xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision c44d734b6366cbf4d12610310e809872db65f89d)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2022, Arm Limited.
4  */
5 #include <bench.h>
6 #include <crypto/crypto.h>
7 #include <initcall.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/vm.h>
23 #include <optee_ffa.h>
24 #include <stdio.h>
25 #include <string.h>
26 #include <tee_api_types.h>
27 #include <tee/uuid.h>
28 #include <trace.h>
29 #include <types_ext.h>
30 #include <utee_defines.h>
31 #include <util.h>
32 #include <zlib.h>
33 
34 #define SP_MANIFEST_ATTR_READ		BIT(0)
35 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
36 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
37 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
38 
39 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
40 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
41 					 SP_MANIFEST_ATTR_WRITE)
42 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
43 					 SP_MANIFEST_ATTR_EXEC)
44 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
45 					 SP_MANIFEST_ATTR_WRITE | \
46 					 SP_MANIFEST_ATTR_EXEC)
47 
48 const struct ts_ops sp_ops;
49 
50 /* List that holds all of the loaded SP's */
51 static struct sp_sessions_head open_sp_sessions =
52 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
53 
54 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
55 {
56 	const struct sp_image *sp = NULL;
57 
58 	for_each_secure_partition(sp) {
59 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
60 			return &sp->image;
61 	}
62 	return NULL;
63 }
64 
65 bool is_sp_ctx(struct ts_ctx *ctx)
66 {
67 	return ctx && (ctx->ops == &sp_ops);
68 }
69 
70 static void set_sp_ctx_ops(struct ts_ctx *ctx)
71 {
72 	ctx->ops = &sp_ops;
73 }
74 
75 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id)
76 {
77 	struct sp_session *s = NULL;
78 
79 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
80 		if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) {
81 			if (s->state == sp_dead)
82 				return TEE_ERROR_TARGET_DEAD;
83 
84 			*session_id  = s->endpoint_id;
85 			return TEE_SUCCESS;
86 		}
87 	}
88 
89 	return TEE_ERROR_ITEM_NOT_FOUND;
90 }
91 
92 struct sp_session *sp_get_session(uint32_t session_id)
93 {
94 	struct sp_session *s = NULL;
95 
96 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
97 		if (s->endpoint_id == session_id)
98 			return s;
99 	}
100 
101 	return NULL;
102 }
103 
104 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi,
105 				     size_t *elem_count)
106 {
107 	size_t in_count = *elem_count;
108 	struct sp_session *s = NULL;
109 	size_t count = 0;
110 
111 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
112 		if (s->state == sp_dead)
113 			continue;
114 		if (count < in_count) {
115 			spmc_fill_partition_entry(fpi, s->endpoint_id, 1);
116 			fpi++;
117 		}
118 		count++;
119 	}
120 
121 	*elem_count = count;
122 	if (count > in_count)
123 		return TEE_ERROR_SHORT_BUFFER;
124 
125 	return TEE_SUCCESS;
126 }
127 
128 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
129 			     struct user_mode_ctx *uctx)
130 {
131 	/*
132 	 * Check that we have access to the region if it is supposed to be
133 	 * mapped to the current context.
