xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 9f32a1a2f5c5656d3e552f032bec5146d53b8986)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2024, Arm Limited.
4  */
5 #include <crypto/crypto.h>
6 #include <initcall.h>
7 #include <kernel/boot.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/vm.h>
23 #include <optee_ffa.h>
24 #include <stdio.h>
25 #include <string.h>
26 #include <tee_api_types.h>
27 #include <tee/uuid.h>
28 #include <trace.h>
29 #include <types_ext.h>
30 #include <utee_defines.h>
31 #include <util.h>
32 #include <zlib.h>
33 
34 #define BOUNCE_BUFFER_SIZE		4096
35 
36 #define SP_MANIFEST_ATTR_READ		BIT(0)
37 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
38 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
39 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
40 #define SP_MANIFEST_ATTR_GP		BIT(4)
41 
42 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
43 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
44 					 SP_MANIFEST_ATTR_WRITE)
45 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
46 					 SP_MANIFEST_ATTR_EXEC)
47 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
48 					 SP_MANIFEST_ATTR_WRITE | \
49 					 SP_MANIFEST_ATTR_EXEC)
50 
51 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
52 
53 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
54 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
55 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
56 
57 #define SP_MANIFEST_EXEC_STATE_AARCH64	(0x0)
58 #define SP_MANIFEST_EXEC_STATE_AARCH32	(0x1)
59 
60 #define SP_MANIFEST_DIRECT_REQ_RECEIVE	BIT(0)
61 #define SP_MANIFEST_DIRECT_REQ_SEND	BIT(1)
62 #define SP_MANIFEST_INDIRECT_REQ	BIT(2)
63 
64 #define SP_MANIFEST_VM_CREATED_MSG	BIT(0)
65 #define SP_MANIFEST_VM_DESTROYED_MSG	BIT(1)
66 
67 #define SP_PKG_HEADER_MAGIC (0x474b5053)
68 #define SP_PKG_HEADER_VERSION_V1 (0x1)
69 #define SP_PKG_HEADER_VERSION_V2 (0x2)
70 
71 struct sp_pkg_header {
72 	uint32_t magic;
73 	uint32_t version;
74 	uint32_t pm_offset;
75 	uint32_t pm_size;
76 	uint32_t img_offset;
77 	uint32_t img_size;
78 };
79 
80 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
81 
82 static const struct ts_ops sp_ops;
83 
84 /* List that holds all of the loaded SP's */
85 static struct sp_sessions_head open_sp_sessions =
86 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
87 
88 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
89 {
90 	const struct sp_image *sp = NULL;
91 	const struct fip_sp *fip_sp = NULL;
92 
93 	for_each_secure_partition(sp) {
94 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
95 			return &sp->image;
96 	}
97 
98 	for_each_fip_sp(fip_sp) {
99 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
100 			return &fip_sp->sp_img.image;
101 	}
102 
103 	return NULL;
104 }
105 
106 bool is_sp_ctx(struct ts_ctx *ctx)
107 {
108 	return ctx && (ctx->ops == &sp_ops);
109 }
110 
111 static void set_sp_ctx_ops(struct ts_ctx *ctx)
112 {
113 	ctx->ops = &sp_ops;
114 }
115 
116 struct sp_session *sp_get_session(uint32_t session_id)
117 {
118 	struct sp_session *s = NULL;
119 
120 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
121 		if (s->endpoint_id == session_id)
122 			return s;
123 	}
124 
125 	return NULL;
126 }
127 
128 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
129 				 const TEE_UUID *ffa_uuid, size_t *elem_count,
130 				 bool count_only)
131 {
132 	TEE_Result res = TEE_SUCCESS;
133 	struct sp_session *s = NULL;
134 
135 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
136 		if (ffa_uuid &&
137 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
138 			continue;
139 
140 		if (s->state == sp_dead)
141 			continue;
142 		if (!count_only && !res) {
143 			uint32_t uuid_words[4] = { 0 };
144 
145 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
146 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
147 							*elem_count,
148 							s->endpoint_id, 1,
149 							s->props, uuid_words);
150 		}
151 		*elem_count += 1;
152 	}
153 
154 	return res;
155 }
156 
157 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
158 			     struct user_mode_ctx *uctx)
159 {
160 	/*
161 	 * Check that we have access to the region if it is supposed to be
162 	 * mapped to the current context.
163 	 */
164 	if (uctx) {
165 		struct vm_region *region = NULL;
166 
167 		/* Make sure that each mobj belongs to the SP */
168 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
169 			if (region->mobj == mem->mobj)
170 				break;
171 		}
172 
173 		if (!region)
174 			return false;
175 	}
176 
177 	/* Check that it is not shared with another SP */
178 	return !sp_mem_is_shared(mem);
179 }
180 
181 static bool endpoint_id_is_valid(uint32_t id)
182 {
183 	/*
184 	 * These IDs are assigned at the SPMC init so already have valid values
185 	 * by the time this function gets first called
186 	 */
187 	return id != spmd_id && id != spmc_id && id != optee_endpoint_id &&
188 	       id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX;
189 }
190 
191 static TEE_Result new_session_id(uint16_t *endpoint_id)
192 {
193 	uint32_t id = 0;
194 
195 	/* Find the first available endpoint id */
196 	for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) {
197 		if (endpoint_id_is_valid(id) && !sp_get_session(id)) {
198 			*endpoint_id = id;
199 			return TEE_SUCCESS;
200 		}
201 	}
202 
203 	return TEE_ERROR_BAD_FORMAT;
204 }
205 
206 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
207 {
208 	TEE_Result res = TEE_SUCCESS;
209 	struct sp_ctx *spc = NULL;
210 
211 	/* Register context */
212 	spc = calloc(1, sizeof(struct sp_ctx));
213 	if (!spc)
214 		return TEE_ERROR_OUT_OF_MEMORY;
215 
216 	spc->open_session = s;
217 	s->ts_sess.ctx = &spc->ts_ctx;
218 	spc->ts_ctx.uuid = *bin_uuid;
219 
220 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
221 	if (res)
222 		goto err;
223 
224 	set_sp_ctx_ops(&spc->ts_ctx);
225 
226 #ifdef CFG_TA_PAUTH
227 	crypto_rng_read(&spc->uctx.keys, sizeof(spc->uctx.keys));
228 #endif
229 
230 	return TEE_SUCCESS;
231 
232 err:
233 	free(spc);
234 	return res;
235 }
236 
237 /*
238  * Insert a new sp_session to the sessions list, so that it is ordered
239  * by boot_order.
