xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 9363481ec66d19a762bade3487af8ce56238b92c)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2024, Arm Limited.
4  */
5 #include <crypto/crypto.h>
6 #include <initcall.h>
7 #include <kernel/boot.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/vm.h>
23 #include <optee_ffa.h>
24 #include <stdio.h>
25 #include <string.h>
26 #include <tee_api_types.h>
27 #include <tee/uuid.h>
28 #include <trace.h>
29 #include <types_ext.h>
30 #include <utee_defines.h>
31 #include <util.h>
32 #include <zlib.h>
33 
34 #define BOUNCE_BUFFER_SIZE		4096
35 
36 #define SP_MANIFEST_ATTR_READ		BIT(0)
37 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
38 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
39 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
40 #define SP_MANIFEST_ATTR_GP		BIT(4)
41 
42 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
43 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
44 					 SP_MANIFEST_ATTR_WRITE)
45 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
46 					 SP_MANIFEST_ATTR_EXEC)
47 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
48 					 SP_MANIFEST_ATTR_WRITE | \
49 					 SP_MANIFEST_ATTR_EXEC)
50 
51 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
52 
53 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
54 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
55 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
56 
57 #define SP_MANIFEST_EXEC_STATE_AARCH64	(0x0)
58 #define SP_MANIFEST_EXEC_STATE_AARCH32	(0x1)
59 
60 #define SP_MANIFEST_DIRECT_REQ_RECEIVE	BIT(0)
61 #define SP_MANIFEST_DIRECT_REQ_SEND	BIT(1)
62 #define SP_MANIFEST_INDIRECT_REQ	BIT(2)
63 
64 #define SP_MANIFEST_VM_CREATED_MSG	BIT(0)
65 #define SP_MANIFEST_VM_DESTROYED_MSG	BIT(1)
66 
67 #define SP_PKG_HEADER_MAGIC (0x474b5053)
68 #define SP_PKG_HEADER_VERSION_V1 (0x1)
69 #define SP_PKG_HEADER_VERSION_V2 (0x2)
70 
71 struct sp_pkg_header {
72 	uint32_t magic;
73 	uint32_t version;
74 	uint32_t pm_offset;
75 	uint32_t pm_size;
76 	uint32_t img_offset;
77 	uint32_t img_size;
78 };
79 
80 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
81 
82 static const struct ts_ops sp_ops;
83 
84 /* List that holds all of the loaded SP's */
85 static struct sp_sessions_head open_sp_sessions =
86 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
87 
88 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
89 {
90 	const struct sp_image *sp = NULL;
91 	const struct fip_sp *fip_sp = NULL;
92 
93 	for_each_secure_partition(sp) {
94 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
95 			return &sp->image;
96 	}
97 
98 	for_each_fip_sp(fip_sp) {
99 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
100 			return &fip_sp->sp_img.image;
101 	}
102 
103 	return NULL;
104 }
105 
106 bool is_sp_ctx(struct ts_ctx *ctx)
107 {
108 	return ctx && (ctx->ops == &sp_ops);
109 }
110 
111 static void set_sp_ctx_ops(struct ts_ctx *ctx)
112 {
113 	ctx->ops = &sp_ops;
114 }
115 
116 struct sp_session *sp_get_session(uint32_t session_id)
117 {
118 	struct sp_session *s = NULL;
119 
120 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
121 		if (s->endpoint_id == session_id)
122 			return s;
123 	}
124 
125 	return NULL;
126 }
127 
128 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
129 				 const TEE_UUID *ffa_uuid, size_t *elem_count,
130 				 bool count_only)
131 {
132 	TEE_Result res = TEE_SUCCESS;
133 	struct sp_session *s = NULL;
134 
135 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
136 		if (ffa_uuid &&
137 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
138 			continue;
139 
140 		if (s->state == sp_dead)
141 			continue;
142 		if (!count_only && !res) {
143 			uint32_t uuid_words[4] = { 0 };
144 
145 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
146 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
147 							*elem_count,
148 							s->endpoint_id, 1,
149 							s->props, uuid_words);
150 		}
151 		*elem_count += 1;
152 	}
153 
154 	return res;
155 }
156 
157 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
158 			     struct user_mode_ctx *uctx)
159 {
160 	/*
161 	 * Check that we have access to the region if it is supposed to be
162 	 * mapped to the current context.
163 	 */
164 	if (uctx) {
165 		struct vm_region *region = NULL;
166 
167 		/* Make sure that each mobj belongs to the SP */
168 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
169 			if (region->mobj == mem->mobj)
170 				break;
171 		}
172 
173 		if (!region)
174 			return false;
175 	}
176 
177 	/* Check that it is not shared with another SP */
178 	return !sp_mem_is_shared(mem);
179 }
180 
181 static bool endpoint_id_is_valid(uint32_t id)
182 {
183 	/*
184 	 * These IDs are assigned at the SPMC init so already have valid values
185 	 * by the time this function gets first called
186 	 */
187 	return id != spmd_id && id != spmc_id && id != optee_endpoint_id &&
188 	       id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX;
189 }
190 
191 static TEE_Result new_session_id(uint16_t *endpoint_id)
192 {
193 	uint32_t id = 0;
194 
195 	/* Find the first available endpoint id */
196 	for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) {
197 		if (endpoint_id_is_valid(id) && !sp_get_session(id)) {
198 			*endpoint_id = id;
199 			return TEE_SUCCESS;
200 		}
201 	}
202 
203 	return TEE_ERROR_BAD_FORMAT;
204 }
205 
206 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
207 {
208 	TEE_Result res = TEE_SUCCESS;
209 	struct sp_ctx *spc = NULL;
210 
211 	/* Register context */
212 	spc = calloc(1, sizeof(struct sp_ctx));
213 	if (!spc)
214 		return TEE_ERROR_OUT_OF_MEMORY;
215 
216 	spc->open_session = s;
217 	s->ts_sess.ctx = &spc->ts_ctx;
218 	spc->ts_ctx.uuid = *bin_uuid;
219 
220 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
221 	if (res)
222 		goto err;
223 
224 	set_sp_ctx_ops(&spc->ts_ctx);
225 
226 	return TEE_SUCCESS;
227 
228 err:
229 	free(spc);
230 	return res;
231 }
232 
233 /*
234  * Insert a new sp_session to the sessions list, so that it is ordered
235  * by boot_order.
