1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2022, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/boot.h> 9 #include <kernel/embedded_ts.h> 10 #include <kernel/ldelf_loader.h> 11 #include <kernel/secure_partition.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/spmc_sp_handler.h> 14 #include <kernel/thread_private.h> 15 #include <kernel/thread_spmc.h> 16 #include <kernel/tpm.h> 17 #include <kernel/ts_store.h> 18 #include <ldelf.h> 19 #include <libfdt.h> 20 #include <mm/core_mmu.h> 21 #include <mm/fobj.h> 22 #include <mm/mobj.h> 23 #include <mm/vm.h> 24 #include <optee_ffa.h> 25 #include <stdio.h> 26 #include <string.h> 27 #include <tee_api_types.h> 28 #include <tee/uuid.h> 29 #include <trace.h> 30 #include <types_ext.h> 31 #include <utee_defines.h> 32 #include <util.h> 33 #include <zlib.h> 34 35 #define SP_MANIFEST_ATTR_READ BIT(0) 36 #define SP_MANIFEST_ATTR_WRITE BIT(1) 37 #define SP_MANIFEST_ATTR_EXEC BIT(2) 38 #define SP_MANIFEST_ATTR_NSEC BIT(3) 39 40 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 41 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 42 SP_MANIFEST_ATTR_WRITE) 43 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 44 SP_MANIFEST_ATTR_EXEC) 45 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 46 SP_MANIFEST_ATTR_WRITE | \ 47 SP_MANIFEST_ATTR_EXEC) 48 49 #define SP_PKG_HEADER_MAGIC (0x474b5053) 50 #define SP_PKG_HEADER_VERSION (0x1) 51 52 struct sp_pkg_header { 53 uint32_t magic; 54 uint32_t version; 55 uint32_t pm_offset; 56 uint32_t pm_size; 57 uint32_t img_offset; 58 uint32_t img_size; 59 }; 60 61 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 62 63 static const struct ts_ops sp_ops; 64 65 /* List that holds all of the loaded SP's */ 66 static struct sp_sessions_head open_sp_sessions = 67 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 68 69 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 70 { 71 const struct sp_image *sp = NULL; 72 const struct fip_sp *fip_sp = NULL; 73 74 for_each_secure_partition(sp) { 75 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 76 return &sp->image; 77 } 78 79 for_each_fip_sp(fip_sp) { 80 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 81 return &fip_sp->sp_img.image; 82 } 83 84 return NULL; 85 } 86 87 bool is_sp_ctx(struct ts_ctx *ctx) 88 { 89 return ctx && (ctx->ops == &sp_ops); 90 } 91 92 static void set_sp_ctx_ops(struct ts_ctx *ctx) 93 { 94 ctx->ops = &sp_ops; 95 } 96 97 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id) 98 { 99 struct sp_session *s = NULL; 100 101 TAILQ_FOREACH(s, &open_sp_sessions, link) { 102 if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) { 103 if (s->state == sp_dead) 104 return TEE_ERROR_TARGET_DEAD; 105 106 *session_id = s->endpoint_id; 107 return TEE_SUCCESS; 108 } 109 } 110 111 return TEE_ERROR_ITEM_NOT_FOUND; 112 } 113 114 struct sp_session *sp_get_session(uint32_t session_id) 115 { 116 struct sp_session *s = NULL; 117 118 TAILQ_FOREACH(s, &open_sp_sessions, link) { 119 if (s->endpoint_id == session_id) 120 return s; 121 } 122 123 return NULL; 124 } 125 126 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi, 127 size_t *elem_count) 128 { 129 size_t in_count = *elem_count; 130 struct sp_session *s = NULL; 131 size_t count = 0; 132 133 TAILQ_FOREACH(s, &open_sp_sessions, link) { 134 if (s->state == sp_dead) 135 continue; 136 if (count < in_count) { 137 spmc_fill_partition_entry(fpi, s->endpoint_id, 1); 138 fpi++; 139 } 140 count++; 141 } 142 143 *elem_count = count; 144 if (count > in_count) 145 return TEE_ERROR_SHORT_BUFFER; 146 147 return TEE_SUCCESS; 148 } 149 150 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 151 struct user_mode_ctx *uctx) 152 { 153 /* 154 * Check that we have access to the region if it is supposed to be 155 * mapped to the current context. 156 */ 157 if (uctx) { 158 struct vm_region *region = NULL; 159 160 /* Make sure that each mobj belongs to the SP */ 161 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 162 if (region->mobj == mem->mobj) 163 break; 164 } 165 166 if (!region) 167 return false; 168 } 169 170 /* Check that it is not shared with another SP */ 171 return !sp_mem_is_shared(mem); 172 } 173 174 static uint16_t new_session_id(struct sp_sessions_head *open_sessions) 175 { 176 struct sp_session *last = NULL; 177 uint16_t id = SPMC_ENDPOINT_ID + 1; 178 179 last = TAILQ_LAST(open_sessions, sp_sessions_head); 180 if (last) 181 id = last->endpoint_id + 1; 182 183 assert(id > SPMC_ENDPOINT_ID); 184 return id; 185 } 186 187 