xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision c9dad4194f973bc1281acee20bab2182a7742bce)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2022, Arm Limited.
4  */
5 #include <bench.h>
6 #include <crypto/crypto.h>
7 #include <initcall.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/vm.h>
23 #include <optee_ffa.h>
24 #include <stdio.h>
25 #include <string.h>
26 #include <tee_api_types.h>
27 #include <tee/uuid.h>
28 #include <trace.h>
29 #include <types_ext.h>
30 #include <utee_defines.h>
31 #include <util.h>
32 #include <zlib.h>
33 
34 #define SP_MANIFEST_ATTR_READ		BIT(0)
35 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
36 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
37 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
38 
39 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
40 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
41 					 SP_MANIFEST_ATTR_WRITE)
42 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
43 					 SP_MANIFEST_ATTR_EXEC)
44 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
45 					 SP_MANIFEST_ATTR_WRITE | \
46 					 SP_MANIFEST_ATTR_EXEC)
47 
48 const struct ts_ops sp_ops;
49 
50 /* List that holds all of the loaded SP's */
51 static struct sp_sessions_head open_sp_sessions =
52 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
53 
54 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
55 {
56 	const struct sp_image *sp = NULL;
57 
58 	for_each_secure_partition(sp) {
59 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
60 			return &sp->image;
61 	}
62 	return NULL;
63 }
64 
65 bool is_sp_ctx(struct ts_ctx *ctx)
66 {
67 	return ctx && (ctx->ops == &sp_ops);
68 }
69 
70 static void set_sp_ctx_ops(struct ts_ctx *ctx)
71 {
72 	ctx->ops = &sp_ops;
73 }
74 
75 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id)
76 {
77 	struct sp_session *s = NULL;
78 
79 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
80 		if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) {
81 			if (s->state == sp_dead)
82 				return TEE_ERROR_TARGET_DEAD;
83 
84 			*session_id  = s->endpoint_id;
85 			return TEE_SUCCESS;
86 		}
87 	}
88 
89 	return TEE_ERROR_ITEM_NOT_FOUND;
90 }
91 
92 struct sp_session *sp_get_session(uint32_t session_id)
93 {
94 	struct sp_session *s = NULL;
95 
96 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
97 		if (s->endpoint_id == session_id)
98 			return s;
99 	}
100 
101 	return NULL;
102 }
103 
104 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi,
105 				     size_t *elem_count)
106 {
107 	size_t in_count = *elem_count;
108 	struct sp_session *s = NULL;
109 	size_t count = 0;
110 
111 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
112 		if (s->state == sp_dead)
113 			continue;
114 		if (count < in_count) {
115 			spmc_fill_partition_entry(fpi, s->endpoint_id, 1);
116 			fpi++;
117 		}
118 		count++;
119 	}
120 
121 	*elem_count = count;
122 	if (count > in_count)
123 		return TEE_ERROR_SHORT_BUFFER;
124 
125 	return TEE_SUCCESS;
126 }
127 
128 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
129 			     struct user_mode_ctx *uctx)
130 {
131 	/*
132 	 * Check that we have access to the region if it is supposed to be
133 	 * mapped to the current context.