134 	 */
135 	if (uctx) {
136 		struct vm_region *region = NULL;
137 
138 		/* Make sure that each mobj belongs to the SP */
139 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
140 			if (region->mobj == mem->mobj)
141 				break;
142 		}
143 
144 		if (!region)
145 			return false;
146 	}
147 
148 	/* Check that it is not shared with another SP */
149 	return !sp_mem_is_shared(mem);
150 }
151 
152 static uint16_t new_session_id(struct sp_sessions_head *open_sessions)
153 {
154 	struct sp_session *last = NULL;
155 	uint16_t id = SPMC_ENDPOINT_ID + 1;
156 
157 	last = TAILQ_LAST(open_sessions, sp_sessions_head);
158 	if (last)
159 		id = last->endpoint_id + 1;
160 
161 	assert(id > SPMC_ENDPOINT_ID);
162 	return id;
163 }
164 
165 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s)
166 {
167 	TEE_Result res = TEE_SUCCESS;
168 	struct sp_ctx *spc = NULL;
169 
170 	/* Register context */
171 	spc = calloc(1, sizeof(struct sp_ctx));
172 	if (!spc)
173 		return TEE_ERROR_OUT_OF_MEMORY;
174 
175 	spc->uctx.ts_ctx = &spc->ts_ctx;
176 	spc->open_session = s;
177 	s->ts_sess.ctx = &spc->ts_ctx;
178 	spc->ts_ctx.uuid = *uuid;
179 
180 	res = vm_info_init(&spc->uctx);
181 	if (res)
182 		goto err;
183 
184 	set_sp_ctx_ops(&spc->ts_ctx);
185 
186 	return TEE_SUCCESS;
187 
188 err:
189 	free(spc);
190 	return res;
191 }
192 
193 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
194 				    const TEE_UUID *uuid,
195 				    struct sp_session **sess)
196 {
197 	TEE_Result res = TEE_SUCCESS;
198 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
199 
200 	if (!s)
201 		return TEE_ERROR_OUT_OF_MEMORY;
202 
203 	s->endpoint_id = new_session_id(open_sessions);
204 	if (!s->endpoint_id) {
205 		res = TEE_ERROR_OVERFLOW;
206 		goto err;
207 	}
208 
209 	DMSG("Loading Secure Partition %pUl", (void *)uuid);
210 	res = sp_create_ctx(uuid, s);
211 	if (res)
212 		goto err;
213 
214 	TAILQ_INSERT_TAIL(open_sessions, s, link);
215 	*sess = s;
216 	return TEE_SUCCESS;
217 
218 err:
219 	free(s);
220 	return res;
221 }
222 
223 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
224 {
225 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
226 
227 	memset(sp_regs, 0, sizeof(*sp_regs));
228 	sp_regs->sp = ctx->uctx.stack_ptr;
229 	sp_regs->pc = ctx->uctx.entry_func;
230 
231 	return TEE_SUCCESS;
232 }
233 
234 TEE_Result sp_map_shared(struct sp_session *s,
235 			 struct sp_mem_receiver *receiver,
236 			 struct sp_mem *smem,
237 			 uint64_t *va)
238 {
239 	TEE_Result res = TEE_SUCCESS;
240 	struct sp_ctx *ctx = NULL;
241 	uint32_t perm = TEE_MATTR_UR;
242 	struct sp_mem_map_region *reg = NULL;
243 
244 	ctx = to_sp_ctx(s->ts_sess.ctx);
245 
246 	/* Get the permission */
247 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
248 		perm |= TEE_MATTR_UX;
249 
250 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
251 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
252 			return TEE_ERROR_ACCESS_CONFLICT;
253 
254 		perm |= TEE_MATTR_UW;
255 	}
256 	/*
257 	 * Currently we don't support passing a va. We can't guarantee that the
258 	 * full region will be mapped in a contiguous region. A smem->region can
259 	 * have multiple mobj for one share. Currently there doesn't seem to be
260 	 * an option to guarantee that these will be mapped in a contiguous va
261 	 * space.