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s) 188 { 189 TEE_Result res = TEE_SUCCESS; 190 struct sp_ctx *spc = NULL; 191 192 /* Register context */ 193 spc = calloc(1, sizeof(struct sp_ctx)); 194 if (!spc) 195 return TEE_ERROR_OUT_OF_MEMORY; 196 197 spc->open_session = s; 198 s->ts_sess.ctx = &spc->ts_ctx; 199 spc->ts_ctx.uuid = *uuid; 200 201 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 202 if (res) 203 goto err; 204 205 set_sp_ctx_ops(&spc->ts_ctx); 206 207 return TEE_SUCCESS; 208 209 err: 210 free(spc); 211 return res; 212 } 213 214 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 215 const TEE_UUID *uuid, 216 struct sp_session **sess) 217 { 218 TEE_Result res = TEE_SUCCESS; 219 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 220 221 if (!s) 222 return TEE_ERROR_OUT_OF_MEMORY; 223 224 s->endpoint_id = new_session_id(open_sessions); 225 if (!s->endpoint_id) { 226 res = TEE_ERROR_OVERFLOW; 227 goto err; 228 } 229 230 DMSG("Loading Secure Partition %pUl", (void *)uuid); 231 res = sp_create_ctx(uuid, s); 232 if (res) 233 goto err; 234 235 TAILQ_INSERT_TAIL(open_sessions, s, link); 236 *sess = s; 237 return TEE_SUCCESS; 238 239 err: 240 free(s); 241 return res; 242 } 243 244 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 245 { 246 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 247 248 memset(sp_regs, 0, sizeof(*sp_regs)); 249 sp_regs->sp = ctx->uctx.stack_ptr; 250 sp_regs->pc = ctx->uctx.entry_func; 251 252 return TEE_SUCCESS; 253 } 254 255 TEE_Result sp_map_shared(struct sp_session *s, 256 struct sp_mem_receiver *receiver, 257 struct sp_mem *smem, 258 uint64_t *va) 259 { 260 TEE_Result res = TEE_SUCCESS; 261 struct sp_ctx *ctx = NULL; 262 uint32_t perm = TEE_MATTR_UR; 263 struct sp_mem_map_region *reg = NULL; 264 265 ctx = to_sp_ctx(s->ts_sess.ctx); 266 267 /* Get the permission */ 268 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 269 perm |= TEE_MATTR_UX; 270 271 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 272 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 273 return TEE_ERROR_ACCESS_CONFLICT; 274 275 perm |= TEE_MATTR_UW; 276 } 277 /* 278 * Currently we don't support passing a va. We can't guarantee that the 279 * full region will be mapped in a contiguous region. A smem->region can 280 * have multiple mobj for one share. Currently there doesn't seem to be 281 * an option to guarantee that these will be mapped in a contiguous va 282 * space. 283 */ 284 if (*va) 285 return TEE_ERROR_NOT_SUPPORTED; 286 287 SLIST_FOREACH(reg, &smem->regions, link) { 288 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 289 perm, 0, reg->mobj, reg->page_offset); 290 291 if (res != TEE_SUCCESS) { 292 EMSG("Failed to map memory region %#"PRIx32, res); 293 return res; 294 } 295 } 296 return TEE_SUCCESS; 297 } 298 299 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 300 { 301 TEE_Result res = TEE_SUCCESS; 302 vaddr_t vaddr = 0; 303 size_t len = 0; 304 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 305 struct sp_mem_map_region *reg = NULL; 306 307 SLIST_FOREACH(reg, &smem->regions, link) { 308 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 309 reg->mobj); 310 len = reg->page_count * SMALL_PAGE_SIZE; 311 312 res = vm_unmap(&ctx->uctx, vaddr, len); 313 if (res != TEE_SUCCESS) 314 return res; 315 } 316 317 return TEE_SUCCESS; 318 } 319 320 static TEE_Result sp_open_session(struct sp_session **sess, 321 struct sp_sessions_head *open_sessions, 322 const TEE_UUID *uuid) 323 { 324 TEE_Result res = TEE_SUCCESS; 325 struct sp_session *s = NULL; 326 struct sp_ctx *ctx = NULL; 327 328 if (!find_secure_partition(uuid)) 329 return TEE_ERROR_ITEM_NOT_FOUND; 330 331 res = sp_create_session(open_sessions, uuid, &s); 332 if (res != TEE_SUCCESS) { 333 DMSG("sp_create_session failed %#"PRIx32, res); 334 return res; 335 } 336 337 ctx = to_sp_ctx(s->ts_sess.ctx); 338 assert(ctx); 339 if (!ctx) 340 return TEE_ERROR_TARGET_DEAD; 341 *sess = s; 342 343 ts_push_current_session(&s->ts_sess); 344 /* Load the SP using ldelf. */ 345 ldelf_load_ldelf(&ctx->uctx); 346 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 347 348 if (res != TEE_SUCCESS) { 349 EMSG("Failed. loading SP using ldelf %#"PRIx32, res); 350 ts_pop_current_session(); 351 return TEE_ERROR_TARGET_DEAD; 352 } 353 354 /* Make the SP ready for its first run */ 355 s->state = sp_idle; 356 s->caller_id = 0; 357 sp_init_set_registers(ctx); 358 ts_pop_current_session(); 359 360 return TEE_SUCCESS; 361 } 362 363 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 