134 	 */
135 	if (uctx) {
136 		struct vm_region *region = NULL;
137 
138 		/* Make sure that each mobj belongs to the SP */
139 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
140 			if (region->mobj == mem->mobj)
141 				break;
142 		}
143 
144 		if (!region)
145 			return false;
146 	}
147 
148 	/* Check that it is not shared with another SP */
149 	return !sp_mem_is_shared(mem);
150 }
151 
152 static uint16_t new_session_id(struct sp_sessions_head *open_sessions)
153 {
154 	struct sp_session *last = NULL;
155 	uint16_t id = SPMC_ENDPOINT_ID + 1;
156 
157 	last = TAILQ_LAST(open_sessions, sp_sessions_head);
158 	if (last)
159 		id = last->endpoint_id + 1;
160 
161 	assert(id > SPMC_ENDPOINT_ID);
162 	return id;
163 }
164 
165 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s)
166 {
167 	TEE_Result res = TEE_SUCCESS;
168 	struct sp_ctx *spc = NULL;
169 
170 	/* Register context */
171 	spc = calloc(1, sizeof(struct sp_ctx));
172 	if (!spc)
173 		return TEE_ERROR_OUT_OF_MEMORY;
174 
175 	spc->uctx.ts_ctx = &spc->ts_ctx;
176 	spc->open_session = s;
177 	s->ts_sess.ctx = &spc->ts_ctx;
178 	spc->ts_ctx.uuid = *uuid;
179 
180 	res = vm_info_init(&spc->uctx);
181 	if (res)
182 		goto err;
183 
184 	set_sp_ctx_ops(&spc->ts_ctx);
185 
186 	return TEE_SUCCESS;
187 
188 err:
189 	free(spc);
190 	return res;
191 }
192 
193 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
194 				    const TEE_UUID *uuid,
195 				    struct sp_session **sess)
196 {
197 	TEE_Result res = TEE_SUCCESS;
198 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
199 
200 	if (!s)
201 		return TEE_ERROR_OUT_OF_MEMORY;
202 
203 	s->endpoint_id = new_session_id(open_sessions);
204 	if (!s->endpoint_id) {
205 		res = TEE_ERROR_OVERFLOW;
206 		goto err;
207 	}
208 
209 	DMSG("Loading Secure Partition %pUl", (void *)uuid);
210 	res = sp_create_ctx(uuid, s);
211 	if (res)
212 		goto err;
213 
214 	TAILQ_INSERT_TAIL(open_sessions, s, link);
215 	*sess = s;
216 	return TEE_SUCCESS;
217 
218 err:
219 	free(s);
220 	return res;
221 }
222 
223 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
224 {
225 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
226 
227 	memset(sp_regs, 0, sizeof(*sp_regs));
228 	sp_regs->sp = ctx->uctx.stack_ptr;
229 	sp_regs->pc = ctx->uctx.entry_func;
230 
231 	return TEE_SUCCESS;
232 }
233 
234 TEE_Result sp_map_shared(struct sp_session *s,
235 			 struct sp_mem_receiver *receiver,
236 			 struct sp_mem *smem,
237 			 uint64_t *va)
238 {
239 	TEE_Result res = TEE_SUCCESS;
240 	struct sp_ctx *ctx = NULL;
241 	uint32_t perm = TEE_MATTR_UR;
242 	struct sp_mem_map_region *reg = NULL;
243 
244 	ctx = to_sp_ctx(s->ts_sess.ctx);
245 
246 	/* Get the permission */
247 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
248 		perm |= TEE_MATTR_UX;
249 
250 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
251 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
252 			return TEE_ERROR_ACCESS_CONFLICT;
253 
254 		perm |= TEE_MATTR_UW;
255 	}
256 	/*
257 	 * Currently we don't support passing a va. We can't guarantee that the
258 	 * full region will be mapped in a contiguous region. A smem->region can
259 	 * have multiple mobj for one share. Currently there doesn't seem to be
260 	 * an option to guarantee that these will be mapped in a contiguous va
261 	 * space.
