_free; 719 } 720 721 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 722 mobj_put(m); 723 if (res) 724 goto err_mm_free; 725 726 /* 727 * Overwrite the memory region's base address in the fdt with 728 * the VA. This fdt will be passed to the SP. 729 * If the base-address field was not present in the original 730 * fdt, this function will create it. This doesn't cause issues 731 * since the necessary extra space has been allocated when 732 * opening the fdt. 733 */ 734 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 735 736 /* 737 * Unmap the region if the overwrite failed since the SP won't 738 * be able to access it without knowing the VA. 739 */ 740 if (res) { 741 vm_unmap(&ctx->uctx, va, size); 742 goto err_mm_free; 743 } 744 } 745 746 return TEE_SUCCESS; 747 748 err_mm_free: 749 tee_mm_free(mm); 750 return res; 751 } 752 753 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 754 { 755 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 756 uint32_t dummy_size __maybe_unused = 0; 757 TEE_Result res = TEE_SUCCESS; 758 size_t page_count = 0; 759 struct fobj *f = NULL; 760 struct mobj *m = NULL; 761 vaddr_t log_addr = 0; 762 size_t log_size = 0; 763 int node = 0; 764 765 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 766 if (node < 0) 767 return TEE_SUCCESS; 768 769 /* Checking the existence and size of the event log properties */ 770 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 771 EMSG("tpm_event_log_addr not found or has invalid size"); 772 return TEE_ERROR_BAD_FORMAT; 773 } 774 775 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 776 EMSG("tpm_event_log_size not found or has invalid size"); 777 return TEE_ERROR_BAD_FORMAT; 778 } 779 780 /* Validating event log */ 781 res = tpm_get_event_log_size(&log_size); 782 if (res) 783 return res; 784 785 if (!log_size) { 786 EMSG("Empty TPM event log was provided"); 787 return TEE_ERROR_ITEM_NOT_FOUND; 788 } 789 790 /* Allocating memory area for the event log to share with the SP */ 791 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 792 793 f = fobj_sec_mem_alloc(page_count); 794 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 795 fobj_put(f); 796 if (!m) 797 return TEE_ERROR_OUT_OF_MEMORY; 798 799 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 800 mobj_put(m); 801 if (res) 802 return res; 803 804 /* Copy event log */ 805 res = tpm_get_event_log((void *)log_addr, &log_size); 806 if (res) 807 goto err_unmap; 808 809 /* Setting event log details in the manifest */ 810 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 811 if (res) 812 goto err_unmap; 813 814 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 815 if (res) 816 goto err_unmap; 817 818 return TEE_SUCCESS; 819 820 err_unmap: 821 vm_unmap(&ctx->uctx, log_addr, log_size); 822 823 return res; 824 } 825 826 static TEE_Result sp_init_uuid(const TEE_UUID *uuid, const void * const fdt) 827 { 828 TEE_Result res = TEE_SUCCESS; 829 struct sp_session *sess = NULL; 830 struct thread_smc_args args = { }; 831 vaddr_t va = 0; 832 size_t num_pgs = 0; 833 struct sp_ctx *ctx = NULL; 834 void *fdt_copy = NULL; 835 836 res = sp_open_session(&sess, 837 &open_sp_sessions, 838 uuid); 839 if (res) 840 return res; 841 842 res = check_fdt(fdt, uuid); 843 if (res) 844 return res; 845 846 ctx = to_sp_ctx(sess->ts_sess.ctx); 847 ts_push_current_session(&sess->ts_sess); 848 849 res = sp_init_info(ctx, &args, fdt, &va, &num_pgs, &fdt_copy); 850 if (res) 851 goto out; 852 853 res = handle_fdt_dev_regions(ctx, fdt_copy); 854 if (res) 855 goto out; 856 857 res = handle_fdt_mem_regions(ctx, fdt_copy); 858 if (res) 859 goto out; 860 861 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 