364 uint64_t *value) 365 { 366 const fdt64_t *p = NULL; 367 int len = 0; 368 369 p = fdt_getprop(fdt, node, property, &len); 370 if (!p || len != sizeof(*p)) 371 return TEE_ERROR_ITEM_NOT_FOUND; 372 373 *value = fdt64_ld(p); 374 375 return TEE_SUCCESS; 376 } 377 378 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 379 uint32_t *value) 380 { 381 const fdt32_t *p = NULL; 382 int len = 0; 383 384 p = fdt_getprop(fdt, node, property, &len); 385 if (!p || len != sizeof(*p)) 386 return TEE_ERROR_ITEM_NOT_FOUND; 387 388 *value = fdt32_to_cpu(*p); 389 390 return TEE_SUCCESS; 391 } 392 393 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 394 const char *property, TEE_UUID *uuid) 395 { 396 uint32_t uuid_array[4] = { 0 }; 397 const fdt32_t *p = NULL; 398 int len = 0; 399 int i = 0; 400 401 p = fdt_getprop(fdt, node, property, &len); 402 if (!p || len != sizeof(TEE_UUID)) 403 return TEE_ERROR_ITEM_NOT_FOUND; 404 405 for (i = 0; i < 4; i++) 406 uuid_array[i] = fdt32_to_cpu(p[i]); 407 408 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 409 410 return TEE_SUCCESS; 411 } 412 413 static TEE_Result check_fdt(const void * const fdt, const TEE_UUID *uuid) 414 { 415 const struct fdt_property *description = NULL; 416 int description_name_len = 0; 417 TEE_UUID fdt_uuid = { }; 418 419 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 420 EMSG("Failed loading SP, manifest not found"); 421 return TEE_ERROR_BAD_PARAMETERS; 422 } 423 424 description = fdt_get_property(fdt, 0, "description", 425 &description_name_len); 426 if (description) 427 DMSG("Loading SP: %s", description->data); 428 429 if (sp_dt_get_uuid(fdt, 0, "uuid", &fdt_uuid)) { 430 EMSG("Missing or invalid UUID in SP manifest"); 431 return TEE_ERROR_BAD_FORMAT; 432 } 433 434 if (memcmp(uuid, &fdt_uuid, sizeof(fdt_uuid))) { 435 EMSG("Failed loading SP, UUID mismatch"); 436 return TEE_ERROR_BAD_FORMAT; 437 } 438 439 return TEE_SUCCESS; 440 } 441 442 /* 443 * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy 444 * the fdt into the allocated page(s) and return a pointer to the new location 445 * of the fdt. This pointer can be used to update data inside the fdt. 446 */ 447 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args, 448 const void * const input_fdt, vaddr_t *va, 449 size_t *num_pgs, void **fdt_copy) 450 { 451 struct sp_ffa_init_info *info = NULL; 452 int nvp_count = 1; 453 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 454 size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count; 455 size_t info_size = sizeof(*info) + nvp_size; 456 size_t fdt_size = total_size - info_size; 457 TEE_Result res = TEE_SUCCESS; 458 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 459 struct fobj *f = NULL; 460 struct mobj *m = NULL; 461 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 462 463 *num_pgs = total_size / SMALL_PAGE_SIZE; 464 465 f = fobj_sec_mem_alloc(*num_pgs); 466 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 467 468 fobj_put(f); 469 if (!m) 470 return TEE_ERROR_OUT_OF_MEMORY; 471 472 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 473 mobj_put(m); 474 if (res) 475 return res; 476 477 info = (struct sp_ffa_init_info *)*va; 478 479 /* magic field is 4 bytes, we don't copy /0 byte. */ 480 memcpy(&info->magic, "FF-A", 4); 481 info->count = nvp_count; 482 args->a0 = (vaddr_t)info; 483 484 /* 485 * Store the fdt after the boot_info and store the pointer in the 486 * first element. 487 */ 488 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 489 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 490 info->nvp[0].value = *va + info_size; 491 info->nvp[0].size = fdt_size; 492 *fdt_copy = (void *)info->nvp[0].value; 493 494 if (fdt_open_into(input_fdt, *fdt_copy, fdt_size)) 495 return TEE_ERROR_GENERIC; 496 497 return TEE_SUCCESS; 498 } 499 500 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 501 { 502 int node = 0; 503 int subnode = 0; 504 TEE_Result res = TEE_SUCCESS; 505 const char *dt_device_match_table = { 506 "arm,ffa-manifest-device-regions", 507 }; 508 509 /* 510 * Device regions are optional in the SP manifest, it's not an error if 511 * we don't find any 512 */ 513 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 514 if (node < 0) 515 return TEE_SUCCESS; 516 517 fdt_for_each_subnode(subnode, fdt, node) { 518 uint64_t base_addr = 0; 519 uint32_t pages_cnt = 0; 520 uint32_t attributes = 0; 521 struct mobj *m = NULL; 522 bool is_secure = true; 523 uint32_t perm = 0; 524 vaddr_t va = 0; 525 unsigned int idx = 0; 526 527 /* 528 * Physical base address of a device MMIO region. 