xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 731185b11620a6de1f824278ab3c166c7853ef66)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2023, Arm Limited.
4  */
5 #include <bench.h>
6 #include <crypto/crypto.h>
7 #include <initcall.h>
8 #include <kernel/boot.h>
9 #include <kernel/embedded_ts.h>
10 #include <kernel/ldelf_loader.h>
11 #include <kernel/secure_partition.h>
12 #include <kernel/spinlock.h>
13 #include <kernel/spmc_sp_handler.h>
14 #include <kernel/thread_private.h>
15 #include <kernel/thread_spmc.h>
16 #include <kernel/tpm.h>
17 #include <kernel/ts_store.h>
18 #include <ldelf.h>
19 #include <libfdt.h>
20 #include <mm/core_mmu.h>
21 #include <mm/fobj.h>
22 #include <mm/mobj.h>
23 #include <mm/vm.h>
24 #include <optee_ffa.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <tee_api_types.h>
28 #include <tee/uuid.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 #include <zlib.h>
34 
35 #define BOUNCE_BUFFER_SIZE		4096
36 
37 #define SP_MANIFEST_ATTR_READ		BIT(0)
38 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
39 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
40 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
41 
42 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
43 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
44 					 SP_MANIFEST_ATTR_WRITE)
45 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
46 					 SP_MANIFEST_ATTR_EXEC)
47 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
48 					 SP_MANIFEST_ATTR_WRITE | \
49 					 SP_MANIFEST_ATTR_EXEC)
50 
51 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
52 
53 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
54 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
55 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
56 
57 #define SP_PKG_HEADER_MAGIC (0x474b5053)
58 #define SP_PKG_HEADER_VERSION_V1 (0x1)
59 #define SP_PKG_HEADER_VERSION_V2 (0x2)
60 
61 struct sp_pkg_header {
62 	uint32_t magic;
63 	uint32_t version;
64 	uint32_t pm_offset;
65 	uint32_t pm_size;
66 	uint32_t img_offset;
67 	uint32_t img_size;
68 };
69 
70 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
71 
72 static const struct ts_ops sp_ops;
73 
74 /* List that holds all of the loaded SP's */
75 static struct sp_sessions_head open_sp_sessions =
76 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
77 
78 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
79 {
80 	const struct sp_image *sp = NULL;
81 	const struct fip_sp *fip_sp = NULL;
82 
83 	for_each_secure_partition(sp) {
84 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
85 			return &sp->image;
86 	}
87 
88 	for_each_fip_sp(fip_sp) {
89 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
90 			return &fip_sp->sp_img.image;
91 	}
92 
93 	return NULL;
94 }
95 
96 bool is_sp_ctx(struct ts_ctx *ctx)
97 {
98 	return ctx && (ctx->ops == &sp_ops);
99 }
100 
101 static void set_sp_ctx_ops(struct ts_ctx *ctx)
102 {
103 	ctx->ops = &sp_ops;
104 }
105 
106 struct sp_session *sp_get_session(uint32_t session_id)
107 {
108 	struct sp_session *s = NULL;
109 
110 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
111 		if (s->endpoint_id == session_id)
112 			return s;
113 	}
114 
115 	return NULL;
116 }
117 
118 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
119 				 const TEE_UUID *ffa_uuid, size_t *elem_count,
120 				 bool count_only)
121 {
122 	TEE_Result res = TEE_SUCCESS;
123 	uint32_t part_props = FFA_PART_PROP_DIRECT_REQ_RECV |
124 			      FFA_PART_PROP_DIRECT_REQ_SEND;
125 	struct sp_session *s = NULL;
126 
127 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
128 		if (ffa_uuid &&
129 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
130 			continue;
131 
132 		if (s->state == sp_dead)
133 			continue;
134 		if (!count_only && !res) {
135 			uint32_t uuid_words[4] = { 0 };
136 
137 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
138 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
139 							*elem_count,
140 							s->endpoint_id, 1,
141 							part_props, uuid_words);
142 		}
143 		*elem_count += 1;
144 	}
145 
146 	return res;
147 }
148 
149 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
150 			     struct user_mode_ctx *uctx)
151 {
152 	/*
153 	 * Check that we have access to the region if it is supposed to be
154 	 * mapped to the current context.