262 	 */
263 	if (*va)
264 		return TEE_ERROR_NOT_SUPPORTED;
265 
266 	SLIST_FOREACH(reg, &smem->regions, link) {
267 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
268 			     perm, 0, reg->mobj, reg->page_offset);
269 
270 		if (res != TEE_SUCCESS) {
271 			EMSG("Failed to map memory region %#"PRIx32, res);
272 			return res;
273 		}
274 	}
275 	return TEE_SUCCESS;
276 }
277 
278 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
279 {
280 	TEE_Result res = TEE_SUCCESS;
281 	vaddr_t vaddr = 0;
282 	size_t len = 0;
283 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
284 	struct sp_mem_map_region *reg = NULL;
285 
286 	SLIST_FOREACH(reg, &smem->regions, link) {
287 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
288 					       reg->mobj);
289 		len = reg->page_count * SMALL_PAGE_SIZE;
290 
291 		res = vm_unmap(&ctx->uctx, vaddr, len);
292 		if (res != TEE_SUCCESS)
293 			return res;
294 	}
295 
296 	return TEE_SUCCESS;
297 }
298 
299 static TEE_Result sp_open_session(struct sp_session **sess,
300 				  struct sp_sessions_head *open_sessions,
301 				  const TEE_UUID *uuid)
302 {
303 	TEE_Result res = TEE_SUCCESS;
304 	struct sp_session *s = NULL;
305 	struct sp_ctx *ctx = NULL;
306 
307 	if (!find_secure_partition(uuid))
308 		return TEE_ERROR_ITEM_NOT_FOUND;
309 
310 	res = sp_create_session(open_sessions, uuid, &s);
311 	if (res != TEE_SUCCESS) {
312 		DMSG("sp_create_session failed %#"PRIx32, res);
313 		return res;
314 	}
315 
316 	ctx = to_sp_ctx(s->ts_sess.ctx);
317 	assert(ctx);
318 	if (!ctx)
319 		return TEE_ERROR_TARGET_DEAD;
320 	*sess = s;
321 
322 	ts_push_current_session(&s->ts_sess);
323 	/* Load the SP using ldelf. */
324 	ldelf_load_ldelf(&ctx->uctx);
325 	res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
326 
327 	if (res != TEE_SUCCESS) {
328 		EMSG("Failed. loading SP using ldelf %#"PRIx32, res);
329 		ts_pop_current_session();
330 		return TEE_ERROR_TARGET_DEAD;
331 	}
332 
333 	/* Make the SP ready for its first run */
334 	s->state = sp_idle;
335 	s->caller_id = 0;
336 	sp_init_set_registers(ctx);
337 	ts_pop_current_session();
338 
339 	return TEE_SUCCESS;
340 }
341 
342 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
343 				uint64_t *value)
344 {
345 	const fdt64_t *p = NULL;
346 	int len = 0;
347 
348 	p = fdt_getprop(fdt, node, property, &len);
349 	if (!p || len != sizeof(*p))
350 		return TEE_ERROR_ITEM_NOT_FOUND;
351 
352 	*value = fdt64_to_cpu(*p);
353 
354 	return TEE_SUCCESS;
355 }
356 
357 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
358 				uint32_t *value)
359 {
360 	const fdt32_t *p = NULL;
361 	int len = 0;
362 
363 	p = fdt_getprop(fdt, node, property, &len);
364 	if (!p || len != sizeof(*p))
365 		return TEE_ERROR_ITEM_NOT_FOUND;
366 
367 	*value = fdt32_to_cpu(*p);
368 
369 	return TEE_SUCCESS;
370 }
371 
372 static TEE_Result check_fdt(const void * const fdt, const TEE_UUID *uuid)
373 {
374 	int len = 0;
375 	const fdt32_t *prop = NULL;
376 	int i = 0;
377 	const struct fdt_property *description = NULL;
378 	int description_name_len = 0;
379 	uint32_t uuid_array[4] = { 0 };
380 	TEE_UUID fdt_uuid = { };
381 
382 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
383 		EMSG("Failed loading SP, manifest not found");
384 		return TEE_ERROR_BAD_PARAMETERS;
385 	}
386 
387 	description = fdt_get_property(fdt, 0, "description",
388 				       &description_name_len);
389 	if (description)
390 		DMSG("Loading SP: %s", description->data);
391 
392 	prop = fdt_getprop(fdt, 0, "uuid", &len);
393 	if (!prop || len != 16) {
394 		EMSG("Missing or invalid UUID in SP manifest");
395 		return TEE_ERROR_BAD_FORMAT;
396 	}
397 
398 	for (i = 0; i < 4; i++)
399 		uuid_array[i] = fdt32_to_cpu(prop[i]);
400 	tee_uuid_from_octets(&fdt_uuid, (uint8_t *)uuid_array);
401 
402 	if (memcmp(uuid, &fdt_uuid, sizeof(fdt_uuid))) {
403 		EMSG("Failed loading SP, UUID mismatch");
404 		return TEE_ERROR_BAD_FORMAT;
405 	}
406 
407 	return TEE_SUCCESS;
408 }
409 
410 /*
411  * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy
412  * the fdt into the allocated page(s) and return a pointer to the new location
413  * of the fdt. This pointer can be used to update data inside the fdt.