236  */
237 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
238 				   struct sp_session *session)
239 {
240 	struct sp_session *s = NULL;
241 
242 	if (!open_sessions || !session)
243 		return;
244 
245 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
246 		if (s->boot_order > session->boot_order)
247 			break;
248 	}
249 
250 	if (!s)
251 		TAILQ_INSERT_TAIL(open_sessions, session, link);
252 	else
253 		TAILQ_INSERT_BEFORE(s, session, link);
254 }
255 
256 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
257 				    const TEE_UUID *bin_uuid,
258 				    const uint32_t boot_order,
259 				    struct sp_session **sess)
260 {
261 	TEE_Result res = TEE_SUCCESS;
262 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
263 
264 	if (!s)
265 		return TEE_ERROR_OUT_OF_MEMORY;
266 
267 	s->boot_order = boot_order;
268 
269 	/* Other properties are filled later, based on the SP's manifest */
270 	s->props = FFA_PART_PROP_IS_PE_ID;
271 
272 	res = new_session_id(&s->endpoint_id);
273 	if (res)
274 		goto err;
275 
276 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
277 	res = sp_create_ctx(bin_uuid, s);
278 	if (res)
279 		goto err;
280 
281 	insert_session_ordered(open_sessions, s);
282 	*sess = s;
283 	return TEE_SUCCESS;
284 
285 err:
286 	free(s);
287 	return res;
288 }
289 
290 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
291 {
292 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
293 
294 	memset(sp_regs, 0, sizeof(*sp_regs));
295 	sp_regs->sp = ctx->uctx.stack_ptr;
296 	sp_regs->pc = ctx->uctx.entry_func;
297 
298 	return TEE_SUCCESS;
299 }
300 
301 TEE_Result sp_map_shared(struct sp_session *s,
302 			 struct sp_mem_receiver *receiver,
303 			 struct sp_mem *smem,
304 			 uint64_t *va)
305 {
306 	TEE_Result res = TEE_SUCCESS;
307 	struct sp_ctx *ctx = NULL;
308 	uint32_t perm = TEE_MATTR_UR;
309 	struct sp_mem_map_region *reg = NULL;
310 
311 	ctx = to_sp_ctx(s->ts_sess.ctx);
312 
313 	/* Get the permission */
314 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
315 		perm |= TEE_MATTR_UX;
316 
317 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
318 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
319 			return TEE_ERROR_ACCESS_CONFLICT;
320 
321 		perm |= TEE_MATTR_UW;
322 	}
323 	/*
324 	 * Currently we don't support passing a va. We can't guarantee that the
325 	 * full region will be mapped in a contiguous region. A smem->region can
326 	 * have multiple mobj for one share. Currently there doesn't seem to be
327 	 * an option to guarantee that these will be mapped in a contiguous va
328 	 * space.
329 	 */
330 	if (*va)
331 		return TEE_ERROR_NOT_SUPPORTED;
332 
333 	SLIST_FOREACH(reg, &smem->regions, link) {
334 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
335 			     perm, 0, reg->mobj, reg->page_offset);
336 
337 		if (res != TEE_SUCCESS) {
338 			EMSG("Failed to map memory region %#"PRIx32, res);
339 			return res;
340 		}
341 	}
342 	return TEE_SUCCESS;
343 }
344 
345 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
346 {
347 	TEE_Result res = TEE_SUCCESS;
348 	vaddr_t vaddr = 0;
349 	size_t len = 0;
350 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
351 	struct sp_mem_map_region *reg = NULL;
352 
353 	SLIST_FOREACH(reg, &smem->regions, link) {
354 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
355 					       reg->mobj);
356 		len = reg->page_count * SMALL_PAGE_SIZE;
357 
358 		res = vm_unmap(&ctx->uctx, vaddr, len);
359 		if (res != TEE_SUCCESS)
360 			return res;
361 	}
362 
363 	return TEE_SUCCESS;
364 }
365 
366 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
367 				uint64_t *value)
368 {
369 	const fdt64_t *p = NULL;
370 	int len = 0;
371 
372 	p = fdt_getprop(fdt, node, property, &len);
373 	if (!p)
374 		return TEE_ERROR_ITEM_NOT_FOUND;
375 
376 	if (len != sizeof(*p))
377 		return TEE_ERROR_BAD_FORMAT;
378 
379 	*value = fdt64_ld(p);
380 
381 	return TEE_SUCCESS;
382 }
383 
384 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
385 				uint32_t *value)
386 {
387 	const fdt32_t *p = NULL;
388 	int len = 0;
389 
390 	p = fdt_getprop(fdt, node, property, &len);
391 	if (!p)
392 		return TEE_ERROR_ITEM_NOT_FOUND;
393 
394 	if (len != sizeof(*p))
395 		return TEE_ERROR_BAD_FORMAT;
396 
397 	*value = fdt32_to_cpu(*p);
398 
399 	return TEE_SUCCESS;
400 }
401 
402 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
403 				uint16_t *value)
404 {
405 	const fdt16_t *p = NULL;
406 	int len = 0;
407 
408 	p = fdt_getprop(fdt, node, property, &len);
409 	if (!p)
410 		return TEE_ERROR_ITEM_NOT_FOUND;
411 
412 	if (len != sizeof(*p))
413 		return TEE_ERROR_BAD_FORMAT;
414 
415 	*value = fdt16_to_cpu(*p);
416 
417 	return TEE_SUCCESS;
418 }
419 
420 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
421 				 const char *property, TEE_UUID *uuid)
422 {
423 	uint32_t uuid_array[4] = { 0 };
424 	const fdt32_t *p = NULL;
425 	int len = 0;
426 	int i = 0;
427 
428 	p = fdt_getprop(fdt, node, property, &len);
429 	if (!p)
430 		return TEE_ERROR_ITEM_NOT_FOUND;
431 
432 	if (len != sizeof(TEE_UUID))
433 		return TEE_ERROR_BAD_FORMAT;
434 
435 	for (i = 0; i < 4; i++)
436 		uuid_array[i] = fdt32_to_cpu(p[i]);
437 
438 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
439 
440 	return TEE_SUCCESS;
441 }
442 
443 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
444 				   bool *is_elf_format)
445 {
446 	TEE_Result res = TEE_SUCCESS;
447 	uint32_t elf_format = 0;
448 
449 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
450 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
451 		return res;
452 
453 	*is_elf_format = (elf_format != 0);
454 
455 	return TEE_SUCCESS;
456 }
457 
458 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
459 				 const struct ts_store_ops **ops,
460 				 struct ts_store_handle **handle)
461 {
462 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
463 
464 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
465 		res = (*ops)->open(uuid, handle);
466 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
467 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
468 			break;
469 	}
470 
471 	return res;
472 }
473 
474 static TEE_Result load_binary_sp(struct ts_session *s,
475 				 struct user_mode_ctx *uctx)
476 {
477 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
478 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
479 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
480 	const struct ts_store_ops *store_ops = NULL;
481 	struct ts_store_handle *handle = NULL;
482 	TEE_Result res = TEE_SUCCESS;
483 	tee_mm_entry_t *mm = NULL;
484 	struct fobj *fobj = NULL;
485 	struct mobj *mobj = NULL;
486 	uaddr_t base_addr = 0;
487 	uint32_t vm_flags = 0;
488 	unsigned int idx = 0;
489 	vaddr_t va = 0;
490 
491 	if (!s || !uctx)
492 		return TEE_ERROR_BAD_PARAMETERS;
493 
494 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
495 
496 	/* Initialize the bounce buffer */
497 	fobj = fobj_sec_mem_alloc(bb_num_pages);
498 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
499 	fobj_put(fobj);
500 	if (!mobj)
501 		return TEE_ERROR_OUT_OF_MEMORY;
502 
503 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
504 	mobj_put(mobj);
505 	if (res)
506 		return res;
507 
508 	uctx->bbuf = (uint8_t *)va;
509 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
510 
511 	vm_set_ctx(uctx->ts_ctx);
512 
513 	/* Find TS store and open SP binary */
514 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
515 	if (res != TEE_SUCCESS) {
516 		EMSG("Failed to open SP binary");
517 		return res;
518 	}
519 
520 	/* Query binary size and calculate page count */
521 	res = store_ops->get_size(handle, &bin_size);
522 	if (res != TEE_SUCCESS)
523 		goto err;
524 
525 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
526 		res = TEE_ERROR_OVERFLOW;
527 		goto err;
528 	}
529 
530 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
531 
532 	/* Allocate memory */
533 	mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded);
534 	if (!mm) {
535 		res = TEE_ERROR_OUT_OF_MEMORY;
536 		goto err;
537 	}
538 
539 	base_addr = tee_mm_get_smem(mm);
540 
541 	/* Create mobj */
542 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