240  */
241 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
242 				   struct sp_session *session)
243 {
244 	struct sp_session *s = NULL;
245 
246 	if (!open_sessions || !session)
247 		return;
248 
249 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
250 		if (s->boot_order > session->boot_order)
251 			break;
252 	}
253 
254 	if (!s)
255 		TAILQ_INSERT_TAIL(open_sessions, session, link);
256 	else
257 		TAILQ_INSERT_BEFORE(s, session, link);
258 }
259 
260 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
261 				    const TEE_UUID *bin_uuid,
262 				    const uint32_t boot_order,
263 				    struct sp_session **sess)
264 {
265 	TEE_Result res = TEE_SUCCESS;
266 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
267 
268 	if (!s)
269 		return TEE_ERROR_OUT_OF_MEMORY;
270 
271 	s->boot_order = boot_order;
272 
273 	/* Other properties are filled later, based on the SP's manifest */
274 	s->props = FFA_PART_PROP_IS_PE_ID;
275 
276 	res = new_session_id(&s->endpoint_id);
277 	if (res)
278 		goto err;
279 
280 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
281 	res = sp_create_ctx(bin_uuid, s);
282 	if (res)
283 		goto err;
284 
285 	insert_session_ordered(open_sessions, s);
286 	*sess = s;
287 	return TEE_SUCCESS;
288 
289 err:
290 	free(s);
291 	return res;
292 }
293 
294 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
295 {
296 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
297 
298 	memset(sp_regs, 0, sizeof(*sp_regs));
299 	sp_regs->sp = ctx->uctx.stack_ptr;
300 	sp_regs->pc = ctx->uctx.entry_func;
301 
302 	return TEE_SUCCESS;
303 }
304 
305 TEE_Result sp_map_shared(struct sp_session *s,
306 			 struct sp_mem_receiver *receiver,
307 			 struct sp_mem *smem,
308 			 uint64_t *va)
309 {
310 	TEE_Result res = TEE_SUCCESS;
311 	struct sp_ctx *ctx = NULL;
312 	uint32_t perm = TEE_MATTR_UR;
313 	struct sp_mem_map_region *reg = NULL;
314 
315 	ctx = to_sp_ctx(s->ts_sess.ctx);
316 
317 	/* Get the permission */
318 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
319 		perm |= TEE_MATTR_UX;
320 
321 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
322 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
323 			return TEE_ERROR_ACCESS_CONFLICT;
324 
325 		perm |= TEE_MATTR_UW;
326 	}
327 	/*
328 	 * Currently we don't support passing a va. We can't guarantee that the
329 	 * full region will be mapped in a contiguous region. A smem->region can
330 	 * have multiple mobj for one share. Currently there doesn't seem to be
331 	 * an option to guarantee that these will be mapped in a contiguous va
332 	 * space.
333 	 */
334 	if (*va)
335 		return TEE_ERROR_NOT_SUPPORTED;
336 
337 	SLIST_FOREACH(reg, &smem->regions, link) {
338 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
339 			     perm, 0, reg->mobj, reg->page_offset);
340 
341 		if (res != TEE_SUCCESS) {
342 			EMSG("Failed to map memory region %#"PRIx32, res);
343 			return res;
344 		}
345 	}
346 	return TEE_SUCCESS;
347 }
348 
349 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
350 {
351 	TEE_Result res = TEE_SUCCESS;
352 	vaddr_t vaddr = 0;
353 	size_t len = 0;
354 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
355 	struct sp_mem_map_region *reg = NULL;
356 
357 	SLIST_FOREACH(reg, &smem->regions, link) {
358 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
359 					       reg->mobj);
360 		len = reg->page_count * SMALL_PAGE_SIZE;
361 
362 		res = vm_unmap(&ctx->uctx, vaddr, len);
363 		if (res != TEE_SUCCESS)
364 			return res;
365 	}
366 
367 	return TEE_SUCCESS;
368 }
369 
370 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
371 				uint64_t *value)
372 {
373 	const fdt64_t *p = NULL;
374 	int len = 0;
375 
376 	p = fdt_getprop(fdt, node, property, &len);
377 	if (!p)
378 		return TEE_ERROR_ITEM_NOT_FOUND;
379 
380 	if (len != sizeof(*p))
381 		return TEE_ERROR_BAD_FORMAT;
382 
383 	*value = fdt64_ld(p);
384 
385 	return TEE_SUCCESS;
386 }
387 
388 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
389 				uint32_t *value)
390 {
391 	const fdt32_t *p = NULL;
392 	int len = 0;
393 
394 	p = fdt_getprop(fdt, node, property, &len);
395 	if (!p)
396 		return TEE_ERROR_ITEM_NOT_FOUND;
397 
398 	if (len != sizeof(*p))
399 		return TEE_ERROR_BAD_FORMAT;
400 
401 	*value = fdt32_to_cpu(*p);
402 
403 	return TEE_SUCCESS;
404 }
405 
406 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
407 				uint16_t *value)
408 {
409 	const fdt16_t *p = NULL;
410 	int len = 0;
411 
412 	p = fdt_getprop(fdt, node, property, &len);
413 	if (!p)
414 		return TEE_ERROR_ITEM_NOT_FOUND;
415 
416 	if (len != sizeof(*p))
417 		return TEE_ERROR_BAD_FORMAT;
418 
419 	*value = fdt16_to_cpu(*p);
420 
421 	return TEE_SUCCESS;
422 }
423 
424 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
425 				 const char *property, TEE_UUID *uuid)
426 {
427 	uint32_t uuid_array[4] = { 0 };
428 	const fdt32_t *p = NULL;
429 	int len = 0;
430 	int i = 0;
431 
432 	p = fdt_getprop(fdt, node, property, &len);
433 	if (!p)
434 		return TEE_ERROR_ITEM_NOT_FOUND;
435 
436 	if (len != sizeof(TEE_UUID))
437 		return TEE_ERROR_BAD_FORMAT;
438 
439 	for (i = 0; i < 4; i++)
440 		uuid_array[i] = fdt32_to_cpu(p[i]);
441 
442 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
443 
444 	return TEE_SUCCESS;
445 }
446 
447 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
448 				   bool *is_elf_format)
449 {
450 	TEE_Result res = TEE_SUCCESS;
451 	uint32_t elf_format = 0;
452 
453 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
454 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
455 		return res;
456 
457 	*is_elf_format = (elf_format != 0);
458 
459 	return TEE_SUCCESS;
460 }
461 
462 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
463 				 const struct ts_store_ops **ops,
464 				 struct ts_store_handle **handle)
465 {
466 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
467 
468 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
469 		res = (*ops)->open(uuid, handle);
470 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
471 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
472 			break;
473 	}
474 
475 	return res;
476 }
477 
478 static TEE_Result load_binary_sp(struct ts_session *s,
479 				 struct user_mode_ctx *uctx)
480 {
481 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
482 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
483 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
484 	const struct ts_store_ops *store_ops = NULL;
485 	struct ts_store_handle *handle = NULL;
486 	TEE_Result res = TEE_SUCCESS;
487 	tee_mm_entry_t *mm = NULL;
488 	struct fobj *fobj = NULL;
489 	struct mobj *mobj = NULL;
490 	uaddr_t base_addr = 0;
491 	uint32_t vm_flags = 0;
492 	unsigned int idx = 0;
493 	vaddr_t va = 0;
494 
495 	if (!s || !uctx)
496 		return TEE_ERROR_BAD_PARAMETERS;
497 
498 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
499 
500 	/* Initialize the bounce buffer */
501 	fobj = fobj_sec_mem_alloc(bb_num_pages);
502 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
503 	fobj_put(fobj);
504 	if (!mobj)
505 		return TEE_ERROR_OUT_OF_MEMORY;
506 
507 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
508 	mobj_put(mobj);
509 	if (res)
510 		return res;
511 
512 	uctx->bbuf = (uint8_t *)va;
513 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
514 
515 	vm_set_ctx(uctx->ts_ctx);
516 
517 	/* Find TS store and open SP binary */
518 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
519 	if (res != TEE_SUCCESS) {
520 		EMSG("Failed to open SP binary");
521 		return res;
522 	}
523 
524 	/* Query binary size and calculate page count */
525 	res = store_ops->get_size(handle, &bin_size);
526 	if (res != TEE_SUCCESS)
527 		goto err;
528 
529 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
530 		res = TEE_ERROR_OVERFLOW;
531 		goto err;
532 	}
533 
534 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
535 
536 	/* Allocate memory */
537 	mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded);
538 	if (!mm) {
539 		res = TEE_ERROR_OUT_OF_MEMORY;
540 		goto err;
541 	}
542 
543 	base_addr = tee_mm_get_smem(mm);
544 
545 	/* Create mobj */
546 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