155 	 */
156 	if (uctx) {
157 		struct vm_region *region = NULL;
158 
159 		/* Make sure that each mobj belongs to the SP */
160 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
161 			if (region->mobj == mem->mobj)
162 				break;
163 		}
164 
165 		if (!region)
166 			return false;
167 	}
168 
169 	/* Check that it is not shared with another SP */
170 	return !sp_mem_is_shared(mem);
171 }
172 
173 static TEE_Result new_session_id(uint16_t *endpoint_id)
174 {
175 	struct sp_session *session = NULL;
176 
177 	*endpoint_id = SPMC_ENDPOINT_ID;
178 
179 	/* Find the first available endpoint id */
180 	do {
181 		if (*endpoint_id == UINT16_MAX)
182 			return TEE_ERROR_BAD_FORMAT;
183 
184 		(*endpoint_id)++;
185 
186 		session = sp_get_session(*endpoint_id);
187 	} while (session);
188 
189 	return TEE_SUCCESS;
190 }
191 
192 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
193 {
194 	TEE_Result res = TEE_SUCCESS;
195 	struct sp_ctx *spc = NULL;
196 
197 	/* Register context */
198 	spc = calloc(1, sizeof(struct sp_ctx));
199 	if (!spc)
200 		return TEE_ERROR_OUT_OF_MEMORY;
201 
202 	spc->open_session = s;
203 	s->ts_sess.ctx = &spc->ts_ctx;
204 	spc->ts_ctx.uuid = *bin_uuid;
205 
206 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
207 	if (res)
208 		goto err;
209 
210 	set_sp_ctx_ops(&spc->ts_ctx);
211 
212 	return TEE_SUCCESS;
213 
214 err:
215 	free(spc);
216 	return res;
217 }
218 
219 /*
220  * Insert a new sp_session to the sessions list, so that it is ordered
221  * by boot_order.
222  */
223 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
224 				   struct sp_session *session)
225 {
226 	struct sp_session *s = NULL;
227 
228 	if (!open_sessions || !session)
229 		return;
230 
231 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
232 		if (s->boot_order > session->boot_order)
233 			break;
234 	}
235 
236 	if (!s)
237 		TAILQ_INSERT_TAIL(open_sessions, session, link);
238 	else
239 		TAILQ_INSERT_BEFORE(s, session, link);
240 }
241 
242 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
243 				    const TEE_UUID *bin_uuid,
244 				    const uint32_t boot_order,
245 				    struct sp_session **sess)
246 {
247 	TEE_Result res = TEE_SUCCESS;
248 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
249 
250 	if (!s)
251 		return TEE_ERROR_OUT_OF_MEMORY;
252 
253 	s->boot_order = boot_order;
254 
255 	res = new_session_id(&s->endpoint_id);
256 	if (res)
257 		goto err;
258 
259 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
260 	res = sp_create_ctx(bin_uuid, s);
261 	if (res)
262 		goto err;
263 
264 	insert_session_ordered(open_sessions, s);
265 	*sess = s;
266 	return TEE_SUCCESS;
267 
268 err:
269 	free(s);
270 	return res;
271 }
272 
273 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
274 {
275 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
276 
277 	memset(sp_regs, 0, sizeof(*sp_regs));
278 	sp_regs->sp = ctx->uctx.stack_ptr;
279 	sp_regs->pc = ctx->uctx.entry_func;
280 
281 	return TEE_SUCCESS;
282 }
283 
284 TEE_Result sp_map_shared(struct sp_session *s,
285 			 struct sp_mem_receiver *receiver,
286 			 struct sp_mem *smem,
287 			 uint64_t *va)
288 {
289 	TEE_Result res = TEE_SUCCESS;
290 	struct sp_ctx *ctx = NULL;
291 	uint32_t perm = TEE_MATTR_UR;
292 	struct sp_mem_map_region *reg = NULL;
293 
294 	ctx = to_sp_ctx(s->ts_sess.ctx);
295 
296 	/* Get the permission */
297 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
298 		perm |= TEE_MATTR_UX;
299 
300 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
301 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
302 			return TEE_ERROR_ACCESS_CONFLICT;
303 
304 		perm |= TEE_MATTR_UW;
305 	}
306 	/*
307 	 * Currently we don't support passing a va. We can't guarantee that the
308 	 * full region will be mapped in a contiguous region. A smem->region can
309 	 * have multiple mobj for one share. Currently there doesn't seem to be
310 	 * an option to guarantee that these will be mapped in a contiguous va
311 	 * space.