543 	if (!mobj) {
544 		res = TEE_ERROR_OUT_OF_MEMORY;
545 		goto err_free_tee_mm;
546 	}
547 
548 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
549 	if (res)
550 		goto err_free_mobj;
551 
552 	/* Map memory area for the SP binary */
553 	va = 0;
554 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
555 		     vm_flags, mobj, 0);
556 	if (res)
557 		goto err_free_mobj;
558 
559 	/* Read SP binary into the previously mapped memory area */
560 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
561 	if (res)
562 		goto err_unmap;
563 
564 	/* Set memory protection to allow execution */
565 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
566 	if (res)
567 		goto err_unmap;
568 
569 	mobj_put(mobj);
570 	store_ops->close(handle);
571 
572 	/* The entry point must be at the beginning of the SP binary. */
573 	uctx->entry_func = va;
574 	uctx->load_addr = va;
575 	uctx->is_32bit = false;
576 
577 	s->handle_scall = s->ctx->ops->handle_scall;
578 
579 	return TEE_SUCCESS;
580 
581 err_unmap:
582 	vm_unmap(uctx, va, bin_size_rounded);
583 
584 err_free_mobj:
585 	mobj_put(mobj);
586 
587 err_free_tee_mm:
588 	tee_mm_free(mm);
589 
590 err:
591 	store_ops->close(handle);
592 
593 	return res;
594 }
595 
596 static TEE_Result sp_open_session(struct sp_session **sess,
597 				  struct sp_sessions_head *open_sessions,
598 				  const TEE_UUID *ffa_uuid,
599 				  const TEE_UUID *bin_uuid,
600 				  const uint32_t boot_order,
601 				  const void *fdt)
602 {
603 	TEE_Result res = TEE_SUCCESS;
604 	struct sp_session *s = NULL;
605 	struct sp_ctx *ctx = NULL;
606 	bool is_elf_format = false;
607 
608 	if (!find_secure_partition(bin_uuid))
609 		return TEE_ERROR_ITEM_NOT_FOUND;
610 
611 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
612 	if (res != TEE_SUCCESS) {
613 		DMSG("sp_create_session failed %#"PRIx32, res);
614 		return res;
615 	}
616 
617 	ctx = to_sp_ctx(s->ts_sess.ctx);
618 	assert(ctx);
619 	if (!ctx)
620 		return TEE_ERROR_TARGET_DEAD;
621 	*sess = s;
622 
623 	ts_push_current_session(&s->ts_sess);
624 
625 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
626 	if (res == TEE_SUCCESS) {
627 		if (is_elf_format) {
628 			/* Load the SP using ldelf. */
629 			ldelf_load_ldelf(&ctx->uctx);
630 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
631 		} else {
632 			/* Raw binary format SP */
633 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
634 		}
635 	} else {
636 		EMSG("Failed to detect SP format");
637 	}
638 
639 	if (res != TEE_SUCCESS) {
640 		EMSG("Failed loading SP  %#"PRIx32, res);
641 		ts_pop_current_session();
642 		return TEE_ERROR_TARGET_DEAD;
643 	}
644 
645 	/*
646 	 * Make the SP ready for its first run.
647 	 * Set state to busy to prevent other endpoints from sending messages to
648 	 * the SP before its boot phase is done.
649 	 */
650 	s->state = sp_busy;
651 	s->caller_id = 0;
652 	sp_init_set_registers(ctx);
653 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
654 	ts_pop_current_session();
655 
656 	return TEE_SUCCESS;
657 }
658 
659 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
660 {
661 	const struct fdt_property *description = NULL;
662 	int description_name_len = 0;
663 
664 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
665 		EMSG("Failed loading SP, manifest not found");
666 		return TEE_ERROR_BAD_PARAMETERS;
667 	}
668 
669 	description = fdt_get_property(fdt, 0, "description",
670 				       &description_name_len);
671 	if (description)
672 		DMSG("Loading SP: %s", description->data);
673 
674 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
675 		EMSG("Missing or invalid UUID in SP manifest");
676 		return TEE_ERROR_BAD_FORMAT;
677 	}
678 
679 	return TEE_SUCCESS;
680 }
681 
682 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
683 				   void **fdt_copy, size_t *mapped_size)
684 {
685 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
686 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
687 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
688 	TEE_Result res = TEE_SUCCESS;
689 	struct mobj *m = NULL;
690 	struct fobj *f = NULL;
691 	vaddr_t va = 0;
692 
693 	f = fobj_sec_mem_alloc(num_pages);
694 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
695 	fobj_put(f);
696 	if (!m)
697 		return TEE_ERROR_OUT_OF_MEMORY;
698 
699 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
700 	mobj_put(m);
701 	if (res)
702 		return res;
703 
704 	if (fdt_open_into(fdt, (void *)va, total_size))
705 		return TEE_ERROR_GENERIC;
706 
707 	*fdt_copy = (void *)va;
708 	*mapped_size = total_size;
709 
710 	return res;
711 }
712 
713 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
714 {
715 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
716 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
717 
718 	memcpy(&info->magic, "FF-A", 4);
719 	info->count = 1;
720 
721 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
722 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
723 	info->nvp[0].value = (uintptr_t)fdt;
724 	info->nvp[0].size = fdt_totalsize(fdt);
725 }
726 
727 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt)
728 {
729 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
730 	struct ffa_boot_info_header_1_1 *header =
731 		(struct ffa_boot_info_header_1_1 *)buf;
732 	struct ffa_boot_info_1_1 *desc =
733 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
734 
735 	header->signature = FFA_BOOT_INFO_SIGNATURE;
736 	header->version = FFA_BOOT_INFO_VERSION;
737 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
738 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
739 	header->desc_count = 1;
740 	header->desc_offset = desc_offs;
741 
742 	memset(&desc[0].name, 0, sizeof(desc[0].name));
743 	/* Type: Standard boot info (bit[7] == 0), FDT type */
744 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
745 	/* Flags: Contents field contains an address */
746 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
747 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
748 	desc[0].size = fdt_totalsize(fdt);
749 	desc[0].contents = (uintptr_t)fdt;
750 }
751 
752 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
753 					   struct thread_smc_args *args,
754 					   vaddr_t *va, size_t *mapped_size,
755 					   uint32_t sp_ffa_version)
756 {
757 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
758 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
759 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
760 	TEE_Result res = TEE_SUCCESS;
761 	struct fobj *f = NULL;
762 	struct mobj *m = NULL;
763 	uint32_t info_reg = 0;
764 
765 	f = fobj_sec_mem_alloc(num_pages);
766 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
767 	fobj_put(f);
768 	if (!m)
769 		return TEE_ERROR_OUT_OF_MEMORY;
770 
771 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
772 	mobj_put(m);
773 	if (res)
774 		return res;
775 
776 	*mapped_size = total_size;
777 
778 	switch (sp_ffa_version) {
779 	case MAKE_FFA_VERSION(1, 0):
780 		fill_boot_info_1_0(*va, fdt);
781 		break;
782 	case MAKE_FFA_VERSION(1, 1):
783 		fill_boot_info_1_1(*va, fdt);
784 		break;
785 	default:
786 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
787 		return TEE_ERROR_NOT_SUPPORTED;
788 	}
789 
790 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
791 	if (res) {
792 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
793 			/* If the property is not present, set default to x0 */
794 			info_reg = 0;
795 		} else {
796 			return TEE_ERROR_BAD_FORMAT;
797 		}
798 	}
799 
800 	switch (info_reg) {
801 	case 0:
802 		args->a0 = *va;
803 		break;
804 	case 1:
805 		args->a1 = *va;
806 		break;
807 	case 2:
808 		args->a2 = *va;
809 		break;
810 	case 3:
811 		args->a3 = *va;
812 		break;
813 	default:
814 		EMSG("Invalid register selected for passing boot info");
815 		return TEE_ERROR_BAD_FORMAT;
816 	}
817 
818 	return TEE_SUCCESS;
819 }
820 
821 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
822 						       const void *fdt)
823 {
824 	int node = 0;
825 	int subnode = 0;
826 	tee_mm_entry_t *mm = NULL;
827 	TEE_Result res = TEE_SUCCESS;
828 
829 	/*
830 	 * Memory regions are optional in the SP manifest, it's not an error if
831 	 * we don't find any.