262 	 */
263 	if (*va)
264 		return TEE_ERROR_NOT_SUPPORTED;
265 
266 	SLIST_FOREACH(reg, &smem->regions, link) {
267 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
268 			     perm, 0, reg->mobj, reg->page_offset);
269 
270 		if (res != TEE_SUCCESS) {
271 			EMSG("Failed to map memory region %#"PRIx32, res);
272 			return res;
273 		}
274 	}
275 	return TEE_SUCCESS;
276 }
277 
278 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
279 {
280 	TEE_Result res = TEE_SUCCESS;
281 	vaddr_t vaddr = 0;
282 	size_t len = 0;
283 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
284 	struct sp_mem_map_region *reg = NULL;
285 
286 	SLIST_FOREACH(reg, &smem->regions, link) {
287 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
288 					       reg->mobj);
289 		len = reg->page_count * SMALL_PAGE_SIZE;
290 
291 		res = vm_unmap(&ctx->uctx, vaddr, len);
292 		if (res != TEE_SUCCESS)
293 			return res;
294 	}
295 
296 	return TEE_SUCCESS;
297 }
298 
299 static TEE_Result sp_open_session(struct sp_session **sess,
300 				  struct sp_sessions_head *open_sessions,
301 				  const TEE_UUID *uuid)
302 {
303 	TEE_Result res = TEE_SUCCESS;
304 	struct sp_session *s = NULL;
305 	struct sp_ctx *ctx = NULL;
306 
307 	if (!find_secure_partition(uuid))
308 		return TEE_ERROR_ITEM_NOT_FOUND;
309 
310 	res = sp_create_session(open_sessions, uuid, &s);
311 	if (res != TEE_SUCCESS) {
312 		DMSG("sp_create_session failed %#"PRIx32, res);
313 		return res;
314 	}
315 
316 	ctx = to_sp_ctx(s->ts_sess.ctx);
317 	assert(ctx);
318 	if (!ctx)
319 		return TEE_ERROR_TARGET_DEAD;
320 	*sess = s;
321 
322 	ts_push_current_session(&s->ts_sess);
323 	/* Load the SP using ldelf. */
324 	ldelf_load_ldelf(&ctx->uctx);
325 	res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
326 
327 	if (res != TEE_SUCCESS) {
328 		EMSG("Failed. loading SP using ldelf %#"PRIx32, res);
329 		ts_pop_current_session();
330 		return TEE_ERROR_TARGET_DEAD;
331 	}
332 
333 	/* Make the SP ready for its first run */
334 	s->state = sp_idle;
335 	s->caller_id = 0;
336 	sp_init_set_registers(ctx);
337 	ts_pop_current_session();
338 
339 	return TEE_SUCCESS;
340 }
341 
342 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
343 				uint64_t *value)
344 {
345 	const fdt64_t *p = NULL;
346 	int len = 0;
347 
348 	p = fdt_getprop(fdt, node, property, &len);
349 	if (!p || len != sizeof(*p))
350 		return TEE_ERROR_ITEM_NOT_FOUND;
351 
352 	*value = fdt64_ld(p);
353 
354 	return TEE_SUCCESS;
355 }
356 
357 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
358 				uint32_t *value)
359 {
360 	const fdt32_t *p = NULL;
361 	int len = 0;
362 
363 	p = fdt_getprop(fdt, node, property, &len);
364 	if (!p || len != sizeof(*p))
365 		return TEE_ERROR_ITEM_NOT_FOUND;
366 
367 	*value = fdt32_to_cpu(*p);
368 
369 	return TEE_SUCCESS;
370 }
371 
372 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
373 				 const char *property, TEE_UUID *uuid)
374 {
375 	uint32_t uuid_array[4] = { 0 };
376 	const fdt32_t *p = NULL;
377 	int len = 0;
378 	int i = 0;
379 
380 	p = fdt_getprop(fdt, node, property, &len);
381 	if (!p || len != sizeof(TEE_UUID))
382 		return TEE_ERROR_ITEM_NOT_FOUND;
383 
384 	for (i = 0; i < 4; i++)
385 		uuid_array[i] = fdt32_to_cpu(p[i]);
386 
387 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
388 
389 	return TEE_SUCCESS;
390 }
391 
392 static TEE_Result check_fdt(const void * const fdt, const TEE_UUID *uuid)
393 {
394 	const struct fdt_property *description = NULL;
395 	int description_name_len = 0;
396 	TEE_UUID fdt_uuid = { };
397 
398 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
399 		EMSG("Failed loading SP, manifest not found");
400 		return TEE_ERROR_BAD_PARAMETERS;
401 	}
402 
403 	description = fdt_get_property(fdt, 0, "description",
404 				       &description_name_len);
405 	if (description)
406 		DMSG("Loading SP: %s", description->data);
407 
408 	if (sp_dt_get_uuid(fdt, 0, "uuid", &fdt_uuid)) {
409 		EMSG("Missing or invalid UUID in SP manifest");
410 		return TEE_ERROR_BAD_FORMAT;
411 	}
412 
413 	if (memcmp(uuid, &fdt_uuid, sizeof(fdt_uuid))) {
414 		EMSG("Failed loading SP, UUID mismatch");
415 		return TEE_ERROR_BAD_FORMAT;
416 	}
417 
418 	return TEE_SUCCESS;
419 }
420 
421 /*
422  * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy
423  * the fdt into the allocated page(s) and return a pointer to the new location
424  * of the fdt. This pointer can be used to update data inside the fdt.