414  */
415 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args,
416 			       const void * const input_fdt, vaddr_t *va,
417 			       size_t *num_pgs, void **fdt_copy)
418 {
419 	struct sp_ffa_init_info *info = NULL;
420 	int nvp_count = 1;
421 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
422 	size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count;
423 	size_t info_size = sizeof(*info) + nvp_size;
424 	size_t fdt_size = total_size - info_size;
425 	TEE_Result res = TEE_SUCCESS;
426 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
427 	struct fobj *f = NULL;
428 	struct mobj *m = NULL;
429 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
430 
431 	*num_pgs = total_size / SMALL_PAGE_SIZE;
432 
433 	f = fobj_sec_mem_alloc(*num_pgs);
434 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
435 
436 	fobj_put(f);
437 	if (!m)
438 		return TEE_ERROR_OUT_OF_MEMORY;
439 
440 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
441 	mobj_put(m);
442 	if (res)
443 		return res;
444 
445 	info = (struct sp_ffa_init_info *)*va;
446 
447 	/* magic field is 4 bytes, we don't copy /0 byte. */
448 	memcpy(&info->magic, "FF-A", 4);
449 	info->count = nvp_count;
450 	args->a0 = (vaddr_t)info;
451 
452 	/*
453 	 * Store the fdt after the boot_info and store the pointer in the
454 	 * first element.
455 	 */
456 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
457 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
458 	info->nvp[0].value = *va + info_size;
459 	info->nvp[0].size = fdt_size;
460 	*fdt_copy = (void *)info->nvp[0].value;
461 
462 	if (fdt_open_into(input_fdt, *fdt_copy, fdt_size))
463 		return TEE_ERROR_GENERIC;
464 
465 	return TEE_SUCCESS;
466 }
467 
468 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
469 {
470 	int node = 0;
471 	int subnode = 0;
472 	TEE_Result res = TEE_SUCCESS;
473 	const char *dt_device_match_table = {
474 		"arm,ffa-manifest-device-regions",
475 	};
476 
477 	/*
478 	 * Device regions are optional in the SP manifest, it's not an error if
479 	 * we don't find any
480 	 */
481 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
482 	if (node < 0)
483 		return TEE_SUCCESS;
484 
485 	fdt_for_each_subnode(subnode, fdt, node) {
486 		uint64_t base_addr = 0;
487 		uint32_t pages_cnt = 0;
488 		uint32_t attributes = 0;
489 		struct mobj *m = NULL;
490 		bool is_secure = true;
491 		uint32_t perm = 0;
492 		vaddr_t va = 0;
493 		unsigned int idx = 0;
494 
495 		/*
496 		 * Physical base address of a device MMIO region.
497 		 * Currently only physically contiguous region is supported.