547 	if (!mobj) {
548 		res = TEE_ERROR_OUT_OF_MEMORY;
549 		goto err_free_tee_mm;
550 	}
551 
552 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
553 	if (res)
554 		goto err_free_mobj;
555 
556 	/* Map memory area for the SP binary */
557 	va = 0;
558 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
559 		     vm_flags, mobj, 0);
560 	if (res)
561 		goto err_free_mobj;
562 
563 	/* Read SP binary into the previously mapped memory area */
564 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
565 	if (res)
566 		goto err_unmap;
567 
568 	/* Set memory protection to allow execution */
569 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
570 	if (res)
571 		goto err_unmap;
572 
573 	mobj_put(mobj);
574 	store_ops->close(handle);
575 
576 	/* The entry point must be at the beginning of the SP binary. */
577 	uctx->entry_func = va;
578 	uctx->load_addr = va;
579 	uctx->is_32bit = false;
580 
581 	s->handle_scall = s->ctx->ops->handle_scall;
582 
583 	return TEE_SUCCESS;
584 
585 err_unmap:
586 	vm_unmap(uctx, va, bin_size_rounded);
587 
588 err_free_mobj:
589 	mobj_put(mobj);
590 
591 err_free_tee_mm:
592 	tee_mm_free(mm);
593 
594 err:
595 	store_ops->close(handle);
596 
597 	return res;
598 }
599 
600 static TEE_Result sp_open_session(struct sp_session **sess,
601 				  struct sp_sessions_head *open_sessions,
602 				  const TEE_UUID *ffa_uuid,
603 				  const TEE_UUID *bin_uuid,
604 				  const uint32_t boot_order,
605 				  const void *fdt)
606 {
607 	TEE_Result res = TEE_SUCCESS;
608 	struct sp_session *s = NULL;
609 	struct sp_ctx *ctx = NULL;
610 	bool is_elf_format = false;
611 
612 	if (!find_secure_partition(bin_uuid))
613 		return TEE_ERROR_ITEM_NOT_FOUND;
614 
615 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
616 	if (res != TEE_SUCCESS) {
617 		DMSG("sp_create_session failed %#"PRIx32, res);
618 		return res;
619 	}
620 
621 	ctx = to_sp_ctx(s->ts_sess.ctx);
622 	assert(ctx);
623 	if (!ctx)
624 		return TEE_ERROR_TARGET_DEAD;
625 	*sess = s;
626 
627 	ts_push_current_session(&s->ts_sess);
628 
629 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
630 	if (res == TEE_SUCCESS) {
631 		if (is_elf_format) {
632 			/* Load the SP using ldelf. */
633 			ldelf_load_ldelf(&ctx->uctx);
634 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
635 		} else {
636 			/* Raw binary format SP */
637 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
638 		}
639 	} else {
640 		EMSG("Failed to detect SP format");
641 	}
642 
643 	if (res != TEE_SUCCESS) {
644 		EMSG("Failed loading SP  %#"PRIx32, res);
645 		ts_pop_current_session();
646 		return TEE_ERROR_TARGET_DEAD;
647 	}
648 
649 	/*
650 	 * Make the SP ready for its first run.
651 	 * Set state to busy to prevent other endpoints from sending messages to
652 	 * the SP before its boot phase is done.
653 	 */
654 	s->state = sp_busy;
655 	s->caller_id = 0;
656 	sp_init_set_registers(ctx);
657 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
658 	ts_pop_current_session();
659 
660 	return TEE_SUCCESS;
661 }
662 
663 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
664 {
665 	const struct fdt_property *description = NULL;
666 	int description_name_len = 0;
667 
668 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
669 		EMSG("Failed loading SP, manifest not found");
670 		return TEE_ERROR_BAD_PARAMETERS;
671 	}
672 
673 	description = fdt_get_property(fdt, 0, "description",
674 				       &description_name_len);
675 	if (description)
676 		DMSG("Loading SP: %s", description->data);
677 
678 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
679 		EMSG("Missing or invalid UUID in SP manifest");
680 		return TEE_ERROR_BAD_FORMAT;
681 	}
682 
683 	return TEE_SUCCESS;
684 }
685 
686 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
687 				   void **fdt_copy, size_t *mapped_size)
688 {
689 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
690 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
691 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
692 	TEE_Result res = TEE_SUCCESS;
693 	struct mobj *m = NULL;
694 	struct fobj *f = NULL;
695 	vaddr_t va = 0;
696 
697 	f = fobj_sec_mem_alloc(num_pages);
698 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
699 	fobj_put(f);
700 	if (!m)
701 		return TEE_ERROR_OUT_OF_MEMORY;
702 
703 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
704 	mobj_put(m);
705 	if (res)
706 		return res;
707 
708 	if (fdt_open_into(fdt, (void *)va, total_size))
709 		return TEE_ERROR_GENERIC;
710 
711 	*fdt_copy = (void *)va;
712 	*mapped_size = total_size;
713 
714 	return res;
715 }
716 
717 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
718 {
719 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
720 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
721 
722 	memcpy(&info->magic, "FF-A", 4);
723 	info->count = 1;
724 
725 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
726 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
727 	info->nvp[0].value = (uintptr_t)fdt;
728 	info->nvp[0].size = fdt_totalsize(fdt);
729 }
730 
731 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt)
732 {
733 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
734 	struct ffa_boot_info_header_1_1 *header =
735 		(struct ffa_boot_info_header_1_1 *)buf;
736 	struct ffa_boot_info_1_1 *desc =
737 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
738 
739 	header->signature = FFA_BOOT_INFO_SIGNATURE;
740 	header->version = FFA_BOOT_INFO_VERSION;
741 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
742 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
743 	header->desc_count = 1;
744 	header->desc_offset = desc_offs;
745 
746 	memset(&desc[0].name, 0, sizeof(desc[0].name));
747 	/* Type: Standard boot info (bit[7] == 0), FDT type */
748 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
749 	/* Flags: Contents field contains an address */
750 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
751 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
752 	desc[0].size = fdt_totalsize(fdt);
753 	desc[0].contents = (uintptr_t)fdt;
754 }
755 
756 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
757 					   struct thread_smc_args *args,
758 					   vaddr_t *va, size_t *mapped_size,
759 					   uint32_t sp_ffa_version)
760 {
761 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
762 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
763 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
764 	TEE_Result res = TEE_SUCCESS;
765 	struct fobj *f = NULL;
766 	struct mobj *m = NULL;
767 	uint32_t info_reg = 0;
768 
769 	f = fobj_sec_mem_alloc(num_pages);
770 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
771 	fobj_put(f);
772 	if (!m)
773 		return TEE_ERROR_OUT_OF_MEMORY;
774 
775 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
776 	mobj_put(m);
777 	if (res)
778 		return res;
779 
780 	*mapped_size = total_size;
781 
782 	switch (sp_ffa_version) {
783 	case MAKE_FFA_VERSION(1, 0):
784 		fill_boot_info_1_0(*va, fdt);
785 		break;
786 	case MAKE_FFA_VERSION(1, 1):
787 		fill_boot_info_1_1(*va, fdt);
788 		break;
789 	default:
790 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
791 		return TEE_ERROR_NOT_SUPPORTED;
792 	}
793 
794 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
795 	if (res) {
796 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
797 			/* If the property is not present, set default to x0 */
798 			info_reg = 0;
799 		} else {
800 			return TEE_ERROR_BAD_FORMAT;
801 		}
802 	}
803 
804 	switch (info_reg) {
805 	case 0:
806 		args->a0 = *va;
807 		break;
808 	case 1:
809 		args->a1 = *va;
810 		break;
811 	case 2:
812 		args->a2 = *va;
813 		break;
814 	case 3:
815 		args->a3 = *va;
816 		break;
817 	default:
818 		EMSG("Invalid register selected for passing boot info");
819 		return TEE_ERROR_BAD_FORMAT;
820 	}
821 
822 	return TEE_SUCCESS;
823 }
824 
825 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
826 						       const void *fdt)
827 {
828 	int node = 0;
829 	int subnode = 0;
830 	tee_mm_entry_t *mm = NULL;
831 	TEE_Result res = TEE_SUCCESS;
832 
833 	/*
834 	 * Memory regions are optional in the SP manifest, it's not an error if
835 	 * we don't find any.