529 * Currently only physically contiguous region is supported. 530 */ 531 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 532 EMSG("Mandatory field is missing: base-address"); 533 return TEE_ERROR_BAD_FORMAT; 534 } 535 536 /* Total size of MMIO region as count of 4K pages */ 537 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 538 EMSG("Mandatory field is missing: pages-count"); 539 return TEE_ERROR_BAD_FORMAT; 540 } 541 542 /* Data access, instruction access and security attributes */ 543 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 544 EMSG("Mandatory field is missing: attributes"); 545 return TEE_ERROR_BAD_FORMAT; 546 } 547 548 /* Check instruction and data access permissions */ 549 switch (attributes & SP_MANIFEST_ATTR_RWX) { 550 case SP_MANIFEST_ATTR_RO: 551 perm = TEE_MATTR_UR; 552 break; 553 case SP_MANIFEST_ATTR_RW: 554 perm = TEE_MATTR_URW; 555 break; 556 default: 557 EMSG("Invalid memory access permissions"); 558 return TEE_ERROR_BAD_FORMAT; 559 } 560 561 /* 562 * The SP is a secure endpoint, security attribute can be 563 * secure or non-secure 564 */ 565 if (attributes & SP_MANIFEST_ATTR_NSEC) 566 is_secure = false; 567 568 /* Memory attributes must be Device-nGnRnE */ 569 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 570 is_secure); 571 if (!m) 572 return TEE_ERROR_OUT_OF_MEMORY; 573 574 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 575 if (res) { 576 mobj_put(m); 577 return res; 578 } 579 580 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 581 perm, 0, m, 0); 582 mobj_put(m); 583 if (res) 584 return res; 585 586 /* 587 * Overwrite the device region's PA in the fdt with the VA. This 588 * fdt will be passed to the SP. 589 */ 590 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 591 592 /* 593 * Unmap the region if the overwrite failed since the SP won't 594 * be able to access it without knowing the VA. 595 */ 596 if (res) { 597 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 598 return res; 599 } 600 } 601 602 return TEE_SUCCESS; 603 } 604 605 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, 606 uint32_t new_endpoint_id) 607 { 608 struct sp_session *session = sp_get_session(endpoint_id); 609 uint32_t manifest_endpoint_id = 0; 610 611 /* 612 * We don't know in which order the SPs are loaded. The endpoint ID 613 * defined in the manifest could already be generated by 614 * new_session_id() and used by another SP. If this is the case, we swap 615 * the ID's of the two SPs. We also have to make sure that the ID's are 616 * not defined twice in the manifest. 617 */ 618 619 /* The endpoint ID was not assigned yet */ 620 if (!session) 621 return TEE_SUCCESS; 622 623 /* 624 * Read the manifest file from the SP who originally had the endpoint. 625 * We can safely swap the endpoint ID's if the manifest file doesn't 626 * have an endpoint ID defined. 627 */ 628 if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { 629 assert(manifest_endpoint_id == endpoint_id); 630 EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); 631 return TEE_ERROR_ACCESS_CONFLICT; 632 } 633 634 session->endpoint_id = new_endpoint_id; 635 636 return TEE_SUCCESS; 637 } 638 639 static TEE_Result read_manifest_endpoint_id(struct sp_session *s) 640 { 641 uint32_t endpoint_id = 0; 642 643 /* 644 * The endpoint ID can be optionally defined in the manifest file. We 645 * have to map the ID inside the manifest to the SP if it's defined. 646 * If not, the endpoint ID generated inside new_session_id() will be 647 * used. 648 */ 649 if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { 650 TEE_Result res = TEE_ERROR_GENERIC; 651 652 if (endpoint_id <= SPMC_ENDPOINT_ID) 653 return TEE_ERROR_BAD_FORMAT; 654 655 res = swap_sp_endpoints(endpoint_id, s->endpoint_id); 656 if (res) 657 return res; 658 659 DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", 660 endpoint_id); 661 /* Assign the endpoint ID to the current SP */ 662 s->endpoint_id = endpoint_id; 663 } 664 return TEE_SUCCESS; 665 } 666 667 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 668 { 669 int node = 0; 670 int subnode = 0; 671 tee_mm_entry_t *mm = NULL; 672 TEE_Result res = TEE_SUCCESS; 673 674 /* 675 * Memory regions are optional in the SP manifest, it's not an error if 676 * we don't find any. 677 */ 678 node = fdt_node_offset_by_compatible(fdt, 0, 679 "arm,ffa-manifest-memory-regions"); 680 if (node < 0) 681 return TEE_SUCCESS; 682 683 fdt_for_each_subnode(subnode, fdt, node) { 684 bool alloc_needed = false; 685 uint32_t attributes = 0; 686 uint64_t base_addr = 0; 687 uint32_t pages_cnt = 0; 688 bool is_secure = true; 689 struct mobj *m = NULL; 690 unsigned int idx = 0; 691 uint32_t perm = 0; 692 size_t size = 0; 693 vaddr_t va = 0; 694 695 mm = NULL; 696 697 /* 698 * Base address of a memory region. 