498 		 */
499 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
500 			EMSG("Mandatory field is missing: base-address");
501 			return TEE_ERROR_BAD_FORMAT;
502 		}
503 
504 		/* Total size of MMIO region as count of 4K pages */
505 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
506 			EMSG("Mandatory field is missing: pages-count");
507 			return TEE_ERROR_BAD_FORMAT;
508 		}
509 
510 		/* Data access, instruction access and security attributes */
511 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
512 			EMSG("Mandatory field is missing: attributes");
513 			return TEE_ERROR_BAD_FORMAT;
514 		}
515 
516 		/* Check instruction and data access permissions */
517 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
518 		case SP_MANIFEST_ATTR_RO:
519 			perm = TEE_MATTR_UR;
520 			break;
521 		case SP_MANIFEST_ATTR_RW:
522 			perm = TEE_MATTR_URW;
523 			break;
524 		default:
525 			EMSG("Invalid memory access permissions");
526 			return TEE_ERROR_BAD_FORMAT;
527 		}
528 
529 		/*
530 		 * The SP is a secure endpoint, security attribute can be
531 		 * secure or non-secure
532 		 */
533 		if (attributes & SP_MANIFEST_ATTR_NSEC)
534 			is_secure = false;
535 
536 		/* Memory attributes must be Device-nGnRnE */
537 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
538 				    is_secure);
539 		if (!m)
540 			return TEE_ERROR_OUT_OF_MEMORY;
541 
542 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
543 		if (res) {
544 			mobj_put(m);
545 			return res;
546 		}
547 
548 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
549 			     perm, 0, m, 0);
550 		mobj_put(m);
551 		if (res)
552 			return res;
553 
554 		/*
555 		 * Overwrite the device region's PA in the fdt with the VA. This
556 		 * fdt will be passed to the SP.
557 		 */
558 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
559 
560 		/*
561 		 * Unmap the region if the overwrite failed since the SP won't
562 		 * be able to access it without knowing the VA.
563 		 */
564 		if (res) {
565 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
566 			return res;
567 		}
568 	}
569 
570 	return TEE_SUCCESS;
571 }
572 
573 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
574 {
575 	int node = 0;
576 	int subnode = 0;
577 	tee_mm_entry_t *mm = NULL;
578 	TEE_Result res = TEE_SUCCESS;
579 
580 	/*
581 	 * Memory regions are optional in the SP manifest, it's not an error if
582 	 * we don't find any.
583 	 */
584 	node = fdt_node_offset_by_compatible(fdt, 0,
585 					     "arm,ffa-manifest-memory-regions");
586 	if (node < 0)
587 		return TEE_SUCCESS;
588 
589 	fdt_for_each_subnode(subnode, fdt, node) {
590 		bool alloc_needed = false;
591 		uint32_t attributes = 0;
592 		uint64_t base_addr = 0;
593 		uint32_t pages_cnt = 0;
594 		bool is_secure = true;
595 		struct mobj *m = NULL;
596 		unsigned int idx = 0;
597 		uint32_t perm = 0;
598 		size_t size = 0;
599 		vaddr_t va = 0;
600 
601 		mm = NULL;
602 
603 		/*
604 		 * Base address of a memory region.
605 		 * If not present, we have to allocate the specified memory.
606 		 * If present, this field could specify a PA or VA. Currently
607 		 * only a PA is supported.
608 		 */
609 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
610 			alloc_needed = true;
611 
612 		/* Size of memory region as count of 4K pages */
613 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
614 			EMSG("Mandatory field is missing: pages-count");
615 			return TEE_ERROR_BAD_FORMAT;
616 		}
617 
618 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
619 			return TEE_ERROR_OVERFLOW;
620 
621 		/*
622 		 * Memory region attributes:
623 		 * - Instruction/data access permissions
624 		 * - Cacheability/shareability attributes
625 		 * - Security attributes
626 		 *
627 		 * Cacheability/shareability attributes can be ignored for now.
628 		 * OP-TEE only supports a single type for normal cached memory
629 		 * and currently there is no use case that would require to
630 		 * change this.
631 		 */
632 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
633 			EMSG("Mandatory field is missing: attributes");
634 			return TEE_ERROR_BAD_FORMAT;
635 		}
636 
637 		/* Check instruction and data access permissions */
638 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
639 		case SP_MANIFEST_ATTR_RO:
640 			perm = TEE_MATTR_UR;
641 			break;
642 		case SP_MANIFEST_ATTR_RW:
643 			perm = TEE_MATTR_URW;
644 			break;
645 		case SP_MANIFEST_ATTR_RX:
646 			perm = TEE_MATTR_URX;
647 			break;
648 		default:
649 			EMSG("Invalid memory access permissions");
650 			return TEE_ERROR_BAD_FORMAT;
651 		}
652 
653 		/*
654 		 * The SP is a secure endpoint, security attribute can be
655 		 * secure or non-secure.