836 	 */
837 	node = fdt_node_offset_by_compatible(fdt, 0,
838 					     "arm,ffa-manifest-memory-regions");
839 	if (node < 0)
840 		return TEE_SUCCESS;
841 
842 	fdt_for_each_subnode(subnode, fdt, node) {
843 		uint64_t load_rel_offset = 0;
844 		uint32_t attributes = 0;
845 		uint64_t base_addr = 0;
846 		uint32_t pages_cnt = 0;
847 		uint32_t flags = 0;
848 		uint32_t perm = 0;
849 		size_t size = 0;
850 		vaddr_t va = 0;
851 
852 		mm = NULL;
853 
854 		/* Load address relative offset of a memory region */
855 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
856 				   &load_rel_offset)) {
857 			va = ctx->uctx.load_addr + load_rel_offset;
858 		} else {
859 			/* Skip non load address relative memory regions */
860 			continue;
861 		}
862 
863 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
864 			EMSG("Both base-address and load-address-relative-offset fields are set");
865 			return TEE_ERROR_BAD_FORMAT;
866 		}
867 
868 		/* Size of memory region as count of 4K pages */
869 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
870 			EMSG("Mandatory field is missing: pages-count");
871 			return TEE_ERROR_BAD_FORMAT;
872 		}
873 
874 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
875 			return TEE_ERROR_OVERFLOW;
876 
877 		/* Memory region attributes  */
878 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
879 			EMSG("Mandatory field is missing: attributes");
880 			return TEE_ERROR_BAD_FORMAT;
881 		}
882 
883 		/* Check instruction and data access permissions */
884 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
885 		case SP_MANIFEST_ATTR_RO:
886 			perm = TEE_MATTR_UR;
887 			break;
888 		case SP_MANIFEST_ATTR_RW:
889 			perm = TEE_MATTR_URW;
890 			break;
891 		case SP_MANIFEST_ATTR_RX:
892 			perm = TEE_MATTR_URX;
893 			break;
894 		default:
895 			EMSG("Invalid memory access permissions");
896 			return TEE_ERROR_BAD_FORMAT;
897 		}
898 
899 		if (IS_ENABLED(CFG_TA_BTI) &&
900 		    attributes & SP_MANIFEST_ATTR_GP) {
901 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
902 				EMSG("Guard only executable region");
903 				return TEE_ERROR_BAD_FORMAT;
904 			}
905 			perm |= TEE_MATTR_GUARDED;
906 		}
907 
908 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
909 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
910 			EMSG("Optional field with invalid value: flags");
911 			return TEE_ERROR_BAD_FORMAT;
912 		}
913 
914 		/* Load relative regions must be secure */
915 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
916 			EMSG("Invalid memory security attribute");
917 			return TEE_ERROR_BAD_FORMAT;
918 		}
919 
920 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
921 			/*
922 			 * NOBITS flag is set, which means that loaded binary
923 			 * doesn't contain this area, so it's need to be
924 			 * allocated.
925 			 */
926 			struct mobj *m = NULL;
927 			unsigned int idx = 0;
928 
929 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
930 			if (!mm)
931 				return TEE_ERROR_OUT_OF_MEMORY;
932 
933 			base_addr = tee_mm_get_smem(mm);
934 
935 			m = sp_mem_new_mobj(pages_cnt,
936 					    TEE_MATTR_MEM_TYPE_CACHED, true);
937 			if (!m) {
938 				res = TEE_ERROR_OUT_OF_MEMORY;
939 				goto err_mm_free;
940 			}
941 
942 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
943 			if (res) {
944 				mobj_put(m);
945 				goto err_mm_free;
946 			}
947 
948 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
949 			mobj_put(m);
950 			if (res)
951 				goto err_mm_free;
952 		} else {
953 			/*
954 			 * If NOBITS is not present the memory area is already
955 			 * mapped and only need to set the correct permissions.
956 			 */
957 			res = vm_set_prot(&ctx->uctx, va, size, perm);
958 			if (res)
959 				return res;
960 		}
961 	}
962 
963 	return TEE_SUCCESS;
964 
965 err_mm_free:
966 	tee_mm_free(mm);
967 	return res;
968 }
969 
970 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
971 {
972 	int node = 0;
973 	int subnode = 0;
974 	TEE_Result res = TEE_SUCCESS;
975 	const char *dt_device_match_table = {
976 		"arm,ffa-manifest-device-regions",
977 	};
978 
979 	/*
980 	 * Device regions are optional in the SP manifest, it's not an error if
981 	 * we don't find any
982 	 */
983 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
984 	if (node < 0)
985 		return TEE_SUCCESS;
986 
987 	fdt_for_each_subnode(subnode, fdt, node) {
988 		uint64_t base_addr = 0;
989 		uint32_t pages_cnt = 0;
990 		uint32_t attributes = 0;
991 		struct mobj *m = NULL;
992 		bool is_secure = true;
993 		uint32_t perm = 0;
994 		vaddr_t va = 0;
995 		unsigned int idx = 0;
996 
997 		/*
998 		 * Physical base address of a device MMIO region.
999 		 * Currently only physically contiguous region is supported.
1000 		 */
1001 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
1002 			EMSG("Mandatory field is missing: base-address");
1003 			return TEE_ERROR_BAD_FORMAT;
1004 		}
1005 
1006 		/* Total size of MMIO region as count of 4K pages */
1007 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1008 			EMSG("Mandatory field is missing: pages-count");
1009 			return TEE_ERROR_BAD_FORMAT;
1010 		}
1011 
1012 		/* Data access, instruction access and security attributes */
1013 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1014 			EMSG("Mandatory field is missing: attributes");
1015 			return TEE_ERROR_BAD_FORMAT;
1016 		}
1017 
1018 		/* Check instruction and data access permissions */
1019 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1020 		case SP_MANIFEST_ATTR_RO:
1021 			perm = TEE_MATTR_UR;
1022 			break;
1023 		case SP_MANIFEST_ATTR_RW:
1024 			perm = TEE_MATTR_URW;
1025 			break;
1026 		default:
1027 			EMSG("Invalid memory access permissions");
1028 			return TEE_ERROR_BAD_FORMAT;
1029 		}
1030 
1031 		/*
1032 		 * The SP is a secure endpoint, security attribute can be
1033 		 * secure or non-secure
1034 		 */
1035 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1036 			is_secure = false;
1037 
1038 		/* Memory attributes must be Device-nGnRnE */
1039 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1040 				    is_secure);
1041 		if (!m)
1042 			return TEE_ERROR_OUT_OF_MEMORY;
1043 
1044 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1045 		if (res) {
1046 			mobj_put(m);
1047 			return res;
1048 		}
1049 
1050 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1051 			     perm, 0, m, 0);
1052 		mobj_put(m);
1053 		if (res)
1054 			return res;
1055 
1056 		/*
1057 		 * Overwrite the device region's PA in the fdt with the VA. This
1058 		 * fdt will be passed to the SP.
1059 		 */
1060 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1061 
1062 		/*
1063 		 * Unmap the region if the overwrite failed since the SP won't
1064 		 * be able to access it without knowing the VA.
1065 		 */
1066 		if (res) {
1067 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1068 			return res;
1069 		}
1070 	}
1071 
1072 	return TEE_SUCCESS;
1073 }
1074 
1075 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1076 				    uint32_t new_endpoint_id)
1077 {
1078 	struct sp_session *session = sp_get_session(endpoint_id);
1079 	uint32_t manifest_endpoint_id = 0;
1080 
1081 	/*
1082 	 * We don't know in which order the SPs are loaded. The endpoint ID
1083 	 * defined in the manifest could already be generated by
1084 	 * new_session_id() and used by another SP. If this is the case, we swap
1085 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1086 	 * not defined twice in the manifest.