699 * If not present, we have to allocate the specified memory. 700 * If present, this field could specify a PA or VA. Currently 701 * only a PA is supported. 702 */ 703 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 704 alloc_needed = true; 705 706 /* Size of memory region as count of 4K pages */ 707 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 708 EMSG("Mandatory field is missing: pages-count"); 709 return TEE_ERROR_BAD_FORMAT; 710 } 711 712 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 713 return TEE_ERROR_OVERFLOW; 714 715 /* 716 * Memory region attributes: 717 * - Instruction/data access permissions 718 * - Cacheability/shareability attributes 719 * - Security attributes 720 * 721 * Cacheability/shareability attributes can be ignored for now. 722 * OP-TEE only supports a single type for normal cached memory 723 * and currently there is no use case that would require to 724 * change this. 725 */ 726 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 727 EMSG("Mandatory field is missing: attributes"); 728 return TEE_ERROR_BAD_FORMAT; 729 } 730 731 /* Check instruction and data access permissions */ 732 switch (attributes & SP_MANIFEST_ATTR_RWX) { 733 case SP_MANIFEST_ATTR_RO: 734 perm = TEE_MATTR_UR; 735 break; 736 case SP_MANIFEST_ATTR_RW: 737 perm = TEE_MATTR_URW; 738 break; 739 case SP_MANIFEST_ATTR_RX: 740 perm = TEE_MATTR_URX; 741 break; 742 default: 743 EMSG("Invalid memory access permissions"); 744 return TEE_ERROR_BAD_FORMAT; 745 } 746 747 /* 748 * The SP is a secure endpoint, security attribute can be 749 * secure or non-secure. 750 * The SPMC cannot allocate non-secure memory, i.e. if the base 751 * address is missing this attribute must be secure. 752 */ 753 if (attributes & SP_MANIFEST_ATTR_NSEC) { 754 if (alloc_needed) { 755 EMSG("Invalid memory security attribute"); 756 return TEE_ERROR_BAD_FORMAT; 757 } 758 is_secure = false; 759 } 760 761 if (alloc_needed) { 762 /* Base address is missing, we have to allocate */ 763 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 764 if (!mm) 765 return TEE_ERROR_OUT_OF_MEMORY; 766 767 base_addr = tee_mm_get_smem(mm); 768 } 769 770 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 771 is_secure); 772 if (!m) { 773 res = TEE_ERROR_OUT_OF_MEMORY; 774 goto err_mm_free; 775 } 776 777 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 778 if (res) { 779 mobj_put(m); 780 goto err_mm_free; 781 } 782 783 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 784 mobj_put(m); 785 if (res) 786 goto err_mm_free; 787 788 /* 789 * Overwrite the memory region's base address in the fdt with 790 * the VA. This fdt will be passed to the SP. 791 * If the base-address field was not present in the original 792 * fdt, this function will create it. This doesn't cause issues 793 * since the necessary extra space has been allocated when 794 * opening the fdt. 795 */ 796 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 797 798 /* 799 * Unmap the region if the overwrite failed since the SP won't 800 * be able to access it without knowing the VA. 801 */ 802 if (res) { 803 vm_unmap(&ctx->uctx, va, size); 804 goto err_mm_free; 805 } 806 } 807 808 return TEE_SUCCESS; 809 810 err_mm_free: 811 tee_mm_free(mm); 812 return res; 813 } 814 815 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 816 { 817 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 818 uint32_t dummy_size __maybe_unused = 0; 819 TEE_Result res = TEE_SUCCESS; 820 size_t page_count = 0; 821 struct fobj *f = NULL; 822 struct mobj *m = NULL; 823 vaddr_t log_addr = 0; 824 size_t log_size = 0; 825 int node = 0; 826 827 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 828 if (node < 0) 829 return TEE_SUCCESS; 830 831 /* Checking the existence and size of the event log properties */ 832 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 833 EMSG("tpm_event_log_addr not found or has invalid size"); 834 return TEE_ERROR_BAD_FORMAT; 835 } 836 837 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 838 EMSG("tpm_event_log_size not found or has invalid size"); 839 return TEE_ERROR_BAD_FORMAT; 840 } 841 842 /* Validating event log */ 843 res = tpm_get_event_log_size(&log_size); 