xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision cb03400251f98aed22a2664509e3ed9e183800b0)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2024, Arm Limited.
4  */
5 #include <crypto/crypto.h>
6 #include <initcall.h>
7 #include <kernel/boot.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/phys_mem.h>
23 #include <mm/vm.h>
24 #include <optee_ffa.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <tee/uuid.h>
28 #include <tee_api_types.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 #include <zlib.h>
34 
35 #define BOUNCE_BUFFER_SIZE		4096
36 
37 #define SP_MANIFEST_ATTR_READ		BIT(0)
38 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
39 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
40 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
41 #define SP_MANIFEST_ATTR_GP		BIT(4)
42 
43 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
44 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
45 					 SP_MANIFEST_ATTR_WRITE)
46 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
47 					 SP_MANIFEST_ATTR_EXEC)
48 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
49 					 SP_MANIFEST_ATTR_WRITE | \
50 					 SP_MANIFEST_ATTR_EXEC)
51 
52 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
53 
54 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
55 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
56 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
57 
58 #define SP_MANIFEST_EXEC_STATE_AARCH64	(0x0)
59 #define SP_MANIFEST_EXEC_STATE_AARCH32	(0x1)
60 
61 #define SP_MANIFEST_DIRECT_REQ_RECEIVE	BIT(0)
62 #define SP_MANIFEST_DIRECT_REQ_SEND	BIT(1)
63 #define SP_MANIFEST_INDIRECT_REQ	BIT(2)
64 
65 #define SP_MANIFEST_VM_CREATED_MSG	BIT(0)
66 #define SP_MANIFEST_VM_DESTROYED_MSG	BIT(1)
67 
68 #define SP_PKG_HEADER_MAGIC (0x474b5053)
69 #define SP_PKG_HEADER_VERSION_V1 (0x1)
70 #define SP_PKG_HEADER_VERSION_V2 (0x2)
71 
72 struct sp_pkg_header {
73 	uint32_t magic;
74 	uint32_t version;
75 	uint32_t pm_offset;
76 	uint32_t pm_size;
77 	uint32_t img_offset;
78 	uint32_t img_size;
79 };
80 
81 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
82 
83 static const struct ts_ops sp_ops;
84 
85 /* List that holds all of the loaded SP's */
86 static struct sp_sessions_head open_sp_sessions =
87 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
88 
89 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
90 {
91 	const struct sp_image *sp = NULL;
92 	const struct fip_sp *fip_sp = NULL;
93 
94 	for_each_secure_partition(sp) {
95 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
96 			return &sp->image;
97 	}
98 
99 	for_each_fip_sp(fip_sp) {
100 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
101 			return &fip_sp->sp_img.image;
102 	}
103 
104 	return NULL;
105 }
106 
107 bool is_sp_ctx(struct ts_ctx *ctx)
108 {
109 	return ctx && (ctx->ops == &sp_ops);
110 }
111 
112 static void set_sp_ctx_ops(struct ts_ctx *ctx)
113 {
114 	ctx->ops = &sp_ops;
115 }
116 
117 struct sp_session *sp_get_session(uint32_t session_id)
118 {
119 	struct sp_session *s = NULL;
120 
121 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
122 		if (s->endpoint_id == session_id)
123 			return s;
124 	}
125 
126 	return NULL;
127 }
128 
129 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
130 				 const TEE_UUID *ffa_uuid, size_t *elem_count,
131 				 bool count_only)
132 {
133 	TEE_Result res = TEE_SUCCESS;
134 	struct sp_session *s = NULL;
135 
136 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
137 		if (ffa_uuid &&
138 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
139 			continue;
140 
141 		if (s->state == sp_dead)
142 			continue;
143 		if (!count_only && !res) {
144 			uint32_t uuid_words[4] = { 0 };
145 
146 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
147 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
148 							*elem_count,
149 							s->endpoint_id, 1,
150 							s->props, uuid_words);
151 		}
152 		*elem_count += 1;
153 	}
154 
155 	return res;
156 }
157 
158 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
159 			     struct user_mode_ctx *uctx)
160 {
161 	/*
162 	 * Check that we have access to the region if it is supposed to be
163 	 * mapped to the current context.
164 	 */
165 	if (uctx) {
166 		struct vm_region *region = NULL;
167 
168 		/* Make sure that each mobj belongs to the SP */
169 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
170 			if (region->mobj == mem->mobj)
171 				break;
172 		}
173 
174 		if (!region)
175 			return false;
176 	}
177 
178 	/* Check that it is not shared with another SP */
179 	return !sp_mem_is_shared(mem);
180 }
181 
182 static bool endpoint_id_is_valid(uint32_t id)
183 {
184 	/*
185 	 * These IDs are assigned at the SPMC init so already have valid values
186 	 * by the time this function gets first called
187 	 */
188 	return id != spmd_id && id != spmc_id && id != optee_endpoint_id &&
189 	       id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX;
190 }
191 
192 static TEE_Result new_session_id(uint16_t *endpoint_id)
193 {
194 	uint32_t id = 0;
195 
196 	/* Find the first available endpoint id */
197 	for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) {
198 		if (endpoint_id_is_valid(id) && !sp_get_session(id)) {
199 			*endpoint_id = id;
200 			return TEE_SUCCESS;
201 		}
202 	}
203 
204 	return TEE_ERROR_BAD_FORMAT;
205 }
206 
207 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
208 {
209 	TEE_Result res = TEE_SUCCESS;
210 	struct sp_ctx *spc = NULL;
211 
212 	/* Register context */
213 	spc = calloc(1, sizeof(struct sp_ctx));
214 	if (!spc)
215 		return TEE_ERROR_OUT_OF_MEMORY;
216 
217 	spc->open_session = s;
218 	s->ts_sess.ctx = &spc->ts_ctx;
219 	spc->ts_ctx.uuid = *bin_uuid;
220 
221 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
222 	if (res)
223 		goto err;
224 
225 	set_sp_ctx_ops(&spc->ts_ctx);
226 
227 #ifdef CFG_TA_PAUTH
228 	crypto_rng_read(&spc->uctx.keys, sizeof(spc->uctx.keys));
229 #endif
230 
231 	return TEE_SUCCESS;
232 
233 err:
234 	free(spc);
235 	return res;
236 }
237 
238 /*
239  * Insert a new sp_session to the sessions list, so that it is ordered
240  * by boot_order.
241  */
242 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
243 				   struct sp_session *session)
244 {
245 	struct sp_session *s = NULL;
246 
247 	if (!open_sessions || !session)
248 		return;
249 
250 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
251 		if (s->boot_order > session->boot_order)
252 			break;
253 	}
254 
255 	if (!s)
256 		TAILQ_INSERT_TAIL(open_sessions, session, link);
257 	else
258 		TAILQ_INSERT_BEFORE(s, session, link);
259 }
260 
261 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
262 				    const TEE_UUID *bin_uuid,
263 				    const uint32_t boot_order,
264 				    struct sp_session **sess)
265 {
266 	TEE_Result res = TEE_SUCCESS;
267 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
268 
269 	if (!s)
270 		return TEE_ERROR_OUT_OF_MEMORY;
271 
272 	s->boot_order = boot_order;
273 
274 	/* Other properties are filled later, based on the SP's manifest */
275 	s->props = FFA_PART_PROP_IS_PE_ID;
276 
277 	res = new_session_id(&s->endpoint_id);
278 	if (res)
279 		goto err;
280 
281 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
282 	res = sp_create_ctx(bin_uuid, s);
283 	if (res)
284 		goto err;
285 
286 	insert_session_ordered(open_sessions, s);
287 	*sess = s;
288 	return TEE_SUCCESS;
289 
290 err:
291 	free(s);
292 	return res;
293 }
294 
295 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
296 {
297 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
298 
299 	memset(sp_regs, 0, sizeof(*sp_regs));
300 	sp_regs->sp = ctx->uctx.stack_ptr;
301 	sp_regs->pc = ctx->uctx.entry_func;
302 
303 	return TEE_SUCCESS;
304 }
305 
306 TEE_Result sp_map_shared(struct sp_session *s,
307 			 struct sp_mem_receiver *receiver,
308 			 struct sp_mem *smem,
309 			 uint64_t *va)
310 {
311 	TEE_Result res = TEE_SUCCESS;
312 	struct sp_ctx *ctx = NULL;
313 	uint32_t perm = TEE_MATTR_UR;
314 	struct sp_mem_map_region *reg = NULL;
315 
316 	ctx = to_sp_ctx(s->ts_sess.ctx);
317 
318 	/* Get the permission */
319 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
320 		perm |= TEE_MATTR_UX;
321 
322 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
323 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
324 			return TEE_ERROR_ACCESS_CONFLICT;
325 
326 		perm |= TEE_MATTR_UW;
327 	}
328 	/*
329 	 * Currently we don't support passing a va. We can't guarantee that the
330 	 * full region will be mapped in a contiguous region. A smem->region can
331 	 * have multiple mobj for one share. Currently there doesn't seem to be
332 	 * an option to guarantee that these will be mapped in a contiguous va
333 	 * space.