312 	 */
313 	if (*va)
314 		return TEE_ERROR_NOT_SUPPORTED;
315 
316 	SLIST_FOREACH(reg, &smem->regions, link) {
317 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
318 			     perm, 0, reg->mobj, reg->page_offset);
319 
320 		if (res != TEE_SUCCESS) {
321 			EMSG("Failed to map memory region %#"PRIx32, res);
322 			return res;
323 		}
324 	}
325 	return TEE_SUCCESS;
326 }
327 
328 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
329 {
330 	TEE_Result res = TEE_SUCCESS;
331 	vaddr_t vaddr = 0;
332 	size_t len = 0;
333 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
334 	struct sp_mem_map_region *reg = NULL;
335 
336 	SLIST_FOREACH(reg, &smem->regions, link) {
337 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
338 					       reg->mobj);
339 		len = reg->page_count * SMALL_PAGE_SIZE;
340 
341 		res = vm_unmap(&ctx->uctx, vaddr, len);
342 		if (res != TEE_SUCCESS)
343 			return res;
344 	}
345 
346 	return TEE_SUCCESS;
347 }
348 
349 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
350 				uint64_t *value)
351 {
352 	const fdt64_t *p = NULL;
353 	int len = 0;
354 
355 	p = fdt_getprop(fdt, node, property, &len);
356 	if (!p)
357 		return TEE_ERROR_ITEM_NOT_FOUND;
358 
359 	if (len != sizeof(*p))
360 		return TEE_ERROR_BAD_FORMAT;
361 
362 	*value = fdt64_ld(p);
363 
364 	return TEE_SUCCESS;
365 }
366 
367 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
368 				uint32_t *value)
369 {
370 	const fdt32_t *p = NULL;
371 	int len = 0;
372 
373 	p = fdt_getprop(fdt, node, property, &len);
374 	if (!p)
375 		return TEE_ERROR_ITEM_NOT_FOUND;
376 
377 	if (len != sizeof(*p))
378 		return TEE_ERROR_BAD_FORMAT;
379 
380 	*value = fdt32_to_cpu(*p);
381 
382 	return TEE_SUCCESS;
383 }
384 
385 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
386 				uint16_t *value)
387 {
388 	const fdt16_t *p = NULL;
389 	int len = 0;
390 
391 	p = fdt_getprop(fdt, node, property, &len);
392 	if (!p)
393 		return TEE_ERROR_ITEM_NOT_FOUND;
394 
395 	if (len != sizeof(*p))
396 		return TEE_ERROR_BAD_FORMAT;
397 
398 	*value = fdt16_to_cpu(*p);
399 
400 	return TEE_SUCCESS;
401 }
402 
403 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
404 				 const char *property, TEE_UUID *uuid)
405 {
406 	uint32_t uuid_array[4] = { 0 };
407 	const fdt32_t *p = NULL;
408 	int len = 0;
409 	int i = 0;
410 
411 	p = fdt_getprop(fdt, node, property, &len);
412 	if (!p)
413 		return TEE_ERROR_ITEM_NOT_FOUND;
414 
415 	if (len != sizeof(TEE_UUID))
416 		return TEE_ERROR_BAD_FORMAT;
417 
418 	for (i = 0; i < 4; i++)
419 		uuid_array[i] = fdt32_to_cpu(p[i]);
420 
421 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
422 
423 	return TEE_SUCCESS;
424 }
425 
426 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
427 				   bool *is_elf_format)
428 {
429 	TEE_Result res = TEE_SUCCESS;
430 	uint32_t elf_format = 0;
431 
432 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
433 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
434 		return res;
435 
436 	*is_elf_format = (elf_format != 0);
437 
438 	return TEE_SUCCESS;
439 }
440 
441 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
442 				 const struct ts_store_ops **ops,
443 				 struct ts_store_handle **handle)
444 {
445 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
446 
447 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
448 		res = (*ops)->open(uuid, handle);