832 	 */
833 	node = fdt_node_offset_by_compatible(fdt, 0,
834 					     "arm,ffa-manifest-memory-regions");
835 	if (node < 0)
836 		return TEE_SUCCESS;
837 
838 	fdt_for_each_subnode(subnode, fdt, node) {
839 		uint64_t load_rel_offset = 0;
840 		uint32_t attributes = 0;
841 		uint64_t base_addr = 0;
842 		uint32_t pages_cnt = 0;
843 		uint32_t flags = 0;
844 		uint32_t perm = 0;
845 		size_t size = 0;
846 		vaddr_t va = 0;
847 
848 		mm = NULL;
849 
850 		/* Load address relative offset of a memory region */
851 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
852 				   &load_rel_offset)) {
853 			va = ctx->uctx.load_addr + load_rel_offset;
854 		} else {
855 			/* Skip non load address relative memory regions */
856 			continue;
857 		}
858 
859 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
860 			EMSG("Both base-address and load-address-relative-offset fields are set");
861 			return TEE_ERROR_BAD_FORMAT;
862 		}
863 
864 		/* Size of memory region as count of 4K pages */
865 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
866 			EMSG("Mandatory field is missing: pages-count");
867 			return TEE_ERROR_BAD_FORMAT;
868 		}
869 
870 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
871 			return TEE_ERROR_OVERFLOW;
872 
873 		/* Memory region attributes  */
874 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
875 			EMSG("Mandatory field is missing: attributes");
876 			return TEE_ERROR_BAD_FORMAT;
877 		}
878 
879 		/* Check instruction and data access permissions */
880 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
881 		case SP_MANIFEST_ATTR_RO:
882 			perm = TEE_MATTR_UR;
883 			break;
884 		case SP_MANIFEST_ATTR_RW:
885 			perm = TEE_MATTR_URW;
886 			break;
887 		case SP_MANIFEST_ATTR_RX:
888 			perm = TEE_MATTR_URX;
889 			break;
890 		default:
891 			EMSG("Invalid memory access permissions");
892 			return TEE_ERROR_BAD_FORMAT;
893 		}
894 
895 		if (IS_ENABLED(CFG_TA_BTI) &&
896 		    attributes & SP_MANIFEST_ATTR_GP) {
897 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
898 				EMSG("Guard only executable region");
899 				return TEE_ERROR_BAD_FORMAT;
900 			}
901 			perm |= TEE_MATTR_GUARDED;
902 		}
903 
904 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
905 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
906 			EMSG("Optional field with invalid value: flags");
907 			return TEE_ERROR_BAD_FORMAT;
908 		}
909 
910 		/* Load relative regions must be secure */
911 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
912 			EMSG("Invalid memory security attribute");
913 			return TEE_ERROR_BAD_FORMAT;
914 		}
915 
916 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
917 			/*
918 			 * NOBITS flag is set, which means that loaded binary
919 			 * doesn't contain this area, so it's need to be
920 			 * allocated.
921 			 */
922 			struct mobj *m = NULL;
923 			unsigned int idx = 0;
924 
925 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
926 			if (!mm)
927 				return TEE_ERROR_OUT_OF_MEMORY;
928 
929 			base_addr = tee_mm_get_smem(mm);
930 
931 			m = sp_mem_new_mobj(pages_cnt,
932 					    TEE_MATTR_MEM_TYPE_CACHED, true);
933 			if (!m) {
934 				res = TEE_ERROR_OUT_OF_MEMORY;
935 				goto err_mm_free;
936 			}
937 
938 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
939 			if (res) {
940 				mobj_put(m);
941 				goto err_mm_free;
942 			}
943 
944 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
945 			mobj_put(m);
946 			if (res)
947 				goto err_mm_free;
948 		} else {
949 			/*
950 			 * If NOBITS is not present the memory area is already
951 			 * mapped and only need to set the correct permissions.
952 			 */
953 			res = vm_set_prot(&ctx->uctx, va, size, perm);
954 			if (res)
955 				return res;
956 		}
957 	}
958 
959 	return TEE_SUCCESS;
960 
961 err_mm_free:
962 	tee_mm_free(mm);
963 	return res;
964 }
965 
966 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
967 {
968 	int node = 0;
969 	int subnode = 0;
970 	TEE_Result res = TEE_SUCCESS;
971 	const char *dt_device_match_table = {
972 		"arm,ffa-manifest-device-regions",
973 	};
974 
975 	/*
976 	 * Device regions are optional in the SP manifest, it's not an error if
977 	 * we don't find any
978 	 */
979 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
980 	if (node < 0)
981 		return TEE_SUCCESS;
982 
983 	fdt_for_each_subnode(subnode, fdt, node) {
984 		uint64_t base_addr = 0;
985 		uint32_t pages_cnt = 0;
986 		uint32_t attributes = 0;
987 		struct mobj *m = NULL;
988 		bool is_secure = true;
989 		uint32_t perm = 0;
990 		vaddr_t va = 0;
991 		unsigned int idx = 0;
992 
993 		/*
994 		 * Physical base address of a device MMIO region.
995 		 * Currently only physically contiguous region is supported.
996 		 */
997 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
998 			EMSG("Mandatory field is missing: base-address");
999 			return TEE_ERROR_BAD_FORMAT;
1000 		}
1001 
1002 		/* Total size of MMIO region as count of 4K pages */
1003 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1004 			EMSG("Mandatory field is missing: pages-count");
1005 			return TEE_ERROR_BAD_FORMAT;
1006 		}
1007 
1008 		/* Data access, instruction access and security attributes */
1009 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1010 			EMSG("Mandatory field is missing: attributes");
1011 			return TEE_ERROR_BAD_FORMAT;
1012 		}
1013 
1014 		/* Check instruction and data access permissions */
1015 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1016 		case SP_MANIFEST_ATTR_RO:
1017 			perm = TEE_MATTR_UR;
1018 			break;
1019 		case SP_MANIFEST_ATTR_RW:
1020 			perm = TEE_MATTR_URW;
1021 			break;
1022 		default:
1023 			EMSG("Invalid memory access permissions");
1024 			return TEE_ERROR_BAD_FORMAT;
1025 		}
1026 
1027 		/*
1028 		 * The SP is a secure endpoint, security attribute can be
1029 		 * secure or non-secure
1030 		 */
1031 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1032 			is_secure = false;
1033 
1034 		/* Memory attributes must be Device-nGnRnE */
1035 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1036 				    is_secure);
1037 		if (!m)
1038 			return TEE_ERROR_OUT_OF_MEMORY;
1039 
1040 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1041 		if (res) {
1042 			mobj_put(m);
1043 			return res;
1044 		}
1045 
1046 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1047 			     perm, 0, m, 0);
1048 		mobj_put(m);
1049 		if (res)
1050 			return res;
1051 
1052 		/*
1053 		 * Overwrite the device region's PA in the fdt with the VA. This
1054 		 * fdt will be passed to the SP.
1055 		 */
1056 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1057 
1058 		/*
1059 		 * Unmap the region if the overwrite failed since the SP won't
1060 		 * be able to access it without knowing the VA.