656 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
657 		 * address is missing this attribute must be secure.
658 		 */
659 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
660 			if (alloc_needed) {
661 				EMSG("Invalid memory security attribute");
662 				return TEE_ERROR_BAD_FORMAT;
663 			}
664 			is_secure = false;
665 		}
666 
667 		if (alloc_needed) {
668 			/* Base address is missing, we have to allocate */
669 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
670 			if (!mm)
671 				return TEE_ERROR_OUT_OF_MEMORY;
672 
673 			base_addr = tee_mm_get_smem(mm);
674 		}
675 
676 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
677 				    is_secure);
678 		if (!m) {
679 			res = TEE_ERROR_OUT_OF_MEMORY;
680 			goto err_mm_free;
681 		}
682 
683 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
684 		if (res) {
685 			mobj_put(m);
686 			goto err_mm_free;
687 		}
688 
689 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
690 		mobj_put(m);
691 		if (res)
692 			goto err_mm_free;
693 
694 		/*
695 		 * Overwrite the memory region's base address in the fdt with
696 		 * the VA. This fdt will be passed to the SP.
697 		 * If the base-address field was not present in the original
698 		 * fdt, this function will create it. This doesn't cause issues
699 		 * since the necessary extra space has been allocated when
700 		 * opening the fdt.
701 		 */
702 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
703 
704 		/*
705 		 * Unmap the region if the overwrite failed since the SP won't
706 		 * be able to access it without knowing the VA.
707 		 */
708 		if (res) {
709 			vm_unmap(&ctx->uctx, va, size);
710 			goto err_mm_free;
711 		}
712 	}
713 
714 	return TEE_SUCCESS;
715 
716 err_mm_free:
717 	tee_mm_free(mm);
718 	return res;
719 }
720 
721 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
722 {
723 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
724 	uint32_t dummy_size __maybe_unused = 0;
725 	TEE_Result res = TEE_SUCCESS;
726 	size_t page_count = 0;
727 	struct fobj *f = NULL;
728 	struct mobj *m = NULL;
729 	vaddr_t log_addr = 0;
730 	size_t log_size = 0;
731 	int node = 0;
732 
733 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
734 	if (node < 0)
735 		return TEE_SUCCESS;
736 
737 	/* Checking the existence and size of the event log properties */
738 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
739 		EMSG("tpm_event_log_addr not found or has invalid size");
740 		return TEE_ERROR_BAD_FORMAT;
741 	}
742 
743 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
744 		EMSG("tpm_event_log_size not found or has invalid size");
745 		return TEE_ERROR_BAD_FORMAT;
746 	}
747 
748 	/* Validating event log */
749 	res = tpm_get_event_log_size(&log_size);
750 	if (res)
751 		return res;
752 
753 	if (!log_size) {
754 		EMSG("Empty TPM event log was provided");
755 		return TEE_ERROR_ITEM_NOT_FOUND;
756 	}
757 
758 	/* Allocating memory area for the event log to share with the SP */
759 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
760 
761 	f = fobj_sec_mem_alloc(page_count);
762 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
763 	fobj_put(f);
764 	if (!m)
765 		return TEE_ERROR_OUT_OF_MEMORY;
766 
767 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
768 	mobj_put(m);
769 	if (res)
770 		return res;
771 
772 	/* Copy event log */
773 	res = tpm_get_event_log((void *)log_addr, &log_size);
774 	if (res)
775 		goto err_unmap;
776 
777 	/* Setting event log details in the manifest */