1087 	 */
1088 
1089 	/* The endpoint ID was not assigned yet */
1090 	if (!session)
1091 		return TEE_SUCCESS;
1092 
1093 	/*
1094 	 * Read the manifest file from the SP who originally had the endpoint.
1095 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1096 	 * have an endpoint ID defined.
1097 	 */
1098 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1099 		assert(manifest_endpoint_id == endpoint_id);
1100 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1101 		return TEE_ERROR_ACCESS_CONFLICT;
1102 	}
1103 
1104 	session->endpoint_id = new_endpoint_id;
1105 
1106 	return TEE_SUCCESS;
1107 }
1108 
1109 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1110 {
1111 	uint32_t endpoint_id = 0;
1112 
1113 	/*
1114 	 * The endpoint ID can be optionally defined in the manifest file. We
1115 	 * have to map the ID inside the manifest to the SP if it's defined.
1116 	 * If not, the endpoint ID generated inside new_session_id() will be
1117 	 * used.
1118 	 */
1119 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1120 		TEE_Result res = TEE_ERROR_GENERIC;
1121 
1122 		if (!endpoint_id_is_valid(endpoint_id)) {
1123 			EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id);
1124 			return TEE_ERROR_BAD_FORMAT;
1125 		}
1126 
1127 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1128 		if (res)
1129 			return res;
1130 
1131 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1132 		     endpoint_id);
1133 		/* Assign the endpoint ID to the current SP */
1134 		s->endpoint_id = endpoint_id;
1135 	}
1136 	return TEE_SUCCESS;
1137 }
1138 
1139 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1140 {
1141 	int node = 0;
1142 	int subnode = 0;
1143 	tee_mm_entry_t *mm = NULL;
1144 	TEE_Result res = TEE_SUCCESS;
1145 
1146 	/*
1147 	 * Memory regions are optional in the SP manifest, it's not an error if
1148 	 * we don't find any.
1149 	 */
1150 	node = fdt_node_offset_by_compatible(fdt, 0,
1151 					     "arm,ffa-manifest-memory-regions");
1152 	if (node < 0)
1153 		return TEE_SUCCESS;
1154 
1155 	fdt_for_each_subnode(subnode, fdt, node) {
1156 		uint64_t load_rel_offset = 0;
1157 		bool alloc_needed = false;
1158 		uint32_t attributes = 0;
1159 		uint64_t base_addr = 0;
1160 		uint32_t pages_cnt = 0;
1161 		bool is_secure = true;
1162 		struct mobj *m = NULL;
1163 		unsigned int idx = 0;
1164 		uint32_t perm = 0;
1165 		size_t size = 0;
1166 		vaddr_t va = 0;
1167 
1168 		mm = NULL;
1169 
1170 		/* Load address relative offset of a memory region */
1171 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1172 				   &load_rel_offset)) {
1173 			/*
1174 			 * At this point the memory region is already mapped by
1175 			 * handle_fdt_load_relative_mem_regions.
1176 			 * Only need to set the base-address in the manifest and
1177 			 * then skip the rest of the mapping process.
1178 			 */
1179 			va = ctx->uctx.load_addr + load_rel_offset;
1180 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1181 			if (res)
1182 				return res;
1183 
1184 			continue;
1185 		}
1186 
1187 		/*
1188 		 * Base address of a memory region.
1189 		 * If not present, we have to allocate the specified memory.
1190 		 * If present, this field could specify a PA or VA. Currently
1191 		 * only a PA is supported.
1192 		 */
1193 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1194 			alloc_needed = true;
1195 
1196 		/* Size of memory region as count of 4K pages */
1197 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1198 			EMSG("Mandatory field is missing: pages-count");
1199 			return TEE_ERROR_BAD_FORMAT;
1200 		}
1201 
1202 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1203 			return TEE_ERROR_OVERFLOW;
1204 
1205 		/*
1206 		 * Memory region attributes:
1207 		 * - Instruction/data access permissions
1208 		 * - Cacheability/shareability attributes
1209 		 * - Security attributes
1210 		 *
1211 		 * Cacheability/shareability attributes can be ignored for now.
1212 		 * OP-TEE only supports a single type for normal cached memory
1213 		 * and currently there is no use case that would require to
1214 		 * change this.
1215 		 */
1216 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1217 			EMSG("Mandatory field is missing: attributes");
1218 			return TEE_ERROR_BAD_FORMAT;
1219 		}
1220 
1221 		/* Check instruction and data access permissions */
1222 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1223 		case SP_MANIFEST_ATTR_RO:
1224 			perm = TEE_MATTR_UR;
1225 			break;
1226 		case SP_MANIFEST_ATTR_RW:
1227 			perm = TEE_MATTR_URW;
1228 			break;
1229 		case SP_MANIFEST_ATTR_RX:
1230 			perm = TEE_MATTR_URX;
1231 			break;
1232 		default:
1233 			EMSG("Invalid memory access permissions");
1234 			return TEE_ERROR_BAD_FORMAT;
1235 		}
1236 
1237 		if (IS_ENABLED(CFG_TA_BTI) &&
1238 		    attributes & SP_MANIFEST_ATTR_GP) {
1239 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
1240 				EMSG("Guard only executable region");
1241 				return TEE_ERROR_BAD_FORMAT;
1242 			}
1243 			perm |= TEE_MATTR_GUARDED;
1244 		}
1245 
1246 		/*
1247 		 * The SP is a secure endpoint, security attribute can be
1248 		 * secure or non-secure.
1249 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1250 		 * address is missing this attribute must be secure.
1251 		 */
1252 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1253 			if (alloc_needed) {
1254 				EMSG("Invalid memory security attribute");
1255 				return TEE_ERROR_BAD_FORMAT;
1256 			}
1257 			is_secure = false;
1258 		}
1259 
1260 		if (alloc_needed) {
1261 			/* Base address is missing, we have to allocate */
1262 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
1263 			if (!mm)
1264 				return TEE_ERROR_OUT_OF_MEMORY;
1265 
1266 			base_addr = tee_mm_get_smem(mm);
1267 		}
1268 
1269 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1270 				    is_secure);
1271 		if (!m) {
1272 			res = TEE_ERROR_OUT_OF_MEMORY;
1273 			goto err_mm_free;
1274 		}
1275 
1276 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1277 		if (res) {
1278 			mobj_put(m);
1279 			goto err_mm_free;
1280 		}
1281 
1282 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1283 		mobj_put(m);
1284 		if (res)
1285 			goto err_mm_free;
1286 
1287 		/*
1288 		 * Overwrite the memory region's base address in the fdt with
1289 		 * the VA. This fdt will be passed to the SP.
1290 		 * If the base-address field was not present in the original
1291 		 * fdt, this function will create it. This doesn't cause issues
1292 		 * since the necessary extra space has been allocated when
1293 		 * opening the fdt.
1294 		 */
1295 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1296 
1297 		/*
1298 		 * Unmap the region if the overwrite failed since the SP won't
1299 		 * be able to access it without knowing the VA.