862 res = handle_tpm_event_log(ctx, fdt_copy); 863 if (res) 864 goto out; 865 } 866 867 ts_pop_current_session(); 868 869 if (sp_enter(&args, sess)) { 870 vm_unmap(&ctx->uctx, va, num_pgs); 871 return FFA_ABORTED; 872 } 873 874 spmc_sp_msg_handler(&args, sess); 875 876 ts_push_current_session(&sess->ts_sess); 877 out: 878 /* Free the boot info page from the SP memory */ 879 vm_unmap(&ctx->uctx, va, num_pgs); 880 ts_pop_current_session(); 881 882 return res; 883 } 884 885 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 886 { 887 TEE_Result res = FFA_OK; 888 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 889 890 ctx->sp_regs.x[0] = args->a0; 891 ctx->sp_regs.x[1] = args->a1; 892 ctx->sp_regs.x[2] = args->a2; 893 ctx->sp_regs.x[3] = args->a3; 894 ctx->sp_regs.x[4] = args->a4; 895 ctx->sp_regs.x[5] = args->a5; 896 ctx->sp_regs.x[6] = args->a6; 897 ctx->sp_regs.x[7] = args->a7; 898 899 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 900 901 args->a0 = ctx->sp_regs.x[0]; 902 args->a1 = ctx->sp_regs.x[1]; 903 args->a2 = ctx->sp_regs.x[2]; 904 args->a3 = ctx->sp_regs.x[3]; 905 args->a4 = ctx->sp_regs.x[4]; 906 args->a5 = ctx->sp_regs.x[5]; 907 args->a6 = ctx->sp_regs.x[6]; 908 args->a7 = ctx->sp_regs.x[7]; 909 910 return res; 911 } 912 913 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 914 uint32_t cmd __unused) 915 { 916 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 917 TEE_Result res = TEE_SUCCESS; 918 uint32_t exceptions = 0; 919 uint64_t cpsr = 0; 920 struct sp_session *sp_s = to_sp_session(s); 921 struct ts_session *sess = NULL; 922 struct thread_ctx_regs *sp_regs = NULL; 923 uint32_t panicked = false; 924 uint32_t panic_code = 0; 925 926 bm_timestamp(); 927 928 sp_regs = &ctx->sp_regs; 929 ts_push_current_session(s); 930 931 cpsr = sp_regs->cpsr; 932 sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 933 934 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 935 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 936 sp_regs->cpsr = cpsr; 937 thread_unmask_exceptions(exceptions); 938 939 thread_user_clear_vfp(&ctx->uctx); 940 941 if (panicked) { 942 DMSG("SP panicked with code %#"PRIx32, panic_code); 943 abort_print_current_ts(); 944 945 sess = ts_pop_current_session(); 946 cpu_spin_lock(&sp_s->spinlock); 947 sp_s->state = sp_dead; 948 cpu_spin_unlock(&sp_s->spinlock); 949 950 return TEE_ERROR_TARGET_DEAD; 951 } 952 953 sess = ts_pop_current_session(); 954 assert(sess == s); 955 956 bm_timestamp(); 957 958 return res; 959 } 960 961 /* We currently don't support 32 bits */ 962 #ifdef ARM64 963 static void sp_svc_store_registers(struct thread_svc_regs *regs, 964 struct thread_ctx_regs *sp_regs) 965 { 966 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 967 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 968 sp_regs->pc = regs->elr; 969 sp_regs->sp = regs->sp_el0; 970 } 971 #endif 972 973 static bool sp_handle_svc(struct thread_svc_regs *regs) 974 { 975 struct ts_session *ts = ts_get_current_session(); 976 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 977 struct sp_session *s = uctx->open_session; 978 979 assert(s); 980 981 sp_svc_store_registers(regs, &uctx->sp_regs); 982 983 regs->x0 = 0; 984 regs->x1 = 0; /* panic */ 985 regs->x2 = 0; /* panic code */ 986 987 /* 988 * All the registers of the SP are saved in the SP session by the SVC 989 * handler. 