778 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
779 	if (res)
780 		goto err_unmap;
781 
782 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
783 	if (res)
784 		goto err_unmap;
785 
786 	return TEE_SUCCESS;
787 
788 err_unmap:
789 	vm_unmap(&ctx->uctx, log_addr, log_size);
790 
791 	return res;
792 }
793 
794 static TEE_Result sp_init_uuid(const TEE_UUID *uuid, const void * const fdt)
795 {
796 	TEE_Result res = TEE_SUCCESS;
797 	struct sp_session *sess = NULL;
798 	struct thread_smc_args args = { };
799 	vaddr_t va = 0;
800 	size_t num_pgs = 0;
801 	struct sp_ctx *ctx = NULL;
802 	void *fdt_copy = NULL;
803 
804 	res = sp_open_session(&sess,
805 			      &open_sp_sessions,
806 			      uuid);
807 	if (res)
808 		return res;
809 
810 	res = check_fdt(fdt, uuid);
811 	if (res)
812 		return res;
813 
814 	ctx = to_sp_ctx(sess->ts_sess.ctx);
815 	ts_push_current_session(&sess->ts_sess);
816 
817 	res = sp_init_info(ctx, &args, fdt, &va, &num_pgs, &fdt_copy);
818 	if (res)
819 		goto out;
820 
821 	res = handle_fdt_dev_regions(ctx, fdt_copy);
822 	if (res)
823 		goto out;
824 
825 	res = handle_fdt_mem_regions(ctx, fdt_copy);
826 	if (res)
827 		goto out;
828 
829 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
830 		res = handle_tpm_event_log(ctx, fdt_copy);
831 		if (res)
832 			goto out;
833 	}
834 
835 	ts_pop_current_session();
836 
837 	if (sp_enter(&args, sess)) {
838 		vm_unmap(&ctx->uctx, va, num_pgs);
839 		return FFA_ABORTED;
840 	}
841 
842 	spmc_sp_msg_handler(&args, sess);
843 
844 	ts_push_current_session(&sess->ts_sess);
845 out:
846 	/* Free the boot info page from the SP memory */
847 	vm_unmap(&ctx->uctx, va, num_pgs);
848 	ts_pop_current_session();
849 
850 	return res;
851 }
852 
853 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
854 {
855 	TEE_Result res = FFA_OK;
856 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
857 
858 	ctx->sp_regs.x[0] = args->a0;
859 	ctx->sp_regs.x[1] = args->a1;
860 	ctx->sp_regs.x[2] = args->a2;
861 	ctx->sp_regs.x[3] = args->a3;
862 	ctx->sp_regs.x[4] = args->a4;
863 	ctx->sp_regs.x[5] = args->a5;
864 	ctx->sp_regs.x[6] = args->a6;
865 	ctx->sp_regs.x[7] = args->a7;
866 
867 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
868 
869 	args->a0 = ctx->sp_regs.x[0];
870 	args->a1 = ctx->sp_regs.x[1];
871 	args->a2 = ctx->sp_regs.x[2];
872 	args->a3 = ctx->sp_regs.x[3];
873 	args->a4 = ctx->sp_regs.x[4];
874 	args->a5 = ctx->sp_regs.x[5];
875 	args->a6 = ctx->sp_regs.x[6];
876 	args->a7 = ctx->sp_regs.x[7];
877 
878 	return res;
879 }
880 
881 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
882 				      uint32_t cmd __unused)
883 {
884 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
885 	TEE_Result res = TEE_SUCCESS;
886 	uint32_t exceptions = 0;
887 	uint64_t cpsr = 0;
888 	struct sp_session *sp_s = to_sp_session(s);
889 	struct ts_session *sess = NULL;
890 	struct thread_ctx_regs *sp_regs = NULL;
891 	uint32_t panicked = false;
892 	uint32_t panic_code = 0;
893 
894 	bm_timestamp();
895 
896 	sp_regs = &ctx->sp_regs;
897 	ts_push_current_session(s);
898 
899 	cpsr = sp_regs->cpsr;
900 	sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
901 
902 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
903 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
904 	sp_regs->cpsr = cpsr;
905 	thread_unmask_exceptions(exceptions);
906 
907 	thread_user_clear_vfp(&ctx->uctx);
908 
909 	if (panicked) {
910 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
911 		abort_print_current_ts();
912 