334 	 */
335 	if (*va)
336 		return TEE_ERROR_NOT_SUPPORTED;
337 
338 	SLIST_FOREACH(reg, &smem->regions, link) {
339 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
340 			     perm, 0, reg->mobj, reg->page_offset);
341 
342 		if (res != TEE_SUCCESS) {
343 			EMSG("Failed to map memory region %#"PRIx32, res);
344 			return res;
345 		}
346 	}
347 	return TEE_SUCCESS;
348 }
349 
350 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
351 {
352 	TEE_Result res = TEE_SUCCESS;
353 	vaddr_t vaddr = 0;
354 	size_t len = 0;
355 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
356 	struct sp_mem_map_region *reg = NULL;
357 
358 	SLIST_FOREACH(reg, &smem->regions, link) {
359 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
360 					       reg->mobj);
361 		len = reg->page_count * SMALL_PAGE_SIZE;
362 
363 		res = vm_unmap(&ctx->uctx, vaddr, len);
364 		if (res != TEE_SUCCESS)
365 			return res;
366 	}
367 
368 	return TEE_SUCCESS;
369 }
370 
371 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
372 				uint64_t *value)
373 {
374 	const fdt64_t *p = NULL;
375 	int len = 0;
376 
377 	p = fdt_getprop(fdt, node, property, &len);
378 	if (!p)
379 		return TEE_ERROR_ITEM_NOT_FOUND;
380 
381 	if (len != sizeof(*p))
382 		return TEE_ERROR_BAD_FORMAT;
383 
384 	*value = fdt64_ld(p);
385 
386 	return TEE_SUCCESS;
387 }
388 
389 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
390 				uint32_t *value)
391 {
392 	const fdt32_t *p = NULL;
393 	int len = 0;
394 
395 	p = fdt_getprop(fdt, node, property, &len);
396 	if (!p)
397 		return TEE_ERROR_ITEM_NOT_FOUND;
398 
399 	if (len != sizeof(*p))
400 		return TEE_ERROR_BAD_FORMAT;
401 
402 	*value = fdt32_to_cpu(*p);
403 
404 	return TEE_SUCCESS;
405 }
406 
407 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
408 				uint16_t *value)
409 {
410 	const fdt16_t *p = NULL;
411 	int len = 0;
412 
413 	p = fdt_getprop(fdt, node, property, &len);
414 	if (!p)
415 		return TEE_ERROR_ITEM_NOT_FOUND;
416 
417 	if (len != sizeof(*p))
418 		return TEE_ERROR_BAD_FORMAT;
419 
420 	*value = fdt16_to_cpu(*p);
421 
422 	return TEE_SUCCESS;
423 }
424 
425 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
426 				 const char *property, TEE_UUID *uuid)
427 {
428 	uint32_t uuid_array[4] = { 0 };
429 	const fdt32_t *p = NULL;
430 	int len = 0;
431 	int i = 0;
432 
433 	p = fdt_getprop(fdt, node, property, &len);
434 	if (!p)
435 		return TEE_ERROR_ITEM_NOT_FOUND;
436 
437 	if (len != sizeof(TEE_UUID))
438 		return TEE_ERROR_BAD_FORMAT;
439 
440 	for (i = 0; i < 4; i++)
441 		uuid_array[i] = fdt32_to_cpu(p[i]);
442 
443 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
444 
445 	return TEE_SUCCESS;
446 }
447 
448 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
449 				   bool *is_elf_format)
450 {
451 	TEE_Result res = TEE_SUCCESS;
452 	uint32_t elf_format = 0;
453 
454 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
455 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
456 		return res;
457 
458 	*is_elf_format = (elf_format != 0);
459 
460 	return TEE_SUCCESS;
461 }
462 
463 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
464 				 const struct ts_store_ops **ops,
465 				 struct ts_store_handle **handle)
466 {
467 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
468 
469 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
470 		res = (*ops)->open(uuid, handle);
471 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
472 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
473 			break;
474 	}
475 
476 	return res;
477 }
478 
479 static TEE_Result load_binary_sp(struct ts_session *s,
480 				 struct user_mode_ctx *uctx)
481 {
482 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
483 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
484 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
485 	const struct ts_store_ops *store_ops = NULL;
486 	struct ts_store_handle *handle = NULL;
487 	TEE_Result res = TEE_SUCCESS;
488 	tee_mm_entry_t *mm = NULL;
489 	struct fobj *fobj = NULL;
490 	struct mobj *mobj = NULL;
491 	uaddr_t base_addr = 0;
492 	uint32_t vm_flags = 0;
493 	unsigned int idx = 0;
494 	vaddr_t va = 0;
495 
496 	if (!s || !uctx)
497 		return TEE_ERROR_BAD_PARAMETERS;
498 
499 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
500 
501 	/* Initialize the bounce buffer */
502 	fobj = fobj_sec_mem_alloc(bb_num_pages);
503 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
504 	fobj_put(fobj);
505 	if (!mobj)
506 		return TEE_ERROR_OUT_OF_MEMORY;
507 
508 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
509 	mobj_put(mobj);
510 	if (res)
511 		return res;
512 
513 	uctx->bbuf = (uint8_t *)va;
514 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
515 
516 	vm_set_ctx(uctx->ts_ctx);
517 
518 	/* Find TS store and open SP binary */
519 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
520 	if (res != TEE_SUCCESS) {
521 		EMSG("Failed to open SP binary");
522 		return res;
523 	}
524 
525 	/* Query binary size and calculate page count */
526 	res = store_ops->get_size(handle, &bin_size);
527 	if (res != TEE_SUCCESS)
528 		goto err;
529 
530 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
531 		res = TEE_ERROR_OVERFLOW;
532 		goto err;
533 	}
534 
535 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
536 
537 	/* Allocate memory */
538 	mm = phys_mem_ta_alloc(bin_size_rounded);
539 	if (!mm) {
540 		res = TEE_ERROR_OUT_OF_MEMORY;
541 		goto err;
542 	}
543 
544 	base_addr = tee_mm_get_smem(mm);
545 
546 	/* Create mobj */
547 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
548 	if (!mobj) {
549 		res = TEE_ERROR_OUT_OF_MEMORY;
550 		goto err_free_tee_mm;
551 	}
552 
553 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
554 	if (res)
555 		goto err_free_mobj;
556 
557 	/* Map memory area for the SP binary */
558 	va = 0;
559 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
560 		     vm_flags, mobj, 0);
561 	if (res)
562 		goto err_free_mobj;
563 
564 	/* Read SP binary into the previously mapped memory area */
565 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
566 	if (res)
567 		goto err_unmap;
568 
569 	/* Set memory protection to allow execution */
570 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
571 	if (res)
572 		goto err_unmap;
573 
574 	mobj_put(mobj);
575 	store_ops->close(handle);
576 
577 	/* The entry point must be at the beginning of the SP binary. */
578 	uctx->entry_func = va;
579 	uctx->load_addr = va;
580 	uctx->is_32bit = false;
581 
582 	s->handle_scall = s->ctx->ops->handle_scall;
583 
584 	return TEE_SUCCESS;
585 
586 err_unmap:
587 	vm_unmap(uctx, va, bin_size_rounded);
588 
589 err_free_mobj:
590 	mobj_put(mobj);
591 
592 err_free_tee_mm:
593 	tee_mm_free(mm);
594 
595 err:
596 	store_ops->close(handle);
597 
598 	return res;
599 }
600 
601 static TEE_Result sp_open_session(struct sp_session **sess,