990 * We always return to S-El1 after handling the SVC. We will continue 991 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 992 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 993 * saved registers to the thread_smc_args. The thread_smc_args object is 994 * afterward used by the spmc_sp_msg_handler() to handle the 995 * FF-A message send by the SP. 996 */ 997 return false; 998 } 999 1000 static void sp_dump_state(struct ts_ctx *ctx) 1001 { 1002 struct sp_ctx *utc = to_sp_ctx(ctx); 1003 1004 if (utc->uctx.dump_entry_func) { 1005 TEE_Result res = ldelf_dump_state(&utc->uctx); 1006 1007 if (!res || res == TEE_ERROR_TARGET_DEAD) 1008 return; 1009 } 1010 1011 user_mode_ctx_print_mappings(&utc->uctx); 1012 } 1013 1014 /* 1015 * Note: this variable is weak just to ease breaking its dependency chain 1016 * when added to the unpaged area. 1017 */ 1018 const struct ts_ops sp_ops __weak __relrodata_unpaged("sp_ops") = { 1019 .enter_invoke_cmd = sp_enter_invoke_cmd, 1020 .handle_svc = sp_handle_svc, 1021 .dump_state = sp_dump_state, 1022 }; 1023 1024 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1025 { 1026 enum teecore_memtypes mtype = MEM_AREA_RAM_SEC; 1027 struct sp_pkg_header *sp_pkg_hdr = NULL; 1028 TEE_Result res = TEE_SUCCESS; 1029 tee_mm_entry_t *mm = NULL; 1030 struct fip_sp *sp = NULL; 1031 uint64_t sp_fdt_end = 0; 1032 size_t sp_pkg_size = 0; 1033 vaddr_t sp_pkg_va = 0; 1034 size_t num_pages = 0; 1035 1036 /* Map only the first page of the SP package to parse the header */ 1037 if (!tee_pbuf_is_sec(sp_pkg_pa, SMALL_PAGE_SIZE)) 1038 return TEE_ERROR_GENERIC; 1039 1040 mm = tee_mm_alloc(&tee_mm_sec_ddr, SMALL_PAGE_SIZE); 1041 if (!mm) 1042 return TEE_ERROR_OUT_OF_MEMORY; 1043 1044 sp_pkg_va = tee_mm_get_smem(mm); 1045 1046 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, 1, mtype)) { 1047 res = TEE_ERROR_GENERIC; 1048 goto err; 1049 } 1050 1051 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1052 1053 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1054 EMSG("Invalid SP package magic"); 1055 res = TEE_ERROR_BAD_FORMAT; 1056 goto err_unmap; 1057 } 1058 1059 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION) { 1060 EMSG("Invalid SP header version"); 1061 res = TEE_ERROR_BAD_FORMAT; 1062 goto err_unmap; 1063 } 1064 1065 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1066 &sp_pkg_size)) { 1067 EMSG("Invalid SP package size"); 1068 res = TEE_ERROR_BAD_FORMAT; 1069 goto err_unmap; 1070 } 1071 1072 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1073 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1074 EMSG("Invalid SP manifest size"); 1075 res = TEE_ERROR_BAD_FORMAT; 1076 goto err_unmap; 1077 } 1078 1079 core_mmu_unmap_pages(sp_pkg_va, 1); 1080 tee_mm_free(mm); 1081 1082 /* Map the whole package */ 1083 if (!tee_pbuf_is_sec(sp_pkg_pa, sp_pkg_size)) 1084 return TEE_ERROR_GENERIC; 1085 1086 num_pages = ROUNDUP_DIV(sp_pkg_size, SMALL_PAGE_SIZE); 1087 1088 mm = tee_mm_alloc(&tee_mm_sec_ddr, sp_pkg_size); 1089 if (!mm) 1090 return TEE_ERROR_OUT_OF_MEMORY; 1091 1092 sp_pkg_va = tee_mm_get_smem(mm); 1093 1094 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, num_pages, 1095 mtype)) { 1096 res = TEE_ERROR_GENERIC; 1097 goto err; 1098 } 1099 1100 sp_pkg_hdr = (struct sp_pkg_header *)tee_mm_get_smem(mm); 1101 1102 sp = calloc(1, sizeof(struct fip_sp)); 1103 if (!sp) { 1104 res = TEE_ERROR_OUT_OF_MEMORY; 1105 goto err_unmap; 1106 } 1107 1108 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1109 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1110 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1111 sp->sp_img.image.flags = 0; 1112 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1113 sp->mm = mm; 1114 1115 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1116 1117 return TEE_SUCCESS; 1118 1119 err_unmap: 1120 core_mmu_unmap_pages(tee_mm_get_smem(mm), 1121 ROUNDUP_DIV(tee_mm_get_bytes(mm), 1122 SMALL_PAGE_SIZE)); 