1300 		 */
1301 		if (res) {
1302 			vm_unmap(&ctx->uctx, va, size);
1303 			goto err_mm_free;
1304 		}
1305 	}
1306 
1307 	return TEE_SUCCESS;
1308 
1309 err_mm_free:
1310 	tee_mm_free(mm);
1311 	return res;
1312 }
1313 
1314 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1315 {
1316 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1317 	uint32_t dummy_size __maybe_unused = 0;
1318 	TEE_Result res = TEE_SUCCESS;
1319 	size_t page_count = 0;
1320 	struct fobj *f = NULL;
1321 	struct mobj *m = NULL;
1322 	vaddr_t log_addr = 0;
1323 	size_t log_size = 0;
1324 	int node = 0;
1325 
1326 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1327 	if (node < 0)
1328 		return TEE_SUCCESS;
1329 
1330 	/* Checking the existence and size of the event log properties */
1331 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1332 		EMSG("tpm_event_log_addr not found or has invalid size");
1333 		return TEE_ERROR_BAD_FORMAT;
1334 	}
1335 
1336 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1337 		EMSG("tpm_event_log_size not found or has invalid size");
1338 		return TEE_ERROR_BAD_FORMAT;
1339 	}
1340 
1341 	/* Validating event log */
1342 	res = tpm_get_event_log_size(&log_size);
1343 	if (res)
1344 		return res;
1345 
1346 	if (!log_size) {
1347 		EMSG("Empty TPM event log was provided");
1348 		return TEE_ERROR_ITEM_NOT_FOUND;
1349 	}
1350 
1351 	/* Allocating memory area for the event log to share with the SP */
1352 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1353 
1354 	f = fobj_sec_mem_alloc(page_count);
1355 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1356 	fobj_put(f);
1357 	if (!m)
1358 		return TEE_ERROR_OUT_OF_MEMORY;
1359 
1360 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1361 	mobj_put(m);
1362 	if (res)
1363 		return res;
1364 
1365 	/* Copy event log */
1366 	res = tpm_get_event_log((void *)log_addr, &log_size);
1367 	if (res)
1368 		goto err_unmap;
1369 
1370 	/* Setting event log details in the manifest */
1371 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1372 	if (res)
1373 		goto err_unmap;
1374 
1375 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1376 	if (res)
1377 		goto err_unmap;
1378 
1379 	return TEE_SUCCESS;
1380 
1381 err_unmap:
1382 	vm_unmap(&ctx->uctx, log_addr, log_size);
1383 
1384 	return res;
1385 }
1386 
1387 /*
1388  * Note: this function is called only on the primary CPU. It assumes that the
1389  * features present on the primary CPU are available on all of the secondary
1390  * CPUs as well.
1391  */
1392 static TEE_Result handle_hw_features(void *fdt)
1393 {
1394 	uint32_t val __maybe_unused = 0;
1395 	TEE_Result res = TEE_SUCCESS;
1396 	int node = 0;
1397 
1398 	/*
1399 	 * HW feature descriptions are optional in the SP manifest, it's not an
1400 	 * error if we don't find any.
1401 	 */
1402 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1403 	if (node < 0)
1404 		return TEE_SUCCESS;
1405 
1406 	/* Modify the crc32 property only if it's already present */
1407 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1408 		res = fdt_setprop_u32(fdt, node, "crc32",
1409 				      feat_crc32_implemented());
1410 		if (res)
1411 			return res;
1412 	}
1413 
1414 	/* Modify the property only if it's already present */
1415 	if (!sp_dt_get_u32(fdt, node, "bti", &val)) {
1416 		res = fdt_setprop_u32(fdt, node, "bti",
1417 				      feat_bti_is_implemented());
1418 		if (res)
1419 			return res;
1420 	}
1421 
1422 	/* Modify the property only if it's already present */
1423 	if (!sp_dt_get_u32(fdt, node, "pauth", &val)) {
1424 		res = fdt_setprop_u32(fdt, node, "pauth",
1425 				      feat_pauth_is_implemented());
1426 		if (res)
1427 			return res;
1428 	}
1429 
1430 	return TEE_SUCCESS;
1431 }
1432 
1433 static TEE_Result read_ns_interrupts_action(const void *fdt,
1434 					    struct sp_session *s)
1435 {
1436 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1437 
1438 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1439 
1440 	if (res) {
1441 		EMSG("Mandatory property is missing: ns-interrupts-action");
1442 		return res;
1443 	}
1444 
1445 	switch (s->ns_int_mode) {
1446 	case SP_MANIFEST_NS_INT_QUEUED:
1447 	case SP_MANIFEST_NS_INT_SIGNALED:
1448 		/* OK */
1449 		break;
1450 
1451 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1452 		EMSG("Managed exit is not implemented");
1453 		return TEE_ERROR_NOT_IMPLEMENTED;
1454 
1455 	default:
1456 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1457 		     s->ns_int_mode);
1458 		return TEE_ERROR_BAD_PARAMETERS;
1459 	}
1460 
1461 	return TEE_SUCCESS;
1462 }
1463 
1464 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s)
1465 {
1466 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1467 	uint32_t ffa_version = 0;
1468 
1469 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version);
1470 	if (res) {
1471 		EMSG("Mandatory property is missing: ffa-version");
1472 		return res;
1473 	}
1474 
1475 	if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) {
1476 		EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version);
1477 		return TEE_ERROR_BAD_PARAMETERS;
1478 	}
1479 
1480 	s->rxtx.ffa_vers = ffa_version;
1481 
1482 	return TEE_SUCCESS;
1483 }
1484 
1485 static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s)
1486 {
1487 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1488 	uint32_t exec_state = 0;
1489 
1490 	res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state);
1491 	if (res) {
1492 		EMSG("Mandatory property is missing: execution-state");
1493 		return res;
1494 	}
1495 
1496 	/* Currently only AArch64 SPs are supported */
1497 	if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) {
1498 		s->props |= FFA_PART_PROP_AARCH64_STATE;
1499 	} else {
1500 		EMSG("Invalid execution-state value: %"PRIu32, exec_state);
1501 		return TEE_ERROR_BAD_PARAMETERS;
1502 	}
1503 
1504 	return TEE_SUCCESS;
1505 }
1506 
1507 static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s)
1508 {
1509 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1510 	uint32_t msg_method = 0;
1511 
1512 	res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method);
1513 	if (res) {
1514 		EMSG("Mandatory property is missing: messaging-method");
1515 		return res;
1516 	}
1517 
1518 	if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE)
1519 		s->props |= FFA_PART_PROP_DIRECT_REQ_RECV;
1520 
1521 	if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND)
1522 		s->props |= FFA_PART_PROP_DIRECT_REQ_SEND;
1523 
1524 	if (msg_method & SP_MANIFEST_INDIRECT_REQ)
1525 		IMSG("Indirect messaging is not supported");
1526 
1527 	return TEE_SUCCESS;
1528 }
1529 
1530 static TEE_Result read_vm_availability_msg(const void *fdt,
1531 					   struct sp_session *s)
1532 {
1533 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1534 	uint32_t v = 0;
1535 
1536 	res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v);
1537 
1538 	/* This field in the manifest is optional */
1539 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1540 		return TEE_SUCCESS;
1541 
1542 	if (res)
1543 		return res;
1544 
1545 	if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) {
1546 		EMSG("Invalid vm-availability-messages value: %"PRIu32, v);
1547 		return TEE_ERROR_BAD_PARAMETERS;
1548 	}
1549 
1550 	if (v & SP_MANIFEST_VM_CREATED_MSG)
1551 		s->props |= FFA_PART_PROP_NOTIF_CREATED;
1552 
1553 	if (v & SP_MANIFEST_VM_DESTROYED_MSG)
1554 		s->props |= FFA_PART_PROP_NOTIF_DESTROYED;
1555 
1556 	return TEE_SUCCESS;
1557 }
1558 
1559 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1560 {
1561 	TEE_Result res = TEE_SUCCESS;
1562 	struct sp_session *sess = NULL;
1563 	TEE_UUID ffa_uuid = {};
1564 	uint16_t boot_order = 0;
1565 	uint32_t boot_order_arg = 0;
1566 
1567 	res = fdt_get_uuid(fdt, &ffa_uuid);
1568 	if (res)
1569 		return res;
1570 
1571 	res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order);
1572 	if (res == TEE_SUCCESS) {
1573 		boot_order_arg = boot_order;
1574 	} else if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1575 		boot_order_arg = UINT32_MAX;
1576 	} else {
1577 		EMSG("Failed reading boot-order property err:%#"PRIx32, res);
1578 		return res;
1579 	}
1580 
1581 	res = sp_open_session(&sess,
1582 			      &open_sp_sessions,
1583 			      &ffa_uuid, bin_uuid, boot_order_arg, fdt);
1584 	if (res)
1585 		return res;
1586 
1587 	sess->fdt = fdt;
1588 
1589 	res = read_manifest_endpoint_id(sess);
1590 	if (res)
1591 		return res;
1592 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1593 
1594 	res = read_ns_interrupts_action(fdt, sess);
1595 	if (res)
1596 		return res;
1597 
1598 	res = read_ffa_version(fdt, sess);
1599 	if (res)
1600 		return res;
1601 
1602 	res = read_sp_exec_state(fdt, sess);
1603 	if (res)
1604 		return res;
1605 
1606 	res = read_sp_msg_types(fdt, sess);
1607 	if (res)
1608 		return res;
1609 
1610 	res = read_vm_availability_msg(fdt, sess);
1611 	if (res)
1612 		return res;
1613 
1614 	return TEE_SUCCESS;
1615 }
1616 
1617 static TEE_Result sp_first_run(struct sp_session *sess)
1618 {
1619 	TEE_Result res = TEE_SUCCESS;
1620 	struct thread_smc_args args = { };
1621 	struct sp_ctx *ctx = NULL;
1622 	vaddr_t boot_info_va = 0;
1623 	size_t boot_info_size = 0;
1624 	void *fdt_copy = NULL;
1625 	size_t fdt_size = 0;
1626 
1627 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1628 	ts_push_current_session(&sess->ts_sess);
1629 	sess->is_initialized = false;
1630 
1631 	/*
1632 	 * Load relative memory regions must be handled before doing any other
1633 	 * mapping to prevent conflicts in the VA space.