602 				  struct sp_sessions_head *open_sessions,
603 				  const TEE_UUID *ffa_uuid,
604 				  const TEE_UUID *bin_uuid,
605 				  const uint32_t boot_order,
606 				  const void *fdt)
607 {
608 	TEE_Result res = TEE_SUCCESS;
609 	struct sp_session *s = NULL;
610 	struct sp_ctx *ctx = NULL;
611 	bool is_elf_format = false;
612 
613 	if (!find_secure_partition(bin_uuid))
614 		return TEE_ERROR_ITEM_NOT_FOUND;
615 
616 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
617 	if (res != TEE_SUCCESS) {
618 		DMSG("sp_create_session failed %#"PRIx32, res);
619 		return res;
620 	}
621 
622 	ctx = to_sp_ctx(s->ts_sess.ctx);
623 	assert(ctx);
624 	if (!ctx)
625 		return TEE_ERROR_TARGET_DEAD;
626 	*sess = s;
627 
628 	ts_push_current_session(&s->ts_sess);
629 
630 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
631 	if (res == TEE_SUCCESS) {
632 		if (is_elf_format) {
633 			/* Load the SP using ldelf. */
634 			ldelf_load_ldelf(&ctx->uctx);
635 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
636 		} else {
637 			/* Raw binary format SP */
638 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
639 		}
640 	} else {
641 		EMSG("Failed to detect SP format");
642 	}
643 
644 	if (res != TEE_SUCCESS) {
645 		EMSG("Failed loading SP  %#"PRIx32, res);
646 		ts_pop_current_session();
647 		return TEE_ERROR_TARGET_DEAD;
648 	}
649 
650 	/*
651 	 * Make the SP ready for its first run.
652 	 * Set state to busy to prevent other endpoints from sending messages to
653 	 * the SP before its boot phase is done.
654 	 */
655 	s->state = sp_busy;
656 	s->caller_id = 0;
657 	sp_init_set_registers(ctx);
658 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
659 	ts_pop_current_session();
660 
661 	return TEE_SUCCESS;
662 }
663 
664 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
665 {
666 	const struct fdt_property *description = NULL;
667 	int description_name_len = 0;
668 
669 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
670 		EMSG("Failed loading SP, manifest not found");
671 		return TEE_ERROR_BAD_PARAMETERS;
672 	}
673 
674 	description = fdt_get_property(fdt, 0, "description",
675 				       &description_name_len);
676 	if (description)
677 		DMSG("Loading SP: %s", description->data);
678 
679 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
680 		EMSG("Missing or invalid UUID in SP manifest");
681 		return TEE_ERROR_BAD_FORMAT;
682 	}
683 
684 	return TEE_SUCCESS;
685 }
686 
687 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
688 				   void **fdt_copy, size_t *mapped_size)
689 {
690 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
691 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
692 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
693 	TEE_Result res = TEE_SUCCESS;
694 	struct mobj *m = NULL;
695 	struct fobj *f = NULL;
696 	vaddr_t va = 0;
697 
698 	f = fobj_sec_mem_alloc(num_pages);
699 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
700 	fobj_put(f);
701 	if (!m)
702 		return TEE_ERROR_OUT_OF_MEMORY;
703 
704 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
705 	mobj_put(m);
706 	if (res)
707 		return res;
708 
709 	if (fdt_open_into(fdt, (void *)va, total_size))
710 		return TEE_ERROR_GENERIC;
711 
712 	*fdt_copy = (void *)va;
713 	*mapped_size = total_size;
714 
715 	return res;
716 }
717 
718 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
719 {
720 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
721 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
722 
723 	memcpy(&info->magic, "FF-A", 4);
724 	info->count = 1;
725 
726 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
727 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
728 	info->nvp[0].value = (uintptr_t)fdt;
729 	info->nvp[0].size = fdt_totalsize(fdt);
730 }
731 
732 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt)
733 {
734 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
735 	struct ffa_boot_info_header_1_1 *header =
736 		(struct ffa_boot_info_header_1_1 *)buf;
737 	struct ffa_boot_info_1_1 *desc =
738 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
739 
740 	header->signature = FFA_BOOT_INFO_SIGNATURE;
741 	header->version = FFA_BOOT_INFO_VERSION;
742 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
743 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
744 	header->desc_count = 1;
745 	header->desc_offset = desc_offs;
746 
747 	memset(&desc[0].name, 0, sizeof(desc[0].name));
748 	/* Type: Standard boot info (bit[7] == 0), FDT type */
749 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
750 	/* Flags: Contents field contains an address */
751 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
752 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
753 	desc[0].size = fdt_totalsize(fdt);
754 	desc[0].contents = (uintptr_t)fdt;
755 }
756 
757 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
758 					   struct thread_smc_args *args,
759 					   vaddr_t *va, size_t *mapped_size,
760 					   uint32_t sp_ffa_version)
761 {
762 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
763 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
764 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
765 	TEE_Result res = TEE_SUCCESS;
766 	struct fobj *f = NULL;
767 	struct mobj *m = NULL;
768 	uint32_t info_reg = 0;
769 
770 	f = fobj_sec_mem_alloc(num_pages);
771 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
772 	fobj_put(f);
773 	if (!m)
774 		return TEE_ERROR_OUT_OF_MEMORY;
775 
776 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
777 	mobj_put(m);
778 	if (res)
779 		return res;
780 
781 	*mapped_size = total_size;
782 
783 	switch (sp_ffa_version) {
784 	case MAKE_FFA_VERSION(1, 0):
785 		fill_boot_info_1_0(*va, fdt);
786 		break;
787 	case MAKE_FFA_VERSION(1, 1):
788 		fill_boot_info_1_1(*va, fdt);
789 		break;
790 	default:
791 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
792 		return TEE_ERROR_NOT_SUPPORTED;
793 	}
794 
795 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
796 	if (res) {
797 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
798 			/* If the property is not present, set default to x0 */
799 			info_reg = 0;
800 		} else {
801 			return TEE_ERROR_BAD_FORMAT;
802 		}
803 	}
804 
805 	switch (info_reg) {
806 	case 0:
807 		args->a0 = *va;
808 		break;
809 	case 1:
810 		args->a1 = *va;
811 		break;
812 	case 2:
813 		args->a2 = *va;
814 		break;
815 	case 3:
816 		args->a3 = *va;
817 		break;
818 	default:
819 		EMSG("Invalid register selected for passing boot info");
820 		return TEE_ERROR_BAD_FORMAT;
821 	}
822 
823 	return TEE_SUCCESS;
824 }
825 
826 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
827 						       const void *fdt)
828 {
829 	int node = 0;
830 	int subnode = 0;
831 	tee_mm_entry_t *mm = NULL;
832 	TEE_Result res = TEE_SUCCESS;
833 
834 	/*
835 	 * Memory regions are optional in the SP manifest, it's not an error if
836 	 * we don't find any.