449 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
450 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
451 			break;
452 	}
453 
454 	return res;
455 }
456 
457 static TEE_Result load_binary_sp(struct ts_session *s,
458 				 struct user_mode_ctx *uctx)
459 {
460 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
461 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
462 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
463 	const struct ts_store_ops *store_ops = NULL;
464 	struct ts_store_handle *handle = NULL;
465 	TEE_Result res = TEE_SUCCESS;
466 	tee_mm_entry_t *mm = NULL;
467 	struct fobj *fobj = NULL;
468 	struct mobj *mobj = NULL;
469 	uaddr_t base_addr = 0;
470 	uint32_t vm_flags = 0;
471 	unsigned int idx = 0;
472 	vaddr_t va = 0;
473 
474 	if (!s || !uctx)
475 		return TEE_ERROR_BAD_PARAMETERS;
476 
477 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
478 
479 	/* Initialize the bounce buffer */
480 	fobj = fobj_sec_mem_alloc(bb_num_pages);
481 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
482 	fobj_put(fobj);
483 	if (!mobj)
484 		return TEE_ERROR_OUT_OF_MEMORY;
485 
486 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
487 	mobj_put(mobj);
488 	if (res)
489 		return res;
490 
491 	uctx->bbuf = (uint8_t *)va;
492 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
493 
494 	vm_set_ctx(uctx->ts_ctx);
495 
496 	/* Find TS store and open SP binary */
497 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
498 	if (res != TEE_SUCCESS) {
499 		EMSG("Failed to open SP binary");
500 		return res;
501 	}
502 
503 	/* Query binary size and calculate page count */
504 	res = store_ops->get_size(handle, &bin_size);
505 	if (res != TEE_SUCCESS)
506 		goto err;
507 
508 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
509 		res = TEE_ERROR_OVERFLOW;
510 		goto err;
511 	}
512 
513 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
514 
515 	/* Allocate memory */
516 	mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded);
517 	if (!mm) {
518 		res = TEE_ERROR_OUT_OF_MEMORY;
519 		goto err;
520 	}
521 
522 	base_addr = tee_mm_get_smem(mm);
523 
524 	/* Create mobj */
525 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
526 	if (!mobj) {
527 		res = TEE_ERROR_OUT_OF_MEMORY;
528 		goto err_free_tee_mm;
529 	}
530 
531 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
532 	if (res)
533 		goto err_free_mobj;
534 
535 	/* Map memory area for the SP binary */
536 	va = 0;
537 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
538 		     vm_flags, mobj, 0);
539 	if (res)
540 		goto err_free_mobj;
541 
542 	/* Read SP binary into the previously mapped memory area */
543 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
544 	if (res)
545 		goto err_unmap;
546 
547 	/* Set memory protection to allow execution */
548 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
549 	if (res)
550 		goto err_unmap;
551 
552 	mobj_put(mobj);
553 	store_ops->close(handle);
554 
555 	/* The entry point must be at the beginning of the SP binary. */
556 	uctx->entry_func = va;
557 	uctx->load_addr = va;
558 	uctx->is_32bit = false;
559 
560 	s->handle_scall = s->ctx->ops->handle_scall;
561 
562 	return TEE_SUCCESS;
563 
564 err_unmap:
565 	vm_unmap(uctx, va, bin_size_rounded);
566 
567 err_free_mobj:
568 	mobj_put(mobj);
569 
570 err_free_tee_mm:
571 	tee_mm_free(mm);