1634 	 */
1635 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1636 	if (res) {
1637 		ts_pop_current_session();
1638 		return res;
1639 	}
1640 
1641 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1642 	if (res)
1643 		goto out;
1644 
1645 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1646 	if (res)
1647 		goto out;
1648 
1649 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1650 	if (res)
1651 		goto out;
1652 
1653 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1654 		res = handle_tpm_event_log(ctx, fdt_copy);
1655 		if (res)
1656 			goto out;
1657 	}
1658 
1659 	res = handle_hw_features(fdt_copy);
1660 	if (res)
1661 		goto out;
1662 
1663 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1664 				       &boot_info_size, sess->rxtx.ffa_vers);
1665 	if (res)
1666 		goto out;
1667 
1668 	ts_pop_current_session();
1669 
1670 	res = sp_enter(&args, sess);
1671 	if (res) {
1672 		ts_push_current_session(&sess->ts_sess);
1673 		goto out;
1674 	}
1675 
1676 	spmc_sp_msg_handler(&args, sess);
1677 
1678 	ts_push_current_session(&sess->ts_sess);
1679 	sess->is_initialized = true;
1680 
1681 out:
1682 	/* Free the boot info page from the SP memory */
1683 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1684 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1685 	ts_pop_current_session();
1686 
1687 	return res;
1688 }
1689 
1690 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
1691 {
1692 	TEE_Result res = TEE_SUCCESS;
1693 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1694 
1695 	ctx->sp_regs.x[0] = args->a0;
1696 	ctx->sp_regs.x[1] = args->a1;
1697 	ctx->sp_regs.x[2] = args->a2;
1698 	ctx->sp_regs.x[3] = args->a3;
1699 	ctx->sp_regs.x[4] = args->a4;
1700 	ctx->sp_regs.x[5] = args->a5;
1701 	ctx->sp_regs.x[6] = args->a6;
1702 	ctx->sp_regs.x[7] = args->a7;
1703 #ifdef CFG_TA_PAUTH
1704 	ctx->sp_regs.apiakey_hi = ctx->uctx.keys.apia_hi;
1705 	ctx->sp_regs.apiakey_lo = ctx->uctx.keys.apia_lo;
1706 #endif
1707 
1708 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1709 
1710 	args->a0 = ctx->sp_regs.x[0];
1711 	args->a1 = ctx->sp_regs.x[1];
1712 	args->a2 = ctx->sp_regs.x[2];
1713 	args->a3 = ctx->sp_regs.x[3];
1714 	args->a4 = ctx->sp_regs.x[4];
1715 	args->a5 = ctx->sp_regs.x[5];
1716 	args->a6 = ctx->sp_regs.x[6];
1717 	args->a7 = ctx->sp_regs.x[7];
1718 
1719 	return res;
1720 }
1721 
1722 /*
1723  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1724  * active on NS interrupt than the callee, the callee must inherit the caller's
1725  * configuration.
1726  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1727  * action will be MIN([self action], [caller's action]) which is stored in the
1728  * ns_int_mode_inherited field.
1729  */
1730 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1731 						 struct ts_session *caller,
1732 						 uint64_t *cpsr)
1733 {
1734 	if (caller) {
1735 		struct sp_session *caller_sp = to_sp_session(caller);
1736 
1737 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1738 					       s->ns_int_mode);
1739 	} else {
1740 		s->ns_int_mode_inherited = s->ns_int_mode;
1741 	}
1742 
1743 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1744 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1745 				   ARM32_CPSR_F_SHIFT);
1746 	else
1747 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1748 				    ARM32_CPSR_F_SHIFT);
1749 }
1750 
1751 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1752 				      uint32_t cmd __unused)
1753 {
1754 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1755 	TEE_Result res = TEE_SUCCESS;
1756 	uint32_t exceptions = 0;
1757 	struct sp_session *sp_s = to_sp_session(s);
1758 	struct ts_session *sess = NULL;
1759 	struct thread_ctx_regs *sp_regs = NULL;
1760 	uint32_t thread_id = THREAD_ID_INVALID;
1761 	struct ts_session *caller = NULL;
1762 	uint32_t rpc_target_info = 0;
1763 	uint32_t panicked = false;
1764 	uint32_t panic_code = 0;
1765 
1766 	sp_regs = &ctx->sp_regs;
1767 	ts_push_current_session(s);
1768 
1769 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1770 
1771 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1772 	caller = ts_get_calling_session();
1773 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1774 
1775 	/*
1776 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1777 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1778 	 */
1779 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1780 	thread_id = thread_get_id();
1781 	assert(thread_id <= UINT16_MAX);
1782 	thread_get_tsd()->rpc_target_info =
1783 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1784 
1785 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1786 
1787 	/* Restore rpc_target_info */
1788 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1789 
1790 	thread_unmask_exceptions(exceptions);
1791 
1792 	thread_user_clear_vfp(&ctx->uctx);
1793 
1794 	if (panicked) {
1795 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1796 		abort_print_current_ts();
1797 
1798 		sess = ts_pop_current_session();
1799 		cpu_spin_lock(&sp_s->spinlock);
1800 		sp_s->state = sp_dead;
1801 		cpu_spin_unlock(&sp_s->spinlock);
1802 
1803 		return TEE_ERROR_TARGET_DEAD;
1804 	}
1805 
1806 	sess = ts_pop_current_session();
1807 	assert(sess == s);
1808 
1809 	return res;
1810 }
1811 
1812 /* We currently don't support 32 bits */
1813 #ifdef ARM64
1814 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1815 				   struct thread_ctx_regs *sp_regs)
1816 {
1817 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1818 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1819 	sp_regs->pc = regs->elr;
1820 	sp_regs->sp = regs->sp_el0;
1821 }
1822 #endif
1823 
1824 static bool sp_handle_scall(struct thread_scall_regs *regs)
1825 {
1826 	struct ts_session *ts = ts_get_current_session();
1827 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1828 	struct sp_session *s = uctx->open_session;
1829 
1830 	assert(s);
1831 
1832 	sp_svc_store_registers(regs, &uctx->sp_regs);
1833 
1834 	regs->x0 = 0;
1835 	regs->x1 = 0; /* panic */
1836 	regs->x2 = 0; /* panic code */
1837 
1838 	/*
1839 	 * All the registers of the SP are saved in the SP session by the SVC
1840 	 * handler.