1061 		 */
1062 		if (res) {
1063 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1064 			return res;
1065 		}
1066 	}
1067 
1068 	return TEE_SUCCESS;
1069 }
1070 
1071 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1072 				    uint32_t new_endpoint_id)
1073 {
1074 	struct sp_session *session = sp_get_session(endpoint_id);
1075 	uint32_t manifest_endpoint_id = 0;
1076 
1077 	/*
1078 	 * We don't know in which order the SPs are loaded. The endpoint ID
1079 	 * defined in the manifest could already be generated by
1080 	 * new_session_id() and used by another SP. If this is the case, we swap
1081 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1082 	 * not defined twice in the manifest.
1083 	 */
1084 
1085 	/* The endpoint ID was not assigned yet */
1086 	if (!session)
1087 		return TEE_SUCCESS;
1088 
1089 	/*
1090 	 * Read the manifest file from the SP who originally had the endpoint.
1091 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1092 	 * have an endpoint ID defined.
1093 	 */
1094 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1095 		assert(manifest_endpoint_id == endpoint_id);
1096 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1097 		return TEE_ERROR_ACCESS_CONFLICT;
1098 	}
1099 
1100 	session->endpoint_id = new_endpoint_id;
1101 
1102 	return TEE_SUCCESS;
1103 }
1104 
1105 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1106 {
1107 	uint32_t endpoint_id = 0;
1108 
1109 	/*
1110 	 * The endpoint ID can be optionally defined in the manifest file. We
1111 	 * have to map the ID inside the manifest to the SP if it's defined.
1112 	 * If not, the endpoint ID generated inside new_session_id() will be
1113 	 * used.
1114 	 */
1115 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1116 		TEE_Result res = TEE_ERROR_GENERIC;
1117 
1118 		if (!endpoint_id_is_valid(endpoint_id)) {
1119 			EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id);
1120 			return TEE_ERROR_BAD_FORMAT;
1121 		}
1122 
1123 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1124 		if (res)
1125 			return res;
1126 
1127 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1128 		     endpoint_id);
1129 		/* Assign the endpoint ID to the current SP */
1130 		s->endpoint_id = endpoint_id;
1131 	}
1132 	return TEE_SUCCESS;
1133 }
1134 
1135 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1136 {
1137 	int node = 0;
1138 	int subnode = 0;
1139 	tee_mm_entry_t *mm = NULL;
1140 	TEE_Result res = TEE_SUCCESS;
1141 
1142 	/*
1143 	 * Memory regions are optional in the SP manifest, it's not an error if
1144 	 * we don't find any.
1145 	 */
1146 	node = fdt_node_offset_by_compatible(fdt, 0,
1147 					     "arm,ffa-manifest-memory-regions");
1148 	if (node < 0)
1149 		return TEE_SUCCESS;
1150 
1151 	fdt_for_each_subnode(subnode, fdt, node) {
1152 		uint64_t load_rel_offset = 0;
1153 		bool alloc_needed = false;
1154 		uint32_t attributes = 0;
1155 		uint64_t base_addr = 0;
1156 		uint32_t pages_cnt = 0;
1157 		bool is_secure = true;
1158 		struct mobj *m = NULL;
1159 		unsigned int idx = 0;
1160 		uint32_t perm = 0;
1161 		size_t size = 0;
1162 		vaddr_t va = 0;
1163 
1164 		mm = NULL;
1165 
1166 		/* Load address relative offset of a memory region */
1167 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1168 				   &load_rel_offset)) {
1169 			/*
1170 			 * At this point the memory region is already mapped by
1171 			 * handle_fdt_load_relative_mem_regions.
1172 			 * Only need to set the base-address in the manifest and
1173 			 * then skip the rest of the mapping process.
1174 			 */
1175 			va = ctx->uctx.load_addr + load_rel_offset;
1176 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1177 			if (res)
1178 				return res;
1179 
1180 			continue;
1181 		}
1182 
1183 		/*
1184 		 * Base address of a memory region.
1185 		 * If not present, we have to allocate the specified memory.
1186 		 * If present, this field could specify a PA or VA. Currently
1187 		 * only a PA is supported.
1188 		 */
1189 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1190 			alloc_needed = true;
1191 
1192 		/* Size of memory region as count of 4K pages */
1193 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1194 			EMSG("Mandatory field is missing: pages-count");
1195 			return TEE_ERROR_BAD_FORMAT;
1196 		}
1197 
1198 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1199 			return TEE_ERROR_OVERFLOW;
1200 
1201 		/*
1202 		 * Memory region attributes:
1203 		 * - Instruction/data access permissions
1204 		 * - Cacheability/shareability attributes
1205 		 * - Security attributes
1206 		 *
1207 		 * Cacheability/shareability attributes can be ignored for now.
1208 		 * OP-TEE only supports a single type for normal cached memory
1209 		 * and currently there is no use case that would require to
1210 		 * change this.
1211 		 */
1212 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1213 			EMSG("Mandatory field is missing: attributes");
1214 			return TEE_ERROR_BAD_FORMAT;
1215 		}
1216 
1217 		/* Check instruction and data access permissions */
1218 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1219 		case SP_MANIFEST_ATTR_RO:
1220 			perm = TEE_MATTR_UR;
1221 			break;
1222 		case SP_MANIFEST_ATTR_RW:
1223 			perm = TEE_MATTR_URW;
1224 			break;
1225 		case SP_MANIFEST_ATTR_RX:
1226 			perm = TEE_MATTR_URX;
1227 			break;
1228 		default:
1229 			EMSG("Invalid memory access permissions");
1230 			return TEE_ERROR_BAD_FORMAT;
1231 		}
1232 
1233 		if (IS_ENABLED(CFG_TA_BTI) &&
1234 		    attributes & SP_MANIFEST_ATTR_GP) {
1235 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
1236 				EMSG("Guard only executable region");
1237 				return TEE_ERROR_BAD_FORMAT;
1238 			}
1239 			perm |= TEE_MATTR_GUARDED;
1240 		}
1241 
1242 		/*
1243 		 * The SP is a secure endpoint, security attribute can be
1244 		 * secure or non-secure.
1245 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1246 		 * address is missing this attribute must be secure.
1247 		 */
1248 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1249 			if (alloc_needed) {
1250 				EMSG("Invalid memory security attribute");
1251 				return TEE_ERROR_BAD_FORMAT;
1252 			}
1253 			is_secure = false;
1254 		}
1255 
1256 		if (alloc_needed) {
1257 			/* Base address is missing, we have to allocate */
1258 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
1259 			if (!mm)
1260 				return TEE_ERROR_OUT_OF_MEMORY;
1261 
1262 			base_addr = tee_mm_get_smem(mm);
1263 		}
1264 
1265 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1266 				    is_secure);
1267 		if (!m) {
1268 			res = TEE_ERROR_OUT_OF_MEMORY;
1269 			goto err_mm_free;
1270 		}
1271 
1272 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1273 		if (res) {
1274 			mobj_put(m);
1275 			goto err_mm_free;
1276 		}
1277 
1278 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1279 		mobj_put(m);
1280 		if (res)
1281 			goto err_mm_free;
1282 
1283 		/*
1284 		 * Overwrite the memory region's base address in the fdt with
1285 		 * the VA. This fdt will be passed to the SP.
1286 		 * If the base-address field was not present in the original
1287 		 * fdt, this function will create it. This doesn't cause issues
1288 		 * since the necessary extra space has been allocated when
1289 		 * opening the fdt.
1290 		 */
1291 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1292 
1293 		/*
1294 		 * Unmap the region if the overwrite failed since the SP won't
1295 		 * be able to access it without knowing the VA.