837 	 */
838 	node = fdt_node_offset_by_compatible(fdt, 0,
839 					     "arm,ffa-manifest-memory-regions");
840 	if (node < 0)
841 		return TEE_SUCCESS;
842 
843 	fdt_for_each_subnode(subnode, fdt, node) {
844 		uint64_t load_rel_offset = 0;
845 		uint32_t attributes = 0;
846 		uint64_t base_addr = 0;
847 		uint32_t pages_cnt = 0;
848 		uint32_t flags = 0;
849 		uint32_t perm = 0;
850 		size_t size = 0;
851 		vaddr_t va = 0;
852 
853 		mm = NULL;
854 
855 		/* Load address relative offset of a memory region */
856 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
857 				   &load_rel_offset)) {
858 			va = ctx->uctx.load_addr + load_rel_offset;
859 		} else {
860 			/* Skip non load address relative memory regions */
861 			continue;
862 		}
863 
864 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
865 			EMSG("Both base-address and load-address-relative-offset fields are set");
866 			return TEE_ERROR_BAD_FORMAT;
867 		}
868 
869 		/* Size of memory region as count of 4K pages */
870 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
871 			EMSG("Mandatory field is missing: pages-count");
872 			return TEE_ERROR_BAD_FORMAT;
873 		}
874 
875 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
876 			return TEE_ERROR_OVERFLOW;
877 
878 		/* Memory region attributes  */
879 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
880 			EMSG("Mandatory field is missing: attributes");
881 			return TEE_ERROR_BAD_FORMAT;
882 		}
883 
884 		/* Check instruction and data access permissions */
885 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
886 		case SP_MANIFEST_ATTR_RO:
887 			perm = TEE_MATTR_UR;
888 			break;
889 		case SP_MANIFEST_ATTR_RW:
890 			perm = TEE_MATTR_URW;
891 			break;
892 		case SP_MANIFEST_ATTR_RX:
893 			perm = TEE_MATTR_URX;
894 			break;
895 		default:
896 			EMSG("Invalid memory access permissions");
897 			return TEE_ERROR_BAD_FORMAT;
898 		}
899 
900 		if (IS_ENABLED(CFG_TA_BTI) &&
901 		    attributes & SP_MANIFEST_ATTR_GP) {
902 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
903 				EMSG("Guard only executable region");
904 				return TEE_ERROR_BAD_FORMAT;
905 			}
906 			perm |= TEE_MATTR_GUARDED;
907 		}
908 
909 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
910 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
911 			EMSG("Optional field with invalid value: flags");
912 			return TEE_ERROR_BAD_FORMAT;
913 		}
914 
915 		/* Load relative regions must be secure */
916 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
917 			EMSG("Invalid memory security attribute");
918 			return TEE_ERROR_BAD_FORMAT;
919 		}
920 
921 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
922 			/*
923 			 * NOBITS flag is set, which means that loaded binary
924 			 * doesn't contain this area, so it's need to be
925 			 * allocated.
926 			 */
927 			struct mobj *m = NULL;
928 			unsigned int idx = 0;
929 
930 			mm = phys_mem_ta_alloc(size);
931 			if (!mm)
932 				return TEE_ERROR_OUT_OF_MEMORY;
933 
934 			base_addr = tee_mm_get_smem(mm);
935 
936 			m = sp_mem_new_mobj(pages_cnt,
937 					    TEE_MATTR_MEM_TYPE_CACHED, true);
938 			if (!m) {
939 				res = TEE_ERROR_OUT_OF_MEMORY;
940 				goto err_mm_free;
941 			}
942 
943 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
944 			if (res) {
945 				mobj_put(m);
946 				goto err_mm_free;
947 			}
948 
949 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
950 			mobj_put(m);
951 			if (res)
952 				goto err_mm_free;
953 		} else {
954 			/*
955 			 * If NOBITS is not present the memory area is already
956 			 * mapped and only need to set the correct permissions.
957 			 */
958 			res = vm_set_prot(&ctx->uctx, va, size, perm);
959 			if (res)
960 				return res;
961 		}
962 	}
963 
964 	return TEE_SUCCESS;
965 
966 err_mm_free:
967 	tee_mm_free(mm);
968 	return res;
969 }
970 
971 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
972 {
973 	int node = 0;
974 	int subnode = 0;
975 	TEE_Result res = TEE_SUCCESS;
976 	const char *dt_device_match_table = {
977 		"arm,ffa-manifest-device-regions",
978 	};
979 
980 	/*
981 	 * Device regions are optional in the SP manifest, it's not an error if
982 	 * we don't find any
983 	 */
984 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
985 	if (node < 0)
986 		return TEE_SUCCESS;
987 
988 	fdt_for_each_subnode(subnode, fdt, node) {
989 		uint64_t base_addr = 0;
990 		uint32_t pages_cnt = 0;
991 		uint32_t attributes = 0;
992 		struct mobj *m = NULL;
993 		bool is_secure = true;
994 		uint32_t perm = 0;
995 		vaddr_t va = 0;
996 		unsigned int idx = 0;
997 
998 		/*
999 		 * Physical base address of a device MMIO region.
1000 		 * Currently only physically contiguous region is supported.
1001 		 */
1002 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
1003 			EMSG("Mandatory field is missing: base-address");
1004 			return TEE_ERROR_BAD_FORMAT;
1005 		}
1006 
1007 		/* Total size of MMIO region as count of 4K pages */
1008 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1009 			EMSG("Mandatory field is missing: pages-count");
1010 			return TEE_ERROR_BAD_FORMAT;
1011 		}
1012 
1013 		/* Data access, instruction access and security attributes */
1014 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1015 			EMSG("Mandatory field is missing: attributes");
1016 			return TEE_ERROR_BAD_FORMAT;
1017 		}
1018 
1019 		/* Check instruction and data access permissions */
1020 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1021 		case SP_MANIFEST_ATTR_RO:
1022 			perm = TEE_MATTR_UR;
1023 			break;
1024 		case SP_MANIFEST_ATTR_RW:
1025 			perm = TEE_MATTR_URW;
1026 			break;
1027 		default:
1028 			EMSG("Invalid memory access permissions");
1029 			return TEE_ERROR_BAD_FORMAT;
1030 		}
1031 
1032 		/*
1033 		 * The SP is a secure endpoint, security attribute can be
1034 		 * secure or non-secure
1035 		 */
1036 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1037 			is_secure = false;
1038 
1039 		/* Memory attributes must be Device-nGnRnE */
1040 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1041 				    is_secure);
1042 		if (!m)
1043 			return TEE_ERROR_OUT_OF_MEMORY;
1044 
1045 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1046 		if (res) {
1047 			mobj_put(m);
1048 			return res;
1049 		}
1050 
1051 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1052 			     perm, 0, m, 0);
1053 		mobj_put(m);
1054 		if (res)
1055 			return res;
1056 
1057 		/*
1058 		 * Overwrite the device region's PA in the fdt with the VA. This
1059 		 * fdt will be passed to the SP.
1060 		 */
1061 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1062 
1063 		/*
1064 		 * Unmap the region if the overwrite failed since the SP won't
1065 		 * be able to access it without knowing the VA.
1066 		 */
1067 		if (res) {
1068 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1069 			return res;
1070 		}
1071 	}
1072 
1073 	return TEE_SUCCESS;
1074 }
1075 
1076 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1077 				    uint32_t new_endpoint_id)
1078 {
1079 	struct sp_session *session = sp_get_session(endpoint_id);
1080 	uint32_t manifest_endpoint_id = 0;
1081 
1082 	/*
1083 	 * We don't know in which order the SPs are loaded. The endpoint ID
1084 	 * defined in the manifest could already be generated by
1085 	 * new_session_id() and used by another SP. If this is the case, we swap
1086 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1087 	 * not defined twice in the manifest.