844 if (res) 845 return res; 846 847 if (!log_size) { 848 EMSG("Empty TPM event log was provided"); 849 return TEE_ERROR_ITEM_NOT_FOUND; 850 } 851 852 /* Allocating memory area for the event log to share with the SP */ 853 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 854 855 f = fobj_sec_mem_alloc(page_count); 856 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 857 fobj_put(f); 858 if (!m) 859 return TEE_ERROR_OUT_OF_MEMORY; 860 861 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 862 mobj_put(m); 863 if (res) 864 return res; 865 866 /* Copy event log */ 867 res = tpm_get_event_log((void *)log_addr, &log_size); 868 if (res) 869 goto err_unmap; 870 871 /* Setting event log details in the manifest */ 872 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 873 if (res) 874 goto err_unmap; 875 876 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 877 if (res) 878 goto err_unmap; 879 880 return TEE_SUCCESS; 881 882 err_unmap: 883 vm_unmap(&ctx->uctx, log_addr, log_size); 884 885 return res; 886 } 887 888 static TEE_Result sp_init_uuid(const TEE_UUID *uuid, const void * const fdt) 889 { 890 TEE_Result res = TEE_SUCCESS; 891 struct sp_session *sess = NULL; 892 893 res = sp_open_session(&sess, 894 &open_sp_sessions, 895 uuid); 896 if (res) 897 return res; 898 899 res = check_fdt(fdt, uuid); 900 if (res) 901 return res; 902 903 sess->fdt = fdt; 904 res = read_manifest_endpoint_id(sess); 905 if (res) 906 return res; 907 DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); 908 909 return TEE_SUCCESS; 910 } 911 912 static TEE_Result sp_first_run(struct sp_session *sess) 913 { 914 TEE_Result res = TEE_SUCCESS; 915 struct thread_smc_args args = { }; 916 vaddr_t va = 0; 917 size_t num_pgs = 0; 918 struct sp_ctx *ctx = NULL; 919 void *fdt_copy = NULL; 920 921 ctx = to_sp_ctx(sess->ts_sess.ctx); 922 ts_push_current_session(&sess->ts_sess); 923 924 res = sp_init_info(ctx, &args, sess->fdt, &va, &num_pgs, &fdt_copy); 925 if (res) 926 goto out; 927 928 res = handle_fdt_dev_regions(ctx, fdt_copy); 929 if (res) 930 goto out; 931 932 res = handle_fdt_mem_regions(ctx, fdt_copy); 933 if (res) 934 goto out; 935 936 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 937 res = handle_tpm_event_log(ctx, fdt_copy); 938 if (res) 939 goto out; 940 } 941 942 ts_pop_current_session(); 943 944 sess->is_initialized = false; 945 if (sp_enter(&args, sess)) { 946 vm_unmap(&ctx->uctx, va, num_pgs); 947 return FFA_ABORTED; 948 } 949 950 spmc_sp_msg_handler(&args, sess); 951 952 sess->is_initialized = true; 953 954 ts_push_current_session(&sess->ts_sess); 955 out: 956 /* Free the boot info page from the SP memory */ 957 vm_unmap(&ctx->uctx, va, num_pgs); 958 ts_pop_current_session(); 959 960 return res; 961 } 962 963 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 964 { 965 TEE_Result res = FFA_OK; 966 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 967 968 ctx->sp_regs.x[0] = args->a0; 969 ctx->sp_regs.x[1] = args->a1; 970 ctx->sp_regs.x[2] = args->a2; 971 ctx->sp_regs.x[3] = args->a3; 972 ctx->sp_regs.x[4] = args->a4; 973 ctx->sp_regs.x[5] = args->a5; 974 ctx->sp_regs.x[6] = args->a6; 975 ctx->sp_regs.x[7] = args->a7; 976 977 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 978 979 args->a0 = ctx->sp_regs.x[0]; 980 args->a1 = ctx->sp_regs.x[1]; 981 args->a2 = ctx->sp_regs.x[2]; 982 args->a3 = ctx->sp_regs.x[3]; 983 args->a4 = ctx->sp_regs.x[4]; 984 args->a5 = ctx->sp_regs.x[5]; 985 args->a6 = ctx->sp_regs.x[6]; 986 args->a7 = ctx->sp_regs.x[7]; 987 988 return res; 989 } 990 991 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 992 uint32_t cmd __unused) 993 { 994 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 995 TEE_Result res = TEE_SUCCESS; 996 uint32_t exceptions = 0; 997 uint64_t cpsr = 0; 998 struct sp_session *sp_s = to_sp_session(s); 999 struct ts_session *sess = NULL; 1000 struct thread_ctx_regs *sp_regs = NULL; 1001 uint32_t panicked = false; 1002 uint32_t panic_code = 0; 1003 1004 bm_timestamp(); 1005 1006 sp_regs = &ctx->sp_regs; 1007 ts_push_current_session(s); 1008 1009 cpsr = sp_regs->cpsr; 1010 sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1011 1012 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 1013 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 1014 sp_regs->cpsr = cpsr; 1015 thread_unmask_exceptions(exceptions); 1016 1017 thread_user_clear_vfp(&ctx->uctx); 1018 1019 if (panicked) { 1020 DMSG("SP panicked with code %#"PRIx32, panic_code); 1021 abort_print_current_ts(); 1022 