1296 		 */
1297 		if (res) {
1298 			vm_unmap(&ctx->uctx, va, size);
1299 			goto err_mm_free;
1300 		}
1301 	}
1302 
1303 	return TEE_SUCCESS;
1304 
1305 err_mm_free:
1306 	tee_mm_free(mm);
1307 	return res;
1308 }
1309 
1310 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1311 {
1312 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1313 	uint32_t dummy_size __maybe_unused = 0;
1314 	TEE_Result res = TEE_SUCCESS;
1315 	size_t page_count = 0;
1316 	struct fobj *f = NULL;
1317 	struct mobj *m = NULL;
1318 	vaddr_t log_addr = 0;
1319 	size_t log_size = 0;
1320 	int node = 0;
1321 
1322 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1323 	if (node < 0)
1324 		return TEE_SUCCESS;
1325 
1326 	/* Checking the existence and size of the event log properties */
1327 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1328 		EMSG("tpm_event_log_addr not found or has invalid size");
1329 		return TEE_ERROR_BAD_FORMAT;
1330 	}
1331 
1332 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1333 		EMSG("tpm_event_log_size not found or has invalid size");
1334 		return TEE_ERROR_BAD_FORMAT;
1335 	}
1336 
1337 	/* Validating event log */
1338 	res = tpm_get_event_log_size(&log_size);
1339 	if (res)
1340 		return res;
1341 
1342 	if (!log_size) {
1343 		EMSG("Empty TPM event log was provided");
1344 		return TEE_ERROR_ITEM_NOT_FOUND;
1345 	}
1346 
1347 	/* Allocating memory area for the event log to share with the SP */
1348 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1349 
1350 	f = fobj_sec_mem_alloc(page_count);
1351 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1352 	fobj_put(f);
1353 	if (!m)
1354 		return TEE_ERROR_OUT_OF_MEMORY;
1355 
1356 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1357 	mobj_put(m);
1358 	if (res)
1359 		return res;
1360 
1361 	/* Copy event log */
1362 	res = tpm_get_event_log((void *)log_addr, &log_size);
1363 	if (res)
1364 		goto err_unmap;
1365 
1366 	/* Setting event log details in the manifest */
1367 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1368 	if (res)
1369 		goto err_unmap;
1370 
1371 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1372 	if (res)
1373 		goto err_unmap;
1374 
1375 	return TEE_SUCCESS;
1376 
1377 err_unmap:
1378 	vm_unmap(&ctx->uctx, log_addr, log_size);
1379 
1380 	return res;
1381 }
1382 
1383 /*
1384  * Note: this function is called only on the primary CPU. It assumes that the
1385  * features present on the primary CPU are available on all of the secondary
1386  * CPUs as well.
1387  */
1388 static TEE_Result handle_hw_features(void *fdt)
1389 {
1390 	uint32_t val __maybe_unused = 0;
1391 	TEE_Result res = TEE_SUCCESS;
1392 	int node = 0;
1393 
1394 	/*
1395 	 * HW feature descriptions are optional in the SP manifest, it's not an
1396 	 * error if we don't find any.
1397 	 */
1398 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1399 	if (node < 0)
1400 		return TEE_SUCCESS;
1401 
1402 	/* Modify the crc32 property only if it's already present */
1403 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1404 		res = fdt_setprop_u32(fdt, node, "crc32",
1405 				      feat_crc32_implemented());
1406 		if (res)
1407 			return res;
1408 	}
1409 
1410 	return TEE_SUCCESS;
1411 }
1412 
1413 static TEE_Result read_ns_interrupts_action(const void *fdt,
1414 					    struct sp_session *s)
1415 {
1416 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1417 
1418 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1419 
1420 	if (res) {
1421 		EMSG("Mandatory property is missing: ns-interrupts-action");
1422 		return res;
1423 	}
1424 
1425 	switch (s->ns_int_mode) {
1426 	case SP_MANIFEST_NS_INT_QUEUED:
1427 	case SP_MANIFEST_NS_INT_SIGNALED:
1428 		/* OK */
1429 		break;
1430 
1431 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1432 		EMSG("Managed exit is not implemented");
1433 		return TEE_ERROR_NOT_IMPLEMENTED;
1434 
1435 	default:
1436 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1437 		     s->ns_int_mode);
1438 		return TEE_ERROR_BAD_PARAMETERS;
1439 	}
1440 
1441 	return TEE_SUCCESS;
1442 }
1443 
1444 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s)
1445 {
1446 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1447 	uint32_t ffa_version = 0;
1448 
1449 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version);
1450 	if (res) {
1451 		EMSG("Mandatory property is missing: ffa-version");
1452 		return res;
1453 	}
1454 
1455 	if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) {
1456 		EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version);
1457 		return TEE_ERROR_BAD_PARAMETERS;
1458 	}
1459 
1460 	s->rxtx.ffa_vers = ffa_version;
1461 
1462 	return TEE_SUCCESS;
1463 }
1464 
1465 static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s)
1466 {
1467 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1468 	uint32_t exec_state = 0;
1469 
1470 	res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state);
1471 	if (res) {
1472 		EMSG("Mandatory property is missing: execution-state");
1473 		return res;
1474 	}
1475 
1476 	/* Currently only AArch64 SPs are supported */
1477 	if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) {
1478 		s->props |= FFA_PART_PROP_AARCH64_STATE;
1479 	} else {
1480 		EMSG("Invalid execution-state value: %"PRIu32, exec_state);
1481 		return TEE_ERROR_BAD_PARAMETERS;
1482 	}
1483 
1484 	return TEE_SUCCESS;
1485 }
1486 
1487 static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s)
1488 {
1489 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1490 	uint32_t msg_method = 0;
1491 
1492 	res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method);
1493 	if (res) {
1494 		EMSG("Mandatory property is missing: messaging-method");
1495 		return res;
1496 	}
1497 
1498 	if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE)
1499 		s->props |= FFA_PART_PROP_DIRECT_REQ_RECV;
1500 
1501 	if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND)
1502 		s->props |= FFA_PART_PROP_DIRECT_REQ_SEND;
1503 
1504 	if (msg_method & SP_MANIFEST_INDIRECT_REQ)
1505 		IMSG("Indirect messaging is not supported");
1506 
1507 	return TEE_SUCCESS;
1508 }
1509 
1510 static TEE_Result read_vm_availability_msg(const void *fdt,
1511 					   struct sp_session *s)
1512 {
1513 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1514 	uint32_t v = 0;
1515 
1516 	res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v);
1517 
1518 	/* This field in the manifest is optional */
1519 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1520 		return TEE_SUCCESS;
1521 
1522 	if (res)
1523 		return res;
1524 
1525 	if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) {
1526 		EMSG("Invalid vm-availability-messages value: %"PRIu32, v);
1527 		return TEE_ERROR_BAD_PARAMETERS;
1528 	}
1529 
1530 	if (v & SP_MANIFEST_VM_CREATED_MSG)
1531 		s->props |= FFA_PART_PROP_NOTIF_CREATED;
1532 
1533 	if (v & SP_MANIFEST_VM_DESTROYED_MSG)
1534 		s->props |= FFA_PART_PROP_NOTIF_DESTROYED;
1535 
1536 	return TEE_SUCCESS;
1537 }
1538 
1539 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1540 {
1541 	TEE_Result res = TEE_SUCCESS;
1542 	struct sp_session *sess = NULL;
1543 	TEE_UUID ffa_uuid = {};
1544 	uint16_t boot_order = 0;
1545 	uint32_t boot_order_arg = 0;
1546 
1547 	res = fdt_get_uuid(fdt, &ffa_uuid);
1548 	if (res)
1549 		return res;
1550 
1551 	res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order);
1552 	if (res == TEE_SUCCESS) {
1553 		boot_order_arg = boot_order;
1554 	} else if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1555 		boot_order_arg = UINT32_MAX;
1556 	} else {
1557 		EMSG("Failed reading boot-order property err:%#"PRIx32, res);
1558 		return res;
1559 	}
1560 
1561 	res = sp_open_session(&sess,
1562 			      &open_sp_sessions,
1563 			      &ffa_uuid, bin_uuid, boot_order_arg, fdt);
1564 	if (res)
1565 		return res;
1566 
1567 	sess->fdt = fdt;
1568 
1569 	res = read_manifest_endpoint_id(sess);
1570 	if (res)
1571 		return res;
1572 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1573 
1574 	res = read_ns_interrupts_action(fdt, sess);
1575 	if (res)
1576 		return res;
1577 
1578 	res = read_ffa_version(fdt, sess);
1579 	if (res)
1580 		return res;
1581 
1582 	res = read_sp_exec_state(fdt, sess);
1583 	if (res)
1584 		return res;
1585 
1586 	res = read_sp_msg_types(fdt, sess);
1587 	if (res)
1588 		return res;
1589 
1590 	res = read_vm_availability_msg(fdt, sess);
1591 	if (res)
1592 		return res;
1593 
1594 	return TEE_SUCCESS;
1595 }
1596 
1597 static TEE_Result sp_first_run(struct sp_session *sess)
1598 {
1599 	TEE_Result res = TEE_SUCCESS;
1600 	struct thread_smc_args args = { };
1601 	struct sp_ctx *ctx = NULL;
1602 	vaddr_t boot_info_va = 0;
1603 	size_t boot_info_size = 0;
1604 	void *fdt_copy = NULL;
1605 	size_t fdt_size = 0;
1606 
1607 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1608 	ts_push_current_session(&sess->ts_sess);
1609 	sess->is_initialized = false;
1610 
1611 	/*
1612 	 * Load relative memory regions must be handled before doing any other
1613 	 * mapping to prevent conflicts in the VA space.