1841 	 * We always return to S-El1 after handling the SVC. We will continue
1842 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1843 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1844 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1845 	 * afterward used by the spmc_sp_msg_handler() to handle the
1846 	 * FF-A message send by the SP.
1847 	 */
1848 	return false;
1849 }
1850 
1851 static void sp_dump_state(struct ts_ctx *ctx)
1852 {
1853 	struct sp_ctx *utc = to_sp_ctx(ctx);
1854 
1855 	if (utc->uctx.dump_entry_func) {
1856 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1857 
1858 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1859 			return;
1860 	}
1861 
1862 	user_mode_ctx_print_mappings(&utc->uctx);
1863 }
1864 
1865 static const struct ts_ops sp_ops = {
1866 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1867 	.handle_scall = sp_handle_scall,
1868 	.dump_state = sp_dump_state,
1869 };
1870 
1871 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1872 {
1873 	enum teecore_memtypes mtype = MEM_AREA_TA_RAM;
1874 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1875 	struct fip_sp *sp = NULL;
1876 	uint64_t sp_fdt_end = 0;
1877 	size_t sp_pkg_size = 0;
1878 	vaddr_t sp_pkg_va = 0;
1879 
1880 	/* Process the first page which contains the SP package header */
1881 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1882 	if (!sp_pkg_va) {
1883 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1884 		return TEE_ERROR_GENERIC;
1885 	}
1886 
1887 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1888 
1889 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1890 		EMSG("Invalid SP package magic");
1891 		return TEE_ERROR_BAD_FORMAT;
1892 	}
1893 
1894 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1895 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1896 		EMSG("Invalid SP header version");
1897 		return TEE_ERROR_BAD_FORMAT;
1898 	}
1899 
1900 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1901 			 &sp_pkg_size)) {
1902 		EMSG("Invalid SP package size");
1903 		return TEE_ERROR_BAD_FORMAT;
1904 	}
1905 
1906 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1907 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1908 		EMSG("Invalid SP manifest size");
1909 		return TEE_ERROR_BAD_FORMAT;
1910 	}
1911 
1912 	/* Process the whole SP package now that the size is known */
1913 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1914 	if (!sp_pkg_va) {
1915 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1916 		return TEE_ERROR_GENERIC;
1917 	}
1918 
1919 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1920 
1921 	sp = calloc(1, sizeof(struct fip_sp));
1922 	if (!sp)
1923 		return TEE_ERROR_OUT_OF_MEMORY;
1924 
1925 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1926 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1927 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1928 	sp->sp_img.image.flags = 0;
1929 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1930 
1931 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1932 
1933 	return TEE_SUCCESS;
1934 }
1935 
1936 static TEE_Result fip_sp_init_all(void)
1937 {
1938 	TEE_Result res = TEE_SUCCESS;
1939 	uint64_t sp_pkg_addr = 0;
1940 	const void *fdt = NULL;
1941 	TEE_UUID sp_uuid = { };
1942 	int sp_pkgs_node = 0;
1943 	int subnode = 0;
1944 	int root = 0;
1945 
1946 	fdt = get_manifest_dt();
1947 	if (!fdt) {
1948 		EMSG("No SPMC manifest found");
1949 		return TEE_ERROR_GENERIC;
1950 	}
1951 
1952 	root = fdt_path_offset(fdt, "/");
1953 	if (root < 0)
1954 		return TEE_ERROR_BAD_FORMAT;
1955 
1956 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1957 		return TEE_ERROR_BAD_FORMAT;
1958 
1959 	/* SP packages are optional, it's not an error if we don't find any */
1960 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1961 	if (sp_pkgs_node < 0)
1962 		return TEE_SUCCESS;
1963 
1964 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1965 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1966 		if (res) {
1967 			EMSG("Invalid FIP SP load address");
1968 			return res;
1969 		}
1970 
1971 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1972 		if (res) {
1973 			EMSG("Invalid FIP SP uuid");
1974 			return res;
1975 		}
1976 
1977 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1978 		if (res) {
1979 			EMSG("Invalid FIP SP package");
1980 			return res;
1981 		}
1982 	}
1983 
1984 	return TEE_SUCCESS;
1985 }
1986 
1987 static void fip_sp_deinit_all(void)
1988 {
1989 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1990 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
1991 
1992 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
1993 		free(sp);
1994 	}
1995 }
1996 
1997 static TEE_Result sp_init_all(void)
1998 {
1999 	TEE_Result res = TEE_SUCCESS;
2000 	const struct sp_image *sp = NULL;
2001 	const struct fip_sp *fip_sp = NULL;
2002 	char __maybe_unused msg[60] = { '\0', };
2003 	struct sp_session *s = NULL;
2004 	struct sp_session *prev_sp = NULL;
2005 
2006 	for_each_secure_partition(sp) {
2007 		if (sp->image.uncompressed_size)
2008 			snprintf(msg, sizeof(msg),
2009 				 " (compressed, uncompressed %u)",
2010 				 sp->image.uncompressed_size);
2011 		else
2012 			msg[0] = '\0';
2013 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
2014 		     sp->image.size, msg);
2015 
2016 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2017 
2018 		if (res != TEE_SUCCESS) {
2019 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2020 			     &sp->image.uuid, res);
2021 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2022 				panic();
2023 		}
2024 	}
2025 
2026 	res = fip_sp_init_all();
2027 	if (res)
2028 		panic("Failed initializing FIP SPs");
2029 
2030 	for_each_fip_sp(fip_sp) {
2031 		sp = &fip_sp->sp_img;
2032 
2033 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
2034 		     sp->image.size);
2035 
2036 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2037 
2038 		if (res != TEE_SUCCESS) {
2039 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2040 			     &sp->image.uuid, res);
2041 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2042 				panic();
2043 		}
2044 	}
2045 
2046 	/*
2047 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
2048 	 * loader, so the original images (loaded by BL2) are not needed anymore
2049 	 */
2050 	fip_sp_deinit_all();
2051 
2052 	/*
2053 	 * Now that all SPs are loaded, check through the boot order values,
2054 	 * and warn in case there is a non-unique value.
2055 	 */
2056 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2057 		/* User specified boot-order values are uint16 */
2058 		if (s->boot_order > UINT16_MAX)
2059 			break;
2060 
2061 		if (prev_sp && prev_sp->boot_order == s->boot_order)
2062 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
2063 			     &prev_sp->ts_sess.ctx->uuid,
2064 			     &s->ts_sess.ctx->uuid);
2065 
2066 		prev_sp = s;
2067 	}
2068 
2069 	/* Continue the initialization and run the SP */
2070 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2071 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
2072 
2073 		res = sp_first_run(s);
2074 		if (res != TEE_SUCCESS) {
2075 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
2076 			     s->endpoint_id, res);
2077 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2078 				panic();
2079 		}
2080 	}
2081 
2082 	return TEE_SUCCESS;
2083 }
2084 
2085 boot_final(sp_init_all);
2086 
2087 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
2088 					struct ts_store_handle **h)
2089 {
2090 	return emb_ts_open(uuid, h, find_secure_partition);
2091 }
2092 
2093 REGISTER_SP_STORE(2) = {
2094 	.description = "SP store",
2095 	.open = secure_partition_open,
2096 	.get_size = emb_ts_get_size,
2097 	.get_tag = emb_ts_get_tag,
2098 	.read = emb_ts_read,
2099 	.close = emb_ts_close,
2100 };
2101