1088 	 */
1089 
1090 	/* The endpoint ID was not assigned yet */
1091 	if (!session)
1092 		return TEE_SUCCESS;
1093 
1094 	/*
1095 	 * Read the manifest file from the SP who originally had the endpoint.
1096 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1097 	 * have an endpoint ID defined.
1098 	 */
1099 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1100 		assert(manifest_endpoint_id == endpoint_id);
1101 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1102 		return TEE_ERROR_ACCESS_CONFLICT;
1103 	}
1104 
1105 	session->endpoint_id = new_endpoint_id;
1106 
1107 	return TEE_SUCCESS;
1108 }
1109 
1110 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1111 {
1112 	uint32_t endpoint_id = 0;
1113 
1114 	/*
1115 	 * The endpoint ID can be optionally defined in the manifest file. We
1116 	 * have to map the ID inside the manifest to the SP if it's defined.
1117 	 * If not, the endpoint ID generated inside new_session_id() will be
1118 	 * used.
1119 	 */
1120 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1121 		TEE_Result res = TEE_ERROR_GENERIC;
1122 
1123 		if (!endpoint_id_is_valid(endpoint_id)) {
1124 			EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id);
1125 			return TEE_ERROR_BAD_FORMAT;
1126 		}
1127 
1128 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1129 		if (res)
1130 			return res;
1131 
1132 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1133 		     endpoint_id);
1134 		/* Assign the endpoint ID to the current SP */
1135 		s->endpoint_id = endpoint_id;
1136 	}
1137 	return TEE_SUCCESS;
1138 }
1139 
1140 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1141 {
1142 	int node = 0;
1143 	int subnode = 0;
1144 	tee_mm_entry_t *mm = NULL;
1145 	TEE_Result res = TEE_SUCCESS;
1146 
1147 	/*
1148 	 * Memory regions are optional in the SP manifest, it's not an error if
1149 	 * we don't find any.
1150 	 */
1151 	node = fdt_node_offset_by_compatible(fdt, 0,
1152 					     "arm,ffa-manifest-memory-regions");
1153 	if (node < 0)
1154 		return TEE_SUCCESS;
1155 
1156 	fdt_for_each_subnode(subnode, fdt, node) {
1157 		uint64_t load_rel_offset = 0;
1158 		bool alloc_needed = false;
1159 		uint32_t attributes = 0;
1160 		uint64_t base_addr = 0;
1161 		uint32_t pages_cnt = 0;
1162 		bool is_secure = true;
1163 		struct mobj *m = NULL;
1164 		unsigned int idx = 0;
1165 		uint32_t perm = 0;
1166 		size_t size = 0;
1167 		vaddr_t va = 0;
1168 
1169 		mm = NULL;
1170 
1171 		/* Load address relative offset of a memory region */
1172 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1173 				   &load_rel_offset)) {
1174 			/*
1175 			 * At this point the memory region is already mapped by
1176 			 * handle_fdt_load_relative_mem_regions.
1177 			 * Only need to set the base-address in the manifest and
1178 			 * then skip the rest of the mapping process.
1179 			 */
1180 			va = ctx->uctx.load_addr + load_rel_offset;
1181 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1182 			if (res)
1183 				return res;
1184 
1185 			continue;
1186 		}
1187 
1188 		/*
1189 		 * Base address of a memory region.
1190 		 * If not present, we have to allocate the specified memory.
1191 		 * If present, this field could specify a PA or VA. Currently
1192 		 * only a PA is supported.
1193 		 */
1194 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1195 			alloc_needed = true;
1196 
1197 		/* Size of memory region as count of 4K pages */
1198 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1199 			EMSG("Mandatory field is missing: pages-count");
1200 			return TEE_ERROR_BAD_FORMAT;
1201 		}
1202 
1203 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1204 			return TEE_ERROR_OVERFLOW;
1205 
1206 		/*
1207 		 * Memory region attributes:
1208 		 * - Instruction/data access permissions
1209 		 * - Cacheability/shareability attributes
1210 		 * - Security attributes
1211 		 *
1212 		 * Cacheability/shareability attributes can be ignored for now.
1213 		 * OP-TEE only supports a single type for normal cached memory
1214 		 * and currently there is no use case that would require to
1215 		 * change this.
1216 		 */
1217 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1218 			EMSG("Mandatory field is missing: attributes");
1219 			return TEE_ERROR_BAD_FORMAT;
1220 		}
1221 
1222 		/* Check instruction and data access permissions */
1223 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1224 		case SP_MANIFEST_ATTR_RO:
1225 			perm = TEE_MATTR_UR;
1226 			break;
1227 		case SP_MANIFEST_ATTR_RW:
1228 			perm = TEE_MATTR_URW;
1229 			break;
1230 		case SP_MANIFEST_ATTR_RX:
1231 			perm = TEE_MATTR_URX;
1232 			break;
1233 		default:
1234 			EMSG("Invalid memory access permissions");
1235 			return TEE_ERROR_BAD_FORMAT;
1236 		}
1237 
1238 		if (IS_ENABLED(CFG_TA_BTI) &&
1239 		    attributes & SP_MANIFEST_ATTR_GP) {
1240 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
1241 				EMSG("Guard only executable region");
1242 				return TEE_ERROR_BAD_FORMAT;
1243 			}
1244 			perm |= TEE_MATTR_GUARDED;
1245 		}
1246 
1247 		/*
1248 		 * The SP is a secure endpoint, security attribute can be
1249 		 * secure or non-secure.
1250 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1251 		 * address is missing this attribute must be secure.
1252 		 */
1253 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1254 			if (alloc_needed) {
1255 				EMSG("Invalid memory security attribute");
1256 				return TEE_ERROR_BAD_FORMAT;
1257 			}
1258 			is_secure = false;
1259 		}
1260 
1261 		if (alloc_needed) {
1262 			/* Base address is missing, we have to allocate */
1263 			mm = phys_mem_ta_alloc(size);
1264 			if (!mm)
1265 				return TEE_ERROR_OUT_OF_MEMORY;
1266 
1267 			base_addr = tee_mm_get_smem(mm);
1268 		}
1269 
1270 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1271 				    is_secure);
1272 		if (!m) {
1273 			res = TEE_ERROR_OUT_OF_MEMORY;
1274 			goto err_mm_free;
1275 		}
1276 
1277 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1278 		if (res) {
1279 			mobj_put(m);
1280 			goto err_mm_free;
1281 		}
1282 
1283 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1284 		mobj_put(m);
1285 		if (res)
1286 			goto err_mm_free;
1287 
1288 		/*
1289 		 * Overwrite the memory region's base address in the fdt with
1290 		 * the VA. This fdt will be passed to the SP.
1291 		 * If the base-address field was not present in the original
1292 		 * fdt, this function will create it. This doesn't cause issues
1293 		 * since the necessary extra space has been allocated when
1294 		 * opening the fdt.
1295 		 */
1296 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1297 
1298 		/*
1299 		 * Unmap the region if the overwrite failed since the SP won't
1300 		 * be able to access it without knowing the VA.