572 
573 err:
574 	store_ops->close(handle);
575 
576 	return res;
577 }
578 
579 static TEE_Result sp_open_session(struct sp_session **sess,
580 				  struct sp_sessions_head *open_sessions,
581 				  const TEE_UUID *ffa_uuid,
582 				  const TEE_UUID *bin_uuid,
583 				  const uint32_t boot_order,
584 				  const void *fdt)
585 {
586 	TEE_Result res = TEE_SUCCESS;
587 	struct sp_session *s = NULL;
588 	struct sp_ctx *ctx = NULL;
589 	bool is_elf_format = false;
590 
591 	if (!find_secure_partition(bin_uuid))
592 		return TEE_ERROR_ITEM_NOT_FOUND;
593 
594 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
595 	if (res != TEE_SUCCESS) {
596 		DMSG("sp_create_session failed %#"PRIx32, res);
597 		return res;
598 	}
599 
600 	ctx = to_sp_ctx(s->ts_sess.ctx);
601 	assert(ctx);
602 	if (!ctx)
603 		return TEE_ERROR_TARGET_DEAD;
604 	*sess = s;
605 
606 	ts_push_current_session(&s->ts_sess);
607 
608 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
609 	if (res == TEE_SUCCESS) {
610 		if (is_elf_format) {
611 			/* Load the SP using ldelf. */
612 			ldelf_load_ldelf(&ctx->uctx);
613 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
614 		} else {
615 			/* Raw binary format SP */
616 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
617 		}
618 	} else {
619 		EMSG("Failed to detect SP format");
620 	}
621 
622 	if (res != TEE_SUCCESS) {
623 		EMSG("Failed loading SP  %#"PRIx32, res);
624 		ts_pop_current_session();
625 		return TEE_ERROR_TARGET_DEAD;
626 	}
627 
628 	/*
629 	 * Make the SP ready for its first run.
630 	 * Set state to busy to prevent other endpoints from sending messages to
631 	 * the SP before its boot phase is done.
632 	 */
633 	s->state = sp_busy;
634 	s->caller_id = 0;
635 	sp_init_set_registers(ctx);
636 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
637 	ts_pop_current_session();
638 
639 	return TEE_SUCCESS;
640 }
641 
642 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
643 {
644 	const struct fdt_property *description = NULL;
645 	int description_name_len = 0;
646 
647 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
648 		EMSG("Failed loading SP, manifest not found");
649 		return TEE_ERROR_BAD_PARAMETERS;
650 	}
651 
652 	description = fdt_get_property(fdt, 0, "description",
653 				       &description_name_len);
654 	if (description)
655 		DMSG("Loading SP: %s", description->data);
656 
657 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
658 		EMSG("Missing or invalid UUID in SP manifest");
659 		return TEE_ERROR_BAD_FORMAT;
660 	}
661 
662 	return TEE_SUCCESS;
663 }
664 
665 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
666 				   void **fdt_copy, size_t *mapped_size)
667 {
668 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
669 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
670 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
671 	TEE_Result res = TEE_SUCCESS;
672 	struct mobj *m = NULL;
673 	struct fobj *f = NULL;
674 	vaddr_t va = 0;
675 
676 	f = fobj_sec_mem_alloc(num_pages);
677 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
678 	fobj_put(f);
679 	if (!m)
680 		return TEE_ERROR_OUT_OF_MEMORY;
681 
682 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
683 	mobj_put(m);
684 	if (res)
685 		return res;
686 
687 	if (fdt_open_into(fdt, (void *)va, total_size))
688 		return TEE_ERROR_GENERIC;
689 
690 	*