1614 	 */
1615 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1616 	if (res) {
1617 		ts_pop_current_session();
1618 		return res;
1619 	}
1620 
1621 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1622 	if (res)
1623 		goto out;
1624 
1625 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1626 	if (res)
1627 		goto out;
1628 
1629 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1630 	if (res)
1631 		goto out;
1632 
1633 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1634 		res = handle_tpm_event_log(ctx, fdt_copy);
1635 		if (res)
1636 			goto out;
1637 	}
1638 
1639 	res = handle_hw_features(fdt_copy);
1640 	if (res)
1641 		goto out;
1642 
1643 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1644 				       &boot_info_size, sess->rxtx.ffa_vers);
1645 	if (res)
1646 		goto out;
1647 
1648 	ts_pop_current_session();
1649 
1650 	res = sp_enter(&args, sess);
1651 	if (res) {
1652 		ts_push_current_session(&sess->ts_sess);
1653 		goto out;
1654 	}
1655 
1656 	spmc_sp_msg_handler(&args, sess);
1657 
1658 	ts_push_current_session(&sess->ts_sess);
1659 	sess->is_initialized = true;
1660 
1661 out:
1662 	/* Free the boot info page from the SP memory */
1663 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1664 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1665 	ts_pop_current_session();
1666 
1667 	return res;
1668 }
1669 
1670 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
1671 {
1672 	TEE_Result res = TEE_SUCCESS;
1673 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1674 
1675 	ctx->sp_regs.x[0] = args->a0;
1676 	ctx->sp_regs.x[1] = args->a1;
1677 	ctx->sp_regs.x[2] = args->a2;
1678 	ctx->sp_regs.x[3] = args->a3;
1679 	ctx->sp_regs.x[4] = args->a4;
1680 	ctx->sp_regs.x[5] = args->a5;
1681 	ctx->sp_regs.x[6] = args->a6;
1682 	ctx->sp_regs.x[7] = args->a7;
1683 
1684 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1685 
1686 	args->a0 = ctx->sp_regs.x[0];
1687 	args->a1 = ctx->sp_regs.x[1];
1688 	args->a2 = ctx->sp_regs.x[2];
1689 	args->a3 = ctx->sp_regs.x[3];
1690 	args->a4 = ctx->sp_regs.x[4];
1691 	args->a5 = ctx->sp_regs.x[5];
1692 	args->a6 = ctx->sp_regs.x[6];
1693 	args->a7 = ctx->sp_regs.x[7];
1694 
1695 	return res;
1696 }
1697 
1698 /*
1699  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1700  * active on NS interrupt than the callee, the callee must inherit the caller's
1701  * configuration.
1702  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1703  * action will be MIN([self action], [caller's action]) which is stored in the
1704  * ns_int_mode_inherited field.
1705  */
1706 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1707 						 struct ts_session *caller,
1708 						 uint64_t *cpsr)
1709 {
1710 	if (caller) {
1711 		struct sp_session *caller_sp = to_sp_session(caller);
1712 
1713 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1714 					       s->ns_int_mode);
1715 	} else {
1716 		s->ns_int_mode_inherited = s->ns_int_mode;
1717 	}
1718 
1719 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1720 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1721 				   ARM32_CPSR_F_SHIFT);
1722 	else
1723 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1724 				    ARM32_CPSR_F_SHIFT);
1725 }
1726 
1727 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1728 				      uint32_t cmd __unused)
1729 {
1730 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1731 	TEE_Result res = TEE_SUCCESS;
1732 	uint32_t exceptions = 0;
1733 	struct sp_session *sp_s = to_sp_session(s);
1734 	struct ts_session *sess = NULL;
1735 	struct thread_ctx_regs *sp_regs = NULL;
1736 	uint32_t thread_id = THREAD_ID_INVALID;
1737 	struct ts_session *caller = NULL;
1738 	uint32_t rpc_target_info = 0;
1739 	uint32_t panicked = false;
1740 	uint32_t panic_code = 0;
1741 
1742 	sp_regs = &ctx->sp_regs;
1743 	ts_push_current_session(s);
1744 
1745 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1746 
1747 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1748 	caller = ts_get_calling_session();
1749 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1750 
1751 	/*
1752 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1753 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1754 	 */
1755 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1756 	thread_id = thread_get_id();
1757 	assert(thread_id <= UINT16_MAX);
1758 	thread_get_tsd()->rpc_target_info =
1759 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1760 
1761 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1762 
1763 	/* Restore rpc_target_info */
1764 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1765 
1766 	thread_unmask_exceptions(exceptions);
1767 
1768 	thread_user_clear_vfp(&ctx->uctx);
1769 
1770 	if (panicked) {
1771 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1772 		abort_print_current_ts();
1773 
1774 		sess = ts_pop_current_session();
1775 		cpu_spin_lock(&sp_s->spinlock);
1776 		sp_s->state = sp_dead;
1777 		cpu_spin_unlock(&sp_s->spinlock);
1778 
1779 		return TEE_ERROR_TARGET_DEAD;
1780 	}
1781 
1782 	sess = ts_pop_current_session();
1783 	assert(sess == s);
1784 
1785 	return res;
1786 }
1787 
1788 /* We currently don't support 32 bits */
1789 #ifdef ARM64
1790 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1791 				   struct thread_ctx_regs *sp_regs)
1792 {
1793 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1794 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1795 	sp_regs->pc = regs->elr;
1796 	sp_regs->sp = regs->sp_el0;
1797 }
1798 #endif
1799 
1800 static bool sp_handle_scall(struct thread_scall_regs *regs)
1801 {
1802 	struct ts_session *ts = ts_get_current_session();
1803 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1804 	struct sp_session *s = uctx->open_session;
1805 
1806 	assert(s);
1807 
1808 	sp_svc_store_registers(regs, &uctx->sp_regs);
1809 
1810 	regs->x0 = 0;
1811 	regs->x1 = 0; /* panic */
1812 	regs->x2 = 0; /* panic code */
1813 
1814 	/*
1815 	 * All the registers of the SP are saved in the SP session by the SVC
1816 	 * handler.