913 		sess = ts_pop_current_session();
914 		cpu_spin_lock(&sp_s->spinlock);
915 		sp_s->state = sp_dead;
916 		cpu_spin_unlock(&sp_s->spinlock);
917 
918 		return TEE_ERROR_TARGET_DEAD;
919 	}
920 
921 	sess = ts_pop_current_session();
922 	assert(sess == s);
923 
924 	bm_timestamp();
925 
926 	return res;
927 }
928 
929 /* We currently don't support 32 bits */
930 #ifdef ARM64
931 static void sp_svc_store_registers(struct thread_svc_regs *regs,
932 				   struct thread_ctx_regs *sp_regs)
933 {
934 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
935 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
936 	sp_regs->pc = regs->elr;
937 	sp_regs->sp = regs->sp_el0;
938 }
939 #endif
940 
941 static bool sp_handle_svc(struct thread_svc_regs *regs)
942 {
943 	struct ts_session *ts = ts_get_current_session();
944 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
945 	struct sp_session *s = uctx->open_session;
946 
947 	assert(s);
948 
949 	sp_svc_store_registers(regs, &uctx->sp_regs);
950 
951 	regs->x0 = 0;
952 	regs->x1 = 0; /* panic */
953 	regs->x2 = 0; /* panic code */
954 
955 	/*
956 	 * All the registers of the SP are saved in the SP session by the SVC
957 	 * handler.
958 	 * We always return to S-El1 after handling the SVC. We will continue
959 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
960 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
961 	 * saved registers to the thread_smc_args. The thread_smc_args object is
962 	 * afterward used by the spmc_sp_msg_handler() to handle the
963 	 * FF-A message send by the SP.
964 	 */
965 	return false;
966 }
967 
968 static void sp_dump_state(struct ts_ctx *ctx)
969 {
970 	struct sp_ctx *utc = to_sp_ctx(ctx);
971 
972 	if (utc->uctx.dump_entry_func) {
973 		TEE_Result res = ldelf_dump_state(&utc->uctx);
974 
975 		if (!res || res == TEE_ERROR_TARGET_DEAD)
976 			return;
977 	}
978 
979 	user_mode_ctx_print_mappings(&utc->uctx);
980 }
981 
982 /*
983  * Note: this variable is weak just to ease breaking its dependency chain
984  * when added to the unpaged area.
985  */
986 const struct ts_ops sp_ops __weak __relrodata_unpaged("sp_ops") = {
987 	.enter_invoke_cmd = sp_enter_invoke_cmd,
988 	.handle_svc = sp_handle_svc,
989 	.dump_state = sp_dump_state,
990 };
991 
992 static TEE_Result sp_init_all(void)
993 {
994 	TEE_Result res = TEE_SUCCESS;
995 	const struct sp_image *sp = NULL;
996 	char __maybe_unused msg[60] = { '\0', };
997 
998 	for_each_secure_partition(sp) {
999 		if (sp->image.uncompressed_size)
1000 			snprintf(msg, sizeof(msg),
1001 				 " (compressed, uncompressed %u)",
1002 				 sp->image.uncompressed_size);
1003 		else
1004 			msg[0] = '\0';
1005 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
1006 		     sp->image.size, msg);
1007 
1008 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1009 
1010 		if (res != TEE_SUCCESS) {
1011 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1012 			     &sp->image.uuid, res);
1013 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1014 				panic();
1015 		}
1016 	}
1017 
1018 	return TEE_SUCCESS;
1019 }
1020 
1021 boot_final(sp_init_all);
1022 
1023 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
1024 					struct ts_store_handle **h)
1025 {
1026 	return emb_ts_open(uuid, h, find_secure_partition);
1027 }
1028 
1029 REGISTER_SP_STORE(2) = {
1030 	.description = "SP store",
1031 	.open = secure_partition_open,
1032 	.get_size = emb_ts_get_size,
1033 	.get_tag = emb_ts_get_tag,
1034 	.read = emb_ts_read,
1035 	.close = emb_ts_close,
1036 };
1037