1301 		 */
1302 		if (res) {
1303 			vm_unmap(&ctx->uctx, va, size);
1304 			goto err_mm_free;
1305 		}
1306 	}
1307 
1308 	return TEE_SUCCESS;
1309 
1310 err_mm_free:
1311 	tee_mm_free(mm);
1312 	return res;
1313 }
1314 
1315 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1316 {
1317 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1318 	uint32_t dummy_size __maybe_unused = 0;
1319 	TEE_Result res = TEE_SUCCESS;
1320 	size_t page_count = 0;
1321 	struct fobj *f = NULL;
1322 	struct mobj *m = NULL;
1323 	vaddr_t log_addr = 0;
1324 	size_t log_size = 0;
1325 	int node = 0;
1326 
1327 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1328 	if (node < 0)
1329 		return TEE_SUCCESS;
1330 
1331 	/* Checking the existence and size of the event log properties */
1332 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1333 		EMSG("tpm_event_log_addr not found or has invalid size");
1334 		return TEE_ERROR_BAD_FORMAT;
1335 	}
1336 
1337 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1338 		EMSG("tpm_event_log_size not found or has invalid size");
1339 		return TEE_ERROR_BAD_FORMAT;
1340 	}
1341 
1342 	/* Validating event log */
1343 	res = tpm_get_event_log_size(&log_size);
1344 	if (res)
1345 		return res;
1346 
1347 	if (!log_size) {
1348 		EMSG("Empty TPM event log was provided");
1349 		return TEE_ERROR_ITEM_NOT_FOUND;
1350 	}
1351 
1352 	/* Allocating memory area for the event log to share with the SP */
1353 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1354 
1355 	f = fobj_sec_mem_alloc(page_count);
1356 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1357 	fobj_put(f);
1358 	if (!m)
1359 		return TEE_ERROR_OUT_OF_MEMORY;
1360 
1361 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1362 	mobj_put(m);
1363 	if (res)
1364 		return res;
1365 
1366 	/* Copy event log */
1367 	res = tpm_get_event_log((void *)log_addr, &log_size);
1368 	if (res)
1369 		goto err_unmap;
1370 
1371 	/* Setting event log details in the manifest */
1372 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1373 	if (res)
1374 		goto err_unmap;
1375 
1376 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1377 	if (res)
1378 		goto err_unmap;
1379 
1380 	return TEE_SUCCESS;
1381 
1382 err_unmap:
1383 	vm_unmap(&ctx->uctx, log_addr, log_size);
1384 
1385 	return res;
1386 }
1387 
1388 /*
1389  * Note: this function is called only on the primary CPU. It assumes that the
1390  * features present on the primary CPU are available on all of the secondary
1391  * CPUs as well.
1392  */
1393 static TEE_Result handle_hw_features(void *fdt)
1394 {
1395 	uint32_t val __maybe_unused = 0;
1396 	TEE_Result res = TEE_SUCCESS;
1397 	int node = 0;
1398 
1399 	/*
1400 	 * HW feature descriptions are optional in the SP manifest, it's not an
1401 	 * error if we don't find any.
1402 	 */
1403 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1404 	if (node < 0)
1405 		return TEE_SUCCESS;
1406 
1407 	/* Modify the crc32 property only if it's already present */
1408 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1409 		res = fdt_setprop_u32(fdt, node, "crc32",
1410 				      feat_crc32_implemented());
1411 		if (res)
1412 			return res;
1413 	}
1414 
1415 	/* Modify the property only if it's already present */
1416 	if (!sp_dt_get_u32(fdt, node, "bti", &val)) {
1417 		res = fdt_setprop_u32(fdt, node, "bti",
1418 				      feat_bti_is_implemented());
1419 		if (res)
1420 			return res;
1421 	}
1422 
1423 	/* Modify the property only if it's already present */
1424 	if (!sp_dt_get_u32(fdt, node, "pauth", &val)) {
1425 		res = fdt_setprop_u32(fdt, node, "pauth",
1426 				      feat_pauth_is_implemented());
1427 		if (res)
1428 			return res;
1429 	}
1430 
1431 	return TEE_SUCCESS;
1432 }
1433 
1434 static TEE_Result read_ns_interrupts_action(const void *fdt,
1435 					    struct sp_session *s)
1436 {
1437 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1438 
1439 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1440 
1441 	if (res) {
1442 		EMSG("Mandatory property is missing: ns-interrupts-action");
1443 		return res;
1444 	}
1445 
1446 	switch (s->ns_int_mode) {
1447 	case SP_MANIFEST_NS_INT_QUEUED:
1448 	case SP_MANIFEST_NS_INT_SIGNALED:
1449 		/* OK */
1450 		break;
1451 
1452 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1453 		EMSG("Managed exit is not implemented");
1454 		return TEE_ERROR_NOT_IMPLEMENTED;
1455 
1456 	default:
1457 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1458 		     s->ns_int_mode);
1459 		return TEE_ERROR_BAD_PARAMETERS;
1460 	}
1461 
1462 	return TEE_SUCCESS;
1463 }
1464 
1465 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s)
1466 {
1467 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1468 	uint32_t ffa_version = 0;
1469 
1470 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version);
1471 	if (res) {
1472 		EMSG("Mandatory property is missing: ffa-version");
1473 		return res;
1474 	}
1475 
1476 	if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) {
1477 		EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version);
1478 		return TEE_ERROR_BAD_PARAMETERS;
1479 	}
1480 
1481 	s->rxtx.ffa_vers = ffa_version;
1482 
1483 	return TEE_SUCCESS;
1484 }
1485 
1486 static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s)
1487 {
1488 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1489 	uint32_t exec_state = 0;
1490 
1491 	res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state);
1492 	if (res) {
1493 		EMSG("Mandatory property is missing: execution-state");
1494 		return res;
1495 	}
1496 
1497 	/* Currently only AArch64 SPs are supported */
1498 	if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) {
1499 		s->props |= FFA_PART_PROP_AARCH64_STATE;
1500 	} else {
1501 		EMSG("Invalid execution-state value: %"PRIu32, exec_state);
1502 		return TEE_ERROR_BAD_PARAMETERS;
1503 	}
1504 
1505 	return TEE_SUCCESS;
1506 }
1507 
1508 static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s)
1509 {
1510 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1511 	uint32_t msg_method = 0;
1512 
1513 	res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method);
1514 	if (res) {
1515 		EMSG("Mandatory property is missing: messaging-method");
1516 		return res;
1517 	}
1518 
1519 	if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE)
1520 		s->props |= FFA_PART_PROP_DIRECT_REQ_RECV;
1521 
1522 	if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND)
1523 		s->props |= FFA_PART_PROP_DIRECT_REQ_SEND;
1524 
1525 	if (msg_method & SP_MANIFEST_INDIRECT_REQ)
1526 		IMSG("Indirect messaging is not supported");
1527 
1528 	return TEE_SUCCESS;
1529 }
1530 
1531 static TEE_Result read_vm_availability_msg(const void *fdt,
1532 					   struct sp_session *s)
1533 {
1534 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1535 	uint32_t v = 0;
1536 
1537 	res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v);
1538 
1539 	/* This field in the manifest is optional */
1540 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1541 		return TEE_SUCCESS;
1542 
1543 	if (res)
1544 		return res;
1545 
1546 	if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) {
1547 		EMSG("Invalid vm-availability-messages value: %"PRIu32, v);
1548 		return TEE_ERROR_BAD_PARAMETERS;
1549 	}
1550 
1551 	if (v & SP_MANIFEST_VM_CREATED_MSG)
1552 		s->props |= FFA_PART_PROP_NOTIF_CREATED;
1553 
1554 	if (v & SP_MANIFEST_VM_DESTROYED_MSG)
1555 		s->props |= FFA_PART_PROP_NOTIF_DESTROYED;
1556 
1557 	return TEE_SUCCESS;
1558 }
1559 
1560 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1561 {
1562 	TEE_Result res = TEE_SUCCESS;
1563 	struct sp_session *sess = NULL;
1564 	TEE_UUID ffa_uuid = {};
1565 	uint16_t boot_order = 0;
1566 	uint32_t boot_order_arg = 0;
1567 
1568 	res = fdt_get_uuid(fdt, &ffa_uuid);
1569 	if (res)
1570 		return res;
1571 
1572 	res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order);
1573 	if (res == TEE_SUCCESS) {
1574 		boot_order_arg = boot_order;
1575 	} else if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1576 		boot_order_arg = UINT32_MAX;
1577 	} else {
1578 		EMSG("Failed reading boot-order property err:%#"PRIx32, res);
1579 		return res;
1580 	}
1581 
1582 	res = sp_open_session(&sess,
1583 			      &open_sp_sessions,
1584 			      &ffa_uuid, bin_uuid, boot_order_arg, fdt);
1585 	if (res)
1586 		return res;
1587 
1588 	sess->fdt = fdt;
1589 
1590 	res = read_manifest_endpoint_id(sess);
1591 	if (res)
1592 		return res;
1593 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1594 
1595 	res = read_ns_interrupts_action(fdt, sess);
1596 	if (res)
1597 		return res;
1598 
1599 	res = read_ffa_version(fdt, sess);
1600 	if (res)
1601 		return res;
1602 
1603 	res = read_sp_exec_state(fdt, sess);
1604 	if (res)
1605 		return res;
1606 
1607 	res = read_sp_msg_types(fdt, sess);
1608 	if (res)
1609 		return res;
1610 
1611 	res = read_vm_availability_msg(fdt, sess);
1612 	if (res)
1613 		return res;
1614 
1615 	return TEE_SUCCESS;
1616 }
1617 
1618 static TEE_Result sp_first_run(struct sp_session *sess)
1619 {
1620 	TEE_Result res = TEE_SUCCESS;
1621 	struct thread_smc_args args = { };
1622 	struct sp_ctx *ctx = NULL;
1623 	vaddr_t boot_info_va = 0;
1624 	size_t boot_info_size = 0;
1625 	void *fdt_copy = NULL;
1626 	size_t fdt_size = 0;
1627 
1628 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1629 	ts_push_current_session(&sess->ts_sess);
1630 	sess->is_initialized = false;
1631 
1632 	/*
1633 	 * Load relative memory regions must be handled before doing any other
1634 	 * mapping to prevent conflicts in the VA space.