1023 sess = ts_pop_current_session(); 1024 cpu_spin_lock(&sp_s->spinlock); 1025 sp_s->state = sp_dead; 1026 cpu_spin_unlock(&sp_s->spinlock); 1027 1028 return TEE_ERROR_TARGET_DEAD; 1029 } 1030 1031 sess = ts_pop_current_session(); 1032 assert(sess == s); 1033 1034 bm_timestamp(); 1035 1036 return res; 1037 } 1038 1039 /* We currently don't support 32 bits */ 1040 #ifdef ARM64 1041 static void sp_svc_store_registers(struct thread_svc_regs *regs, 1042 struct thread_ctx_regs *sp_regs) 1043 { 1044 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 1045 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 1046 sp_regs->pc = regs->elr; 1047 sp_regs->sp = regs->sp_el0; 1048 } 1049 #endif 1050 1051 static bool sp_handle_svc(struct thread_svc_regs *regs) 1052 { 1053 struct ts_session *ts = ts_get_current_session(); 1054 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 1055 struct sp_session *s = uctx->open_session; 1056 1057 assert(s); 1058 1059 sp_svc_store_registers(regs, &uctx->sp_regs); 1060 1061 regs->x0 = 0; 1062 regs->x1 = 0; /* panic */ 1063 regs->x2 = 0; /* panic code */ 1064 1065 /* 1066 * All the registers of the SP are saved in the SP session by the SVC 1067 * handler. 1068 * We always return to S-El1 after handling the SVC. We will continue 1069 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 1070 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 1071 * saved registers to the thread_smc_args. The thread_smc_args object is 1072 * afterward used by the spmc_sp_msg_handler() to handle the 1073 * FF-A message send by the SP. 1074 */ 1075 return false; 1076 } 1077 1078 static void sp_dump_state(struct ts_ctx *ctx) 1079 { 1080 struct sp_ctx *utc = to_sp_ctx(ctx); 1081 1082 if (utc->uctx.dump_entry_func) { 1083 TEE_Result res = ldelf_dump_state(&utc->uctx); 1084 1085 if (!res || res == TEE_ERROR_TARGET_DEAD) 1086 return; 1087 } 1088 1089 user_mode_ctx_print_mappings(&utc->uctx); 1090 } 1091 1092 static const struct ts_ops sp_ops = { 1093 .enter_invoke_cmd = sp_enter_invoke_cmd, 1094 .handle_svc = sp_handle_svc, 1095 .dump_state = sp_dump_state, 1096 }; 1097 1098 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1099 { 1100 enum teecore_memtypes mtype = MEM_AREA_RAM_SEC; 1101 struct sp_pkg_header *sp_pkg_hdr = NULL; 1102 TEE_Result res = TEE_SUCCESS; 1103 tee_mm_entry_t *mm = NULL; 1104 struct fip_sp *sp = NULL; 1105 uint64_t sp_fdt_end = 0; 1106 size_t sp_pkg_size = 0; 1107 vaddr_t sp_pkg_va = 0; 1108 size_t num_pages = 0; 1109 1110 /* Map only the first page of the SP package to parse the header */ 1111 if (!tee_pbuf_is_sec(sp_pkg_pa, SMALL_PAGE_SIZE)) 1112 return TEE_ERROR_GENERIC; 1113 1114 mm = tee_mm_alloc(&tee_mm_sec_ddr, SMALL_PAGE_SIZE); 1115 if (!mm) 1116 return TEE_ERROR_OUT_OF_MEMORY; 1117 1118 sp_pkg_va = tee_mm_get_smem(mm); 1119 1120 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, 1, mtype)) { 1121 res = TEE_ERROR_GENERIC; 1122 goto err; 1123 } 1124 1125 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1126 1127 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1128 EMSG("Invalid SP package magic"); 1129 res = TEE_ERROR_BAD_FORMAT; 1130 goto err_unmap; 1131 } 1132 1133 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION) { 1134 EMSG("Invalid SP header version"); 1135 res = TEE_ERROR_BAD_FORMAT; 1136 goto err_unmap; 1137 } 1138 1139 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1140 &sp_pkg_size)) { 1141 EMSG("Invalid SP package size"); 1142 res = TEE_ERROR_BAD_FORMAT; 1143 goto err_unmap; 1144 } 1145 1146 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1147 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1148 EMSG("Invalid SP manifest size"); 1149 res = TEE_ERROR_BAD_FORMAT; 1150 goto err_unmap; 1151 } 1152 1153 core_mmu_unmap_pages(sp_pkg_va, 1); 1154 tee_mm_free(mm); 1155 1156 /* Map the whole package */ 1157 if (!tee_pbuf_is_sec(sp_pkg_pa, sp_pkg_size)) 1158 return TEE_ERROR_GENERIC; 1159 1160 num_pages = ROUNDUP_DIV(sp_pkg_size, SMALL_PAGE_SIZE); 1161 1162 mm = tee_mm_alloc(&tee_mm_sec_ddr, sp_pkg_size); 1163 if (!mm) 1164 return TEE_ERROR_OUT_OF_MEMORY; 1165 1166 sp_pkg_va = tee_mm_get_smem(mm); 1167 1168 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, num_pages, 1169 mtype)) { 1170 res = TEE_ERROR_GENERIC; 1171 goto err; 1172 } 1173 1174 sp_pkg_hdr = (struct sp_pkg_header *)tee_mm_get_smem(mm); 1175 1176 sp = calloc(1, sizeof(struct fip_sp)); 1177 if (!sp) { 1178 res = TEE_ERROR_OUT_OF_MEMORY; 1179 goto err_unmap; 1180 } 1181 1182 