1817 	 * We always return to S-El1 after handling the SVC. We will continue
1818 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1819 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1820 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1821 	 * afterward used by the spmc_sp_msg_handler() to handle the
1822 	 * FF-A message send by the SP.
1823 	 */
1824 	return false;
1825 }
1826 
1827 static void sp_dump_state(struct ts_ctx *ctx)
1828 {
1829 	struct sp_ctx *utc = to_sp_ctx(ctx);
1830 
1831 	if (utc->uctx.dump_entry_func) {
1832 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1833 
1834 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1835 			return;
1836 	}
1837 
1838 	user_mode_ctx_print_mappings(&utc->uctx);
1839 }
1840 
1841 static const struct ts_ops sp_ops = {
1842 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1843 	.handle_scall = sp_handle_scall,
1844 	.dump_state = sp_dump_state,
1845 };
1846 
1847 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1848 {
1849 	enum teecore_memtypes mtype = MEM_AREA_TA_RAM;
1850 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1851 	struct fip_sp *sp = NULL;
1852 	uint64_t sp_fdt_end = 0;
1853 	size_t sp_pkg_size = 0;
1854 	vaddr_t sp_pkg_va = 0;
1855 
1856 	/* Process the first page which contains the SP package header */
1857 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1858 	if (!sp_pkg_va) {
1859 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1860 		return TEE_ERROR_GENERIC;
1861 	}
1862 
1863 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1864 
1865 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1866 		EMSG("Invalid SP package magic");
1867 		return TEE_ERROR_BAD_FORMAT;
1868 	}
1869 
1870 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1871 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1872 		EMSG("Invalid SP header version");
1873 		return TEE_ERROR_BAD_FORMAT;
1874 	}
1875 
1876 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1877 			 &sp_pkg_size)) {
1878 		EMSG("Invalid SP package size");
1879 		return TEE_ERROR_BAD_FORMAT;
1880 	}
1881 
1882 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1883 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1884 		EMSG("Invalid SP manifest size");
1885 		return TEE_ERROR_BAD_FORMAT;
1886 	}
1887 
1888 	/* Process the whole SP package now that the size is known */
1889 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1890 	if (!sp_pkg_va) {
1891 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1892 		return TEE_ERROR_GENERIC;
1893 	}
1894 
1895 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1896 
1897 	sp = calloc(1, sizeof(struct fip_sp));
1898 	if (!sp)
1899 		return TEE_ERROR_OUT_OF_MEMORY;
1900 
1901 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1902 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1903 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1904 	sp->sp_img.image.flags = 0;
1905 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1906 
1907 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1908 
1909 	return TEE_SUCCESS;
1910 }
1911 
1912 static TEE_Result fip_sp_init_all(void)
1913 {
1914 	TEE_Result res = TEE_SUCCESS;
1915 	uint64_t sp_pkg_addr = 0;
1916 	const void *fdt = NULL;
1917 	TEE_UUID sp_uuid = { };
1918 	int sp_pkgs_node = 0;
1919 	int subnode = 0;
1920 	int root = 0;
1921 
1922 	fdt = get_manifest_dt();
1923 	if (!fdt) {
1924 		EMSG("No SPMC manifest found");
1925 		return TEE_ERROR_GENERIC;
1926 	}
1927 
1928 	root = fdt_path_offset(fdt, "/");
1929 	if (root < 0)
1930 		return TEE_ERROR_BAD_FORMAT;
1931 
1932 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1933 		return TEE_ERROR_BAD_FORMAT;
1934 
1935 	/* SP packages are optional, it's not an error if we don't find any */
1936 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1937 	if (sp_pkgs_node < 0)
1938 		return TEE_SUCCESS;
1939 
1940 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1941 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1942 		if (res) {
1943 			EMSG("Invalid FIP SP load address");
1944 			return res;
1945 		}
1946 
1947 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1948 		if (res) {
1949 			EMSG("Invalid FIP SP uuid");
1950 			return res;
1951 		}
1952 
1953 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1954 		if (res) {
1955 			EMSG("Invalid FIP SP package");
1956 			return res;
1957 		}
1958 	}
1959 
1960 	return TEE_SUCCESS;
1961 }
1962 
1963 static void fip_sp_deinit_all(void)
1964 {
1965 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1966 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
1967 
1968 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
1969 		free(sp);
1970 	}
1971 }
1972 
1973 static TEE_Result sp_init_all(void)
1974 {
1975 	TEE_Result res = TEE_SUCCESS;
1976 	const struct sp_image *sp = NULL;
1977 	const struct fip_sp *fip_sp = NULL;
1978 	char __maybe_unused msg[60] = { '\0', };
1979 	struct sp_session *s = NULL;
1980 	struct sp_session *prev_sp = NULL;
1981 
1982 	for_each_secure_partition(sp) {
1983 		if (sp->image.uncompressed_size)
1984 			snprintf(msg, sizeof(msg),
1985 				 " (compressed, uncompressed %u)",
1986 				 sp->image.uncompressed_size);
1987 		else
1988 			msg[0] = '\0';
1989 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
1990 		     sp->image.size, msg);
1991 
1992 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1993 
1994 		if (res != TEE_SUCCESS) {
1995 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1996 			     &sp->image.uuid, res);
1997 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1998 				panic();
1999 		}
2000 	}
2001 
2002 	res = fip_sp_init_all();
2003 	if (res)
2004 		panic("Failed initializing FIP SPs");
2005 
2006 	for_each_fip_sp(fip_sp) {
2007 		sp = &fip_sp->sp_img;
2008 
2009 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
2010 		     sp->image.size);
2011 
2012 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2013 
2014 		if (res != TEE_SUCCESS) {
2015 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2016 			     &sp->image.uuid, res);
2017 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2018 				panic();
2019 		}
2020 	}
2021 
2022 	/*
2023 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
2024 	 * loader, so the original images (loaded by BL2) are not needed anymore
2025 	 */
2026 	fip_sp_deinit_all();
2027 
2028 	/*
2029 	 * Now that all SPs are loaded, check through the boot order values,
2030 	 * and warn in case there is a non-unique value.
2031 	 */
2032 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2033 		/* User specified boot-order values are uint16 */
2034 		if (s->boot_order > UINT16_MAX)
2035 			break;
2036 
2037 		if (prev_sp && prev_sp->boot_order == s->boot_order)
2038 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
2039 			     &prev_sp->ts_sess.ctx->uuid,
2040 			     &s->ts_sess.ctx->uuid);
2041 
2042 		prev_sp = s;
2043 	}
2044 
2045 	/* Continue the initialization and run the SP */
2046 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2047 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
2048 
2049 		res = sp_first_run(s);
2050 		if (res != TEE_SUCCESS) {
2051 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
2052 			     s->endpoint_id, res);
2053 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2054 				panic();
2055 		}
2056 	}
2057 
2058 	return TEE_SUCCESS;
2059 }
2060 
2061 boot_final(sp_init_all);
2062 
2063 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
2064 					struct ts_store_handle **h)
2065 {
2066 	return emb_ts_open(uuid, h, find_secure_partition);
2067 }
2068 
2069 REGISTER_SP_STORE(2) = {
2070 	.description = "SP store",
2071 	.open = secure_partition_open,
2072 	.get_size = emb_ts_get_size,
2073 	.get_tag = emb_ts_get_tag,
2074 	.read = emb_ts_read,
2075 	.close = emb_ts_close,
2076 };
2077