1635 	 */
1636 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1637 	if (res) {
1638 		ts_pop_current_session();
1639 		return res;
1640 	}
1641 
1642 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1643 	if (res)
1644 		goto out;
1645 
1646 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1647 	if (res)
1648 		goto out;
1649 
1650 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1651 	if (res)
1652 		goto out;
1653 
1654 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1655 		res = handle_tpm_event_log(ctx, fdt_copy);
1656 		if (res)
1657 			goto out;
1658 	}
1659 
1660 	res = handle_hw_features(fdt_copy);
1661 	if (res)
1662 		goto out;
1663 
1664 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1665 				       &boot_info_size, sess->rxtx.ffa_vers);
1666 	if (res)
1667 		goto out;
1668 
1669 	ts_pop_current_session();
1670 
1671 	res = sp_enter(&args, sess);
1672 	if (res) {
1673 		ts_push_current_session(&sess->ts_sess);
1674 		goto out;
1675 	}
1676 
1677 	spmc_sp_msg_handler(&args, sess);
1678 
1679 	ts_push_current_session(&sess->ts_sess);
1680 	sess->is_initialized = true;
1681 
1682 out:
1683 	/* Free the boot info page from the SP memory */
1684 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1685 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1686 	ts_pop_current_session();
1687 
1688 	return res;
1689 }
1690 
1691 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
1692 {
1693 	TEE_Result res = TEE_SUCCESS;
1694 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1695 
1696 	ctx->sp_regs.x[0] = args->a0;
1697 	ctx->sp_regs.x[1] = args->a1;
1698 	ctx->sp_regs.x[2] = args->a2;
1699 	ctx->sp_regs.x[3] = args->a3;
1700 	ctx->sp_regs.x[4] = args->a4;
1701 	ctx->sp_regs.x[5] = args->a5;
1702 	ctx->sp_regs.x[6] = args->a6;
1703 	ctx->sp_regs.x[7] = args->a7;
1704 #ifdef CFG_TA_PAUTH
1705 	ctx->sp_regs.apiakey_hi = ctx->uctx.keys.apia_hi;
1706 	ctx->sp_regs.apiakey_lo = ctx->uctx.keys.apia_lo;
1707 #endif
1708 
1709 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1710 
1711 	args->a0 = ctx->sp_regs.x[0];
1712 	args->a1 = ctx->sp_regs.x[1];
1713 	args->a2 = ctx->sp_regs.x[2];
1714 	args->a3 = ctx->sp_regs.x[3];
1715 	args->a4 = ctx->sp_regs.x[4];
1716 	args->a5 = ctx->sp_regs.x[5];
1717 	args->a6 = ctx->sp_regs.x[6];
1718 	args->a7 = ctx->sp_regs.x[7];
1719 
1720 	return res;
1721 }
1722 
1723 /*
1724  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1725  * active on NS interrupt than the callee, the callee must inherit the caller's
1726  * configuration.
1727  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1728  * action will be MIN([self action], [caller's action]) which is stored in the
1729  * ns_int_mode_inherited field.
1730  */
1731 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1732 						 struct ts_session *caller,
1733 						 uint64_t *cpsr)
1734 {
1735 	if (caller) {
1736 		struct sp_session *caller_sp = to_sp_session(caller);
1737 
1738 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1739 					       s->ns_int_mode);
1740 	} else {
1741 		s->ns_int_mode_inherited = s->ns_int_mode;
1742 	}
1743 
1744 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1745 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1746 				   ARM32_CPSR_F_SHIFT);
1747 	else
1748 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1749 				    ARM32_CPSR_F_SHIFT);
1750 }
1751 
1752 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1753 				      uint32_t cmd __unused)
1754 {
1755 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1756 	TEE_Result res = TEE_SUCCESS;
1757 	uint32_t exceptions = 0;
1758 	struct sp_session *sp_s = to_sp_session(s);
1759 	struct ts_session *sess = NULL;
1760 	struct thread_ctx_regs *sp_regs = NULL;
1761 	uint32_t thread_id = THREAD_ID_INVALID;
1762 	struct ts_session *caller = NULL;
1763 	uint32_t rpc_target_info = 0;
1764 	uint32_t panicked = false;
1765 	uint32_t panic_code = 0;
1766 
1767 	sp_regs = &ctx->sp_regs;
1768 	ts_push_current_session(s);
1769 
1770 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1771 
1772 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1773 	caller = ts_get_calling_session();
1774 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1775 
1776 	/*
1777 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1778 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1779 	 */
1780 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1781 	thread_id = thread_get_id();
1782 	assert(thread_id <= UINT16_MAX);
1783 	thread_get_tsd()->rpc_target_info =
1784 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1785 
1786 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1787 
1788 	/* Restore rpc_target_info */
1789 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1790 
1791 	thread_unmask_exceptions(exceptions);
1792 
1793 	thread_user_clear_vfp(&ctx->uctx);
1794 
1795 	if (panicked) {
1796 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1797 		abort_print_current_ts();
1798 
1799 		sess = ts_pop_current_session();
1800 		cpu_spin_lock(&sp_s->spinlock);
1801 		sp_s->state = sp_dead;
1802 		cpu_spin_unlock(&sp_s->spinlock);
1803 
1804 		return TEE_ERROR_TARGET_DEAD;
1805 	}
1806 
1807 	sess = ts_pop_current_session();
1808 	assert(sess == s);
1809 
1810 	return res;
1811 }
1812 
1813 /* We currently don't support 32 bits */
1814 #ifdef ARM64
1815 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1816 				   struct thread_ctx_regs *sp_regs)
1817 {
1818 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1819 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1820 	sp_regs->pc = regs->elr;
1821 	sp_regs->sp = regs->sp_el0;
1822 }
1823 #endif
1824 
1825 static bool sp_handle_scall(struct thread_scall_regs *regs)
1826 {
1827 	struct ts_session *ts = ts_get_current_session();
1828 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1829 	struct sp_session *s = uctx->open_session;
1830 
1831 	assert(s);
1832 
1833 	sp_svc_store_registers(regs, &uctx->sp_regs);
1834 
1835 	regs->x0 = 0;
1836 	regs->x1 = 0; /* panic */
1837 	regs->x2 = 0; /* panic code */
1838 
1839 	/*
1840 	 * All the registers of the SP are saved in the SP session by the SVC
1841 	 * handler.