425  */
426 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args,
427 			       const void * const input_fdt, vaddr_t *va,
428 			       size_t *num_pgs, void **fdt_copy)
429 {
430 	struct sp_ffa_init_info *info = NULL;
431 	int nvp_count = 1;
432 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
433 	size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count;
434 	size_t info_size = sizeof(*info) + nvp_size;
435 	size_t fdt_size = total_size - info_size;
436 	TEE_Result res = TEE_SUCCESS;
437 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
438 	struct fobj *f = NULL;
439 	struct mobj *m = NULL;
440 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
441 
442 	*num_pgs = total_size / SMALL_PAGE_SIZE;
443 
444 	f = fobj_sec_mem_alloc(*num_pgs);
445 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
446 
447 	fobj_put(f);
448 	if (!m)
449 		return TEE_ERROR_OUT_OF_MEMORY;
450 
451 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
452 	mobj_put(m);
453 	if (res)
454 		return res;
455 
456 	info = (struct sp_ffa_init_info *)*va;
457 
458 	/* magic field is 4 bytes, we don't copy /0 byte. */
459 	memcpy(&info->magic, "FF-A", 4);
460 	info->count = nvp_count;
461 	args->a0 = (vaddr_t)info;
462 
463 	/*
464 	 * Store the fdt after the boot_info and store the pointer in the
465 	 * first element.
466 	 */
467 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
468 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
469 	info->nvp[0].value = *va + info_size;
470 	info->nvp[0].size = fdt_size;
471 	*fdt_copy = (void *)info->nvp[0].value;
472 
473 	if (fdt_open_into(input_fdt, *fdt_copy, fdt_size))
474 		return TEE_ERROR_GENERIC;
475 
476 	return TEE_SUCCESS;
477 }
478 
479 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
480 {
481 	int node = 0;
482 	int subnode = 0;
483 	TEE_Result res = TEE_SUCCESS;
484 	const char *dt_device_match_table = {
485 		"arm,ffa-manifest-device-regions",
486 	};
487 
488 	/*
489 	 * Device regions are optional in the SP manifest, it's not an error if
490 	 * we don't find any
491 	 */
492 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
493 	if (node < 0)
494 		return TEE_SUCCESS;
495 
496 	fdt_for_each_subnode(subnode, fdt, node) {
497 		uint64_t base_addr = 0;
498 		uint32_t pages_cnt = 0;
499 		uint32_t attributes = 0;
500 		struct mobj *m = NULL;
501 		bool is_secure = true;
502 		uint32_t perm = 0;
503 		vaddr_t va = 0;
504 		unsigned int idx = 0;
505 
506 		/*
507 		 * Physical base address of a device MMIO region.
508 		 * Currently only physically contiguous region is supported.