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1183 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1184 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1185 sp->sp_img.image.flags = 0; 1186 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1187 sp->mm = mm; 1188 1189 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1190 1191 return TEE_SUCCESS; 1192 1193 err_unmap: 1194 core_mmu_unmap_pages(tee_mm_get_smem(mm), 1195 ROUNDUP_DIV(tee_mm_get_bytes(mm), 1196 SMALL_PAGE_SIZE)); 1197 err: 1198 tee_mm_free(mm); 1199 1200 return res; 1201 } 1202 1203 static TEE_Result fip_sp_map_all(void) 1204 { 1205 TEE_Result res = TEE_SUCCESS; 1206 uint64_t sp_pkg_addr = 0; 1207 const void *fdt = NULL; 1208 TEE_UUID sp_uuid = { }; 1209 int sp_pkgs_node = 0; 1210 int subnode = 0; 1211 int root = 0; 1212 1213 fdt = get_external_dt(); 1214 if (!fdt) { 1215 EMSG("No SPMC manifest found"); 1216 return TEE_ERROR_GENERIC; 1217 } 1218 1219 root = fdt_path_offset(fdt, "/"); 1220 if (root < 0) 1221 return TEE_ERROR_BAD_FORMAT; 1222 1223 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1224 return TEE_ERROR_BAD_FORMAT; 1225 1226 /* SP packages are optional, it's not an error if we don't find any */ 1227 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1228 if (sp_pkgs_node < 0) 1229 return TEE_SUCCESS; 1230 1231 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1232 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1233 if (res) { 1234 EMSG("Invalid FIP SP load address"); 1235 return res; 1236 } 1237 1238 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1239 if (res) { 1240 EMSG("Invalid FIP SP uuid"); 1241 return res; 1242 } 1243 1244 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1245 if (res) { 1246 EMSG("Invalid FIP SP package"); 1247 return res; 1248 } 1249 } 1250 1251 return TEE_SUCCESS; 1252 } 1253 1254 static void fip_sp_unmap_all(void) 1255 { 1256 while (!STAILQ_EMPTY(&fip_sp_list)) { 1257 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1258 1259 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1260 core_mmu_unmap_pages(tee_mm_get_smem(sp->mm), 1261 ROUNDUP_DIV(tee_mm_get_bytes(sp->mm), 1262 SMALL_PAGE_SIZE)); 1263 tee_mm_free(sp->mm); 1264 free(sp); 1265 } 1266 } 1267 1268 static TEE_Result sp_init_all(void) 1269 { 1270 TEE_Result res = TEE_SUCCESS; 1271 const struct sp_image *sp = NULL; 1272 const struct fip_sp *fip_sp = NULL; 1273 char __maybe_unused msg[60] = { '\0', }; 1274 struct sp_session *s = NULL; 1275 1276 for_each_secure_partition(sp) { 1277 if (sp->image.uncompressed_size) 1278 snprintf(msg, sizeof(msg), 1279 " (compressed, uncompressed %u)", 1280 sp->image.uncompressed_size); 1281 else 1282 msg[0] = '\0'; 1283 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1284 sp->image.size, msg); 1285 1286 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1287 1288 if (res != TEE_SUCCESS) { 1289 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1290 &sp->image.uuid, res); 1291 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1292 panic(); 1293 } 1294 } 1295 1296 res = fip_sp_map_all(); 1297 if (res) 1298 panic("Failed mapping FIP SPs"); 1299 1300 for_each_fip_sp(fip_sp) { 1301 sp = &fip_sp->sp_img; 1302 1303 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1304 sp->image.size); 1305 1306 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1307 1308 if (res != TEE_SUCCESS) { 1309 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1310 &sp->image.uuid, res); 1311 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1312 panic(); 1313 } 1314 } 1315 1316 /* Continue the initialization and run the SP */ 1317 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1318 res = sp_first_run(s); 1319 if (res != TEE_SUCCESS) { 1320 EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, 1321 s->endpoint_id, res); 1322 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1323 panic(); 1324 } 1325 } 1326 /* 1327 * At this point all FIP SPs are loaded by ldelf so the original images 1328 * (loaded by BL2 earlier) can be unmapped 1329 */ 1330 fip_sp_unmap_all(); 1331 1332 return TEE_SUCCESS; 1333 } 1334 1335 boot_final(sp_init_all); 1336 1337 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1338 struct ts_store_handle **h) 1339 { 1340 return emb_ts_open(uuid, h, find_secure_partition); 1341 } 1342 1343 REGISTER_SP_STORE(2) = { 1344 .description = "SP store", 1345 .open = secure_partition_open, 1346 .get_size = emb_ts_get_size, 1347 .get_tag = emb_ts_get_tag, 1348 .read = emb_ts_read, 1349 .close = emb_ts_close, 1350 }; 1351