1842 	 * We always return to S-El1 after handling the SVC. We will continue
1843 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1844 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1845 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1846 	 * afterward used by the spmc_sp_msg_handler() to handle the
1847 	 * FF-A message send by the SP.
1848 	 */
1849 	return false;
1850 }
1851 
1852 static void sp_dump_state(struct ts_ctx *ctx)
1853 {
1854 	struct sp_ctx *utc = to_sp_ctx(ctx);
1855 
1856 	if (utc->uctx.dump_entry_func) {
1857 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1858 
1859 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1860 			return;
1861 	}
1862 
1863 	user_mode_ctx_print_mappings(&utc->uctx);
1864 }
1865 
1866 static const struct ts_ops sp_ops = {
1867 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1868 	.handle_scall = sp_handle_scall,
1869 	.dump_state = sp_dump_state,
1870 };
1871 
1872 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1873 {
1874 	enum teecore_memtypes mtype = MEM_AREA_TA_RAM;
1875 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1876 	struct fip_sp *sp = NULL;
1877 	uint64_t sp_fdt_end = 0;
1878 	size_t sp_pkg_size = 0;
1879 	vaddr_t sp_pkg_va = 0;
1880 
1881 	/* Process the first page which contains the SP package header */
1882 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1883 	if (!sp_pkg_va) {
1884 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1885 		return TEE_ERROR_GENERIC;
1886 	}
1887 
1888 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1889 
1890 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1891 		EMSG("Invalid SP package magic");
1892 		return TEE_ERROR_BAD_FORMAT;
1893 	}
1894 
1895 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1896 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1897 		EMSG("Invalid SP header version");
1898 		return TEE_ERROR_BAD_FORMAT;
1899 	}
1900 
1901 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1902 			 &sp_pkg_size)) {
1903 		EMSG("Invalid SP package size");
1904 		return TEE_ERROR_BAD_FORMAT;
1905 	}
1906 
1907 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1908 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1909 		EMSG("Invalid SP manifest size");
1910 		return TEE_ERROR_BAD_FORMAT;
1911 	}
1912 
1913 	/* Process the whole SP package now that the size is known */
1914 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1915 	if (!sp_pkg_va) {
1916 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1917 		return TEE_ERROR_GENERIC;
1918 	}
1919 
1920 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1921 
1922 	sp = calloc(1, sizeof(struct fip_sp));
1923 	if (!sp)
1924 		return TEE_ERROR_OUT_OF_MEMORY;
1925 
1926 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1927 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1928 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1929 	sp->sp_img.image.flags = 0;
1930 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1931 
1932 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1933 
1934 	return TEE_SUCCESS;
1935 }
1936 
1937 static TEE_Result fip_sp_init_all(void)
1938 {
1939 	TEE_Result res = TEE_SUCCESS;
1940 	uint64_t sp_pkg_addr = 0;
1941 	const void *fdt = NULL;
1942 	TEE_UUID sp_uuid = { };
1943 	int sp_pkgs_node = 0;
1944 	int subnode = 0;
1945 	int root = 0;
1946 
1947 	fdt = get_manifest_dt();
1948 	if (!fdt) {
1949 		EMSG("No SPMC manifest found");
1950 		return TEE_ERROR_GENERIC;
1951 	}
1952 
1953 	root = fdt_path_offset(fdt, "/");
1954 	if (root < 0)
1955 		return TEE_ERROR_BAD_FORMAT;
1956 
1957 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1958 		return TEE_ERROR_BAD_FORMAT;
1959 
1960 	/* SP packages are optional, it's not an error if we don't find any */
1961 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1962 	if (sp_pkgs_node < 0)
1963 		return TEE_SUCCESS;
1964 
1965 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1966 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1967 		if (res) {
1968 			EMSG("Invalid FIP SP load address");
1969 			return res;
1970 		}
1971 
1972 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1973 		if (res) {
1974 			EMSG("Invalid FIP SP uuid");
1975 			return res;
1976 		}
1977 
1978 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1979 		if (res) {
1980 			EMSG("Invalid FIP SP package");
1981 			return res;
1982 		}
1983 	}
1984 
1985 	return TEE_SUCCESS;
1986 }
1987 
1988 static void fip_sp_deinit_all(void)
1989 {
1990 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1991 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
1992 
1993 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
1994 		free(sp);
1995 	}
1996 }
1997 
1998 static TEE_Result sp_init_all(void)
1999 {
2000 	TEE_Result res = TEE_SUCCESS;
2001 	const struct sp_image *sp = NULL;
2002 	const struct fip_sp *fip_sp = NULL;
2003 	char __maybe_unused msg[60] = { '\0', };
2004 	struct sp_session *s = NULL;
2005 	struct sp_session *prev_sp = NULL;
2006 
2007 	for_each_secure_partition(sp) {
2008 		if (sp->image.uncompressed_size)
2009 			snprintf(msg, sizeof(msg),
2010 				 " (compressed, uncompressed %u)",
2011 				 sp->image.uncompressed_size);
2012 		else
2013 			msg[0] = '\0';
2014 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
2015 		     sp->image.size, msg);
2016 
2017 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2018 
2019 		if (res != TEE_SUCCESS) {
2020 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2021 			     &sp->image.uuid, res);
2022 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2023 				panic();
2024 		}
2025 	}
2026 
2027 	res = fip_sp_init_all();
2028 	if (res)
2029 		panic("Failed initializing FIP SPs");
2030 
2031 	for_each_fip_sp(fip_sp) {
2032 		sp = &fip_sp->sp_img;
2033 
2034 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
2035 		     sp->image.size);
2036 
2037 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2038 
2039 		if (res != TEE_SUCCESS) {
2040 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2041 			     &sp->image.uuid, res);
2042 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2043 				panic();
2044 		}
2045 	}
2046 
2047 	/*
2048 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
2049 	 * loader, so the original images (loaded by BL2) are not needed anymore
2050 	 */
2051 	fip_sp_deinit_all();
2052 
2053 	/*
2054 	 * Now that all SPs are loaded, check through the boot order values,
2055 	 * and warn in case there is a non-unique value.
2056 	 */
2057 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2058 		/* User specified boot-order values are uint16 */
2059 		if (s->boot_order > UINT16_MAX)
2060 			break;
2061 
2062 		if (prev_sp && prev_sp->boot_order == s->boot_order)
2063 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
2064 			     &prev_sp->ts_sess.ctx->uuid,
2065 			     &s->ts_sess.ctx->uuid);
2066 
2067 		prev_sp = s;
2068 	}
2069 
2070 	/* Continue the initialization and run the SP */
2071 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2072 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
2073 
2074 		res = sp_first_run(s);
2075 		if (res != TEE_SUCCESS) {
2076 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
2077 			     s->endpoint_id, res);
2078 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2079 				panic();
2080 		}
2081 	}
2082 
2083 	return TEE_SUCCESS;
2084 }
2085 
2086 boot_final(sp_init_all);
2087 
2088 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
2089 					struct ts_store_handle **h)
2090 {
2091 	return emb_ts_open(uuid, h, find_secure_partition);
2092 }
2093 
2094 REGISTER_SP_STORE(2) = {
2095 	.description = "SP store",
2096 	.open = secure_partition_open,
2097 	.get_size = emb_ts_get_size,
2098 	.get_tag = emb_ts_get_tag,
2099 	.read = emb_ts_read,
2100 	.close = emb_ts_close,
2101 };
2102