509 		 */
510 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
511 			EMSG("Mandatory field is missing: base-address");
512 			return TEE_ERROR_BAD_FORMAT;
513 		}
514 
515 		/* Total size of MMIO region as count of 4K pages */
516 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
517 			EMSG("Mandatory field is missing: pages-count");
518 			return TEE_ERROR_BAD_FORMAT;
519 		}
520 
521 		/* Data access, instruction access and security attributes */
522 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
523 			EMSG("Mandatory field is missing: attributes");
524 			return TEE_ERROR_BAD_FORMAT;
525 		}
526 
527 		/* Check instruction and data access permissions */
528 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
529 		case SP_MANIFEST_ATTR_RO:
530 			perm = TEE_MATTR_UR;
531 			break;
532 		case SP_MANIFEST_ATTR_RW:
533 			perm = TEE_MATTR_URW;
534 			break;
535 		default:
536 			EMSG("Invalid memory access permissions");
537 			return TEE_ERROR_BAD_FORMAT;
538 		}
539 
540 		/*
541 		 * The SP is a secure endpoint, security attribute can be
542 		 * secure or non-secure
543 		 */
544 		if (attributes & SP_MANIFEST_ATTR_NSEC)
545 			is_secure = false;
546 
547 		/* Memory attributes must be Device-nGnRnE */
548 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
549 				    is_secure);
550 		if (!m)
551 			return TEE_ERROR_OUT_OF_MEMORY;
552 
553 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
554 		if (res) {
555 			mobj_put(m);
556 			return res;
557 		}
558 
559 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
560 			     perm, 0, m, 0);
561 		mobj_put(m);
562 		if (res)
563 			return res;
564 
565 		/*
566 		 * Overwrite the device region's PA in the fdt with the VA. This
567 		 * fdt will be passed to the SP.
568 		 */
569 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
570 
571 		/*
572 		 * Unmap the region if the overwrite failed since the SP won't
573 		 * be able to access it without knowing the VA.
574 		 */
575 		if (res) {
576 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
577 			return res;
578 		}
579 	}
580 
581 	return TEE_SUCCESS;
582 }
583 
584 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
585 {
586 	int node = 0;
587 	int subnode = 0;
588 	tee_mm_entry_t *mm = NULL;
589 	TEE_Result res = TEE_SUCCESS;
590 
591 	/*
592 	 * Memory regions are optional in the SP manifest, it's not an error if
593 	 * we don't find any.
594 	 */
595 	node = fdt_node_offset_by_compatible(fdt, 0,
596 					     "arm,ffa-manifest-memory-regions");
597 	if (node < 0)
598 		return TEE_SUCCESS;
599 
600 	fdt_for_each_subnode(subnode, fdt, node) {
601 		bool alloc_needed = false;
602 		uint32_t attributes = 0;
603 		uint64_t base_addr = 0;
604 		uint32_t pages_cnt = 0;
605 		bool is_secure = true;
606 		struct mobj *m = NULL;
607 		unsigned int idx = 0;
608 		uint32_t perm = 0;
609 		size_t size = 0;
610 		vaddr_t va = 0;
611 
612 		mm = NULL;
613 
614 		/*
615 		 * Base address of a memory region.
616 		 * If not present, we have to allocate the specified memory.
617 		 * If present, this field could specify a PA or VA. Currently
618 		 * only a PA is supported.
619 		 */
620 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
621 			alloc_needed = true;
622 
623 		/* Size of memory region as count of 4K pages */
624 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
625 			EMSG("Mandatory field is missing: pages-count");
626 			return TEE_ERROR_BAD_FORMAT;
627 		}
628 
629 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
630 			return TEE_ERROR_OVERFLOW;
631 
632 		/*
633 		 * Memory region attributes:
634 		 * - Instruction/data access permissions
635 		 * - Cacheability/shareability attributes
636 		 * - Security attributes
637 		 *
638 		 * Cacheability/shareability attributes can be ignored for now.
639 		 * OP-TEE only supports a single type for normal cached memory
640 		 * and currently there is no use case that would require to
641 		 * change this.
642 		 */
643 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
644 			EMSG("Mandatory field is missing: attributes");
645 			return TEE_ERROR_BAD_FORMAT;
646 		}
647 
648 		/* Check instruction and data access permissions */
649 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
650 		case SP_MANIFEST_ATTR_RO:
651 			perm = TEE_MATTR_UR;
652 			break;
653 		case SP_MANIFEST_ATTR_RW:
654 			perm = TEE_MATTR_URW;
655 			break;
656 		case SP_MANIFEST_ATTR_RX:
657 			perm = TEE_MATTR_URX;
658 			break;
659 		default:
660 			EMSG("Invalid memory access permissions");
661 			return TEE_ERROR_BAD_FORMAT;
662 		}
663 
664 		/*
665 		 * The SP is a secure endpoint, security attribute can be
666 		 * secure or non-secure.