1123 err: 1124 tee_mm_free(mm); 1125 1126 return res; 1127 } 1128 1129 static TEE_Result fip_sp_map_all(void) 1130 { 1131 TEE_Result res = TEE_SUCCESS; 1132 uint64_t sp_pkg_addr = 0; 1133 const void *fdt = NULL; 1134 TEE_UUID sp_uuid = { }; 1135 int sp_pkgs_node = 0; 1136 int subnode = 0; 1137 int root = 0; 1138 1139 fdt = get_external_dt(); 1140 if (!fdt) { 1141 EMSG("No SPMC manifest found"); 1142 return TEE_ERROR_GENERIC; 1143 } 1144 1145 root = fdt_path_offset(fdt, "/"); 1146 if (root < 0) 1147 return TEE_ERROR_BAD_FORMAT; 1148 1149 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1150 return TEE_ERROR_BAD_FORMAT; 1151 1152 /* SP packages are optional, it's not an error if we don't find any */ 1153 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1154 if (sp_pkgs_node < 0) 1155 return TEE_SUCCESS; 1156 1157 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1158 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1159 if (res) { 1160 EMSG("Invalid FIP SP load address"); 1161 return res; 1162 } 1163 1164 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1165 if (res) { 1166 EMSG("Invalid FIP SP uuid"); 1167 return res; 1168 } 1169 1170 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1171 if (res) { 1172 EMSG("Invalid FIP SP package"); 1173 return res; 1174 } 1175 } 1176 1177 return TEE_SUCCESS; 1178 } 1179 1180 static void fip_sp_unmap_all(void) 1181 { 1182 while (!STAILQ_EMPTY(&fip_sp_list)) { 1183 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1184 1185 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1186 core_mmu_unmap_pages(tee_mm_get_smem(sp->mm), 1187 ROUNDUP_DIV(tee_mm_get_bytes(sp->mm), 1188 SMALL_PAGE_SIZE)); 1189 tee_mm_free(sp->mm); 1190 free(sp); 1191 } 1192 } 1193 1194 static TEE_Result sp_init_all(void) 1195 { 1196 TEE_Result res = TEE_SUCCESS; 1197 const struct sp_image *sp = NULL; 1198 const struct fip_sp *fip_sp = NULL; 1199 char __maybe_unused msg[60] = { '\0', }; 1200 1201 for_each_secure_partition(sp) { 1202 if (sp->image.uncompressed_size) 1203 snprintf(msg, sizeof(msg), 1204 " (compressed, uncompressed %u)", 1205 sp->image.uncompressed_size); 1206 else 1207 msg[0] = '\0'; 1208 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1209 sp->image.size, msg); 1210 1211 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1212 1213 if (res != TEE_SUCCESS) { 1214 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1215 &sp->image.uuid, res); 1216 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1217 panic(); 1218 } 1219 } 1220 1221 res = fip_sp_map_all(); 1222 if (res) 1223 panic("Failed mapping FIP SPs"); 1224 1225 for_each_fip_sp(fip_sp) { 1226 sp = &fip_sp->sp_img; 1227 1228 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1229 sp->image.size); 1230 1231 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1232 1233 if (res != TEE_SUCCESS) { 1234 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1235 &sp->image.uuid, res); 1236 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1237 panic(); 1238 } 1239 } 1240 1241 /* 1242 * At this point all FIP SPs are loaded by ldelf so the original images 1243 * (loaded by BL2 earlier) can be unmapped 1244 */ 1245 fip_sp_unmap_all(); 1246 1247 return TEE_SUCCESS; 1248 } 1249 1250 boot_final(sp_init_all); 1251 1252 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1253 struct ts_store_handle **h) 1254 { 1255 return emb_ts_open(uuid, h, find_secure_partition); 1256 } 1257 1258 REGISTER_SP_STORE(2) = { 1259 .description = "SP store", 1260 .open = secure_partition_open, 1261 .get_size = emb_ts_get_size, 1262 .get_tag = emb_ts_get_tag, 1263 .read = emb_ts_read, 1264 .close = emb_ts_close, 1265 }; 1266