667 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
668 		 * address is missing this attribute must be secure.
669 		 */
670 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
671 			if (alloc_needed) {
672 				EMSG("Invalid memory security attribute");
673 				return TEE_ERROR_BAD_FORMAT;
674 			}
675 			is_secure = false;
676 		}
677 
678 		if (alloc_needed) {
679 			/* Base address is missing, we have to allocate */
680 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
681 			if (!mm)
682 				return TEE_ERROR_OUT_OF_MEMORY;
683 
684 			base_addr = tee_mm_get_smem(mm);
685 		}
686 
687 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
688 				    is_secure);
689 		if (!m) {
690 			res = TEE_ERROR_OUT_OF_MEMORY;
691 			goto err_mm_free;
692 		}
693 
694 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
695 		if (res) {
696 			mobj_put(m);
697 			goto err_mm_free;
698 		}
699 
700 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
701 		mobj_put(m);
702 		if (res)
703 			goto err_mm_free;
704 
705 		/*
706 		 * Overwrite the memory region's base address in the fdt with
707 		 * the VA. This fdt will be passed to the SP.
708 		 * If the base-address field was not present in the original
709 		 * fdt, this function will create it. This doesn't cause issues
710 		 * since the necessary extra space has been allocated when
711 		 * opening the fdt.
712 		 */
713 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
714 
715 		/*
716 		 * Unmap the region if the overwrite failed since the SP won't
717 		 * be able to access it without knowing the VA.
718 		 */
719 		if (res) {
720 			vm_unmap(&ctx->uctx, va, size);
721 			goto err_mm_free;
722 		}
723 	}
724 
725 	return TEE_SUCCESS;
726 
727 err_mm_free:
728 	tee_mm_free(mm);
729 	return res;
730 }
731 
732 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
733 {
734 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
735 	uint32_t dummy_size __maybe_unused = 0;
736 	TEE_Result res = TEE_SUCCESS;
737 	size_t page_count = 0;
738 	struct fobj *f = NULL;
739 	struct mobj *m = NULL;
740 	vaddr_t log_addr = 0;
741 	size_t log_size = 0;
742 	int node = 0;
743 
744 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
745 	if (node < 0)
746 		return TEE_SUCCESS;
747 
748 	/* Checking the existence and size of the event log properties */
749 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
750 		EMSG("tpm_event_log_addr not found or has invalid size");
751 		return TEE_ERROR_BAD_FORMAT;
752 	}
753 
754 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
755 		EMSG("tpm_event_log_size not found or has invalid size");
756 		return TEE_ERROR_BAD_FORMAT;
757 	}
758 
759 	/* Validating event log */
760 	res = tpm_get_event_log_size(&log_size);
761 	if (res)
762 		return res;
763 
764 	if (!log_size) {
765 		EMSG("Empty TPM event log was provided");
766 		return TEE_ERROR_ITEM_NOT_FOUND;
767 	}
768 
769 	/* Allocating memory area for the event log to share with the SP */
770 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
771 
772 	f = fobj_sec_mem_alloc(page_count);
773 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
774 	fobj_put(f);
775 	if (!m)
776 		return TEE_ERROR_OUT_OF_MEMORY;
777 
778 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
779 	mobj_put(m);
780 	if (res)
781 		return res;
782 
783 	/* Copy event log */
784 	res = tpm_get_event_log((void *)log_addr, &log_size);
785 	if (res)
786 		goto err_unmap;
787 
788 	/* Setting event log details in the manifest */
789 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
790 	if (res)
791 		goto err_unmap;
792 
793 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
794 	if (res)
795 		goto err_unmap;
796 
797 	return TEE_SUCCESS;
798 
799 err_unmap:
800 	vm_unmap(&ctx->uctx, log_addr, log_size);
801 
802 	return res;
803 }
804 
805 static TEE_Result sp_init_uuid(const TEE_UUID *uuid, const void * const fdt)
806 {
807 	TEE_Result res = TEE_SUCCESS;
808 	struct sp_session *sess = NULL;
809 	struct thread_smc_args args = { };
810 	vaddr_t va = 0;
811 	size_t num_pgs = 0;
812 	struct sp_ctx *ctx = NULL;
813 	void *fdt_copy = NULL;
814 
815 	res = sp_open_session(&sess,
816 			      &open_sp_sessions,
817 			      uuid);
818 	if (res)
819 		return res;
820 
821 	res = check_fdt(fdt, uuid);
822 	if (res)
823 		return res;
824 
825 	ctx = to_sp_ctx(sess->ts_sess.ctx);
826 	ts_push_current_session(&sess->ts_sess);
827 
828 	res = sp_init_info(ctx, &args, fdt, &va, &num_pgs, &fdt_copy);
829 	if (res)
830 		goto out;
831 
832 	res = handle_fdt_dev_regions(ctx, fdt_copy);
833 	if (res)
834 		goto out;
835 
836 	res = handle_fdt_mem_regions(ctx, fdt_copy);
837 	if (res)
838 		goto out;
839 
840 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
841 		res = handle_tpm_event_log(ctx, fdt_copy);
842 		if (res)
843 			goto out;
844 	}
845 
846 	ts_pop_current_session();
847 
848 	if (sp_enter(&args, sess)) {
849 		vm_unmap(&ctx->uctx, va, num_pgs);
850 		return FFA_ABORTED;
851 	}
852 
853 	spmc_sp_msg_handler(&args, sess);
854 
855 	ts_push_current_session(&sess->ts_sess);
856 out:
857 	/* Free the boot info page from the SP memory */
858 	vm_unmap(&ctx->uctx, va, num_pgs);
859 	ts_pop_current_session();
860 
861 	return res;
862 }
863 
864 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
865 {
866 	TEE_Result res = FFA_OK;
867 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
868 
869 	ctx->sp_regs.x[0] = args->a0;
870 	ctx->sp_regs.x[1] = args->a1;
871 	ctx->sp_regs.x[2] = args->a2;
872 	ctx->sp_regs.x[3] = args->a3;
873 	ctx->sp_regs.x[4] = args->a4;
874 	ctx->sp_regs.x[5] = args->a5;
875 	ctx->sp_regs.x[6] = args->a6;
876 	ctx->sp_regs.x[7] = args->a7;
877 
878 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
879 
880 	args->a0 = ctx->sp_regs.x[0];
881 	args->a1 = ctx->sp_regs.x[1];
882 	args->a2 = ctx->sp_regs.x[2];
883 	args->a3 = ctx->sp_regs.x[3];
884 	args->a4 = ctx->sp_regs.x[4];
885 	args->a5 = ctx->sp_regs.x[5];
886 	args->a6 = ctx->sp_regs.x[6];
887 	args->a7 = ctx->sp_regs.x[7];
888 
889 	return res;
890 }
891 
892 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
893 				      uint32_t cmd __unused)
894 {
895 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
896 	TEE_Result res = TEE_SUCCESS;
897 	uint32_t exceptions = 0;
898 	uint64_t cpsr = 0;
899 	struct sp_session *sp_s = to_sp_session(s);
900 	struct ts_session *sess = NULL;
901 	struct thread_ctx_regs *sp_regs = NULL;
902 	uint32_t panicked = false;
903 	uint32_t panic_code = 0;
904 
905 	bm_timestamp();
906 
907 	sp_regs = &ctx->sp_regs;
908 	ts_push_current_session(s);
909 
910 	cpsr = sp_regs->cpsr;
911 	sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
912 
913 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
914 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
915 	sp_regs->cpsr = cpsr;
916 	thread_unmask_exceptions(exceptions);
917 
918 	thread_user_clear_vfp(&ctx->uctx);
919 
920 	if (panicked) {
921 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
922 		abort_print_current_ts();
923 
924 		sess = ts_pop_current_session();
925 		cpu_spin_lock(&sp_s->spinlock);
926 		sp_s->state = sp_dead;
927 		cpu_spin_unlock(&sp_s->spinlock);
928 
929 		return TEE_ERROR_TARGET_DEAD;
930 	}
931 
932 	sess = ts_pop_current_session();
933 	assert(sess == s);
934 
935 	bm_timestamp();
936 
937 	return res;
938 }
939 
940 /* We currently don't support 32 bits */
941 #ifdef ARM64
942 static void sp_svc_store_registers(struct thread_svc_regs *regs,
943 				   struct thread_ctx_regs *sp_regs)
944 {
945 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
946 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
947 	sp_regs->pc = regs->elr;
948 	sp_regs->sp = regs->sp_el0;
949 }
950 #endif
951 
952 static bool sp_handle_svc(struct thread_svc_regs *regs)
953 {
954 	struct ts_session *ts = ts_get_current_session();
955 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
956 	struct sp_session *s = uctx->open_session;
957 
958 	assert(s);
959 
960 	sp_svc_store_registers(regs, &uctx->sp_regs);
961 
962 	regs->x0 = 0;
963 	regs->x1 = 0; /* panic */
964 	regs->x2 = 0; /* panic code */
965 
966 	/*
967 	 * All the registers of the SP are saved in the SP session by the SVC
968 	 * handler.
969 	 * We always return to S-El1 after handling the SVC. We will continue
970 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
971 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
972 	 * saved registers to the thread_smc_args. The thread_smc_args object is
973 	 * afterward used by the spmc_sp_msg_handler() to handle the
974 	 * FF-A message send by the SP.
975 	 */
976 	return false;
977 }
978 
979 static void sp_dump_state(struct ts_ctx *ctx)
980 {
981 	struct sp_ctx *utc = to_sp_ctx(ctx);
982 
983 	if (utc->uctx.dump_entry_func) {
984 		TEE_Result res = ldelf_dump_state(&utc->uctx);
985 
986 		if (!res || res == TEE_ERROR_TARGET_DEAD)
987 			return;
988 	}
989 
990 	user_mode_ctx_print_mappings(&utc->uctx);
991 }
992 
993 /*
994  * Note: this variable is weak just to ease breaking its dependency chain
995  * when added to the unpaged area.
996  */
997 const struct ts_ops sp_ops __weak __relrodata_unpaged("sp_ops") = {
998 	.enter_invoke_cmd = sp_enter_invoke_cmd,
999 	.handle_svc = sp_handle_svc,
1000 	.dump_state = sp_dump_state,
1001 };
1002 
1003 static TEE_Result sp_init_all(void)
1004 {
1005 	TEE_Result res = TEE_SUCCESS;
1006 	const struct sp_image *sp = NULL;
1007 	char __maybe_unused msg[60] = { '\0', };
1008 
1009 	for_each_secure_partition(sp) {
1010 		if (sp->image.uncompressed_size)
1011 			snprintf(msg, sizeof(msg),
1012 				 " (compressed, uncompressed %u)",
1013 				 sp->image.uncompressed_size);
1014 		else
1015 			msg[0] = '\0';
1016 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
1017 		     sp->image.size, msg);
1018 
1019 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1020 
1021 		if (res != TEE_SUCCESS) {
1022 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1023 			     &sp->image.uuid, res);
1024 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1025 				panic();
1026 		}
1027 	}
1028 
1029 	return TEE_SUCCESS;
1030 }
1031 
1032 boot_final(sp_init_all);
1033 
1034 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
1035 					struct ts_store_handle **h)
1036 {
1037 	return emb_ts_open(uuid, h, find_secure_partition);
1038 }
1039 
1040 REGISTER_SP_STORE(2) = {
1041 	.description = "SP store",
1042 	.open = secure_partition_open,
1043 	.get_size = emb_ts_get_size,
1044 	.get_tag = emb_ts_get_tag,
1045 	.read = emb_ts_read,
1046 	.close = emb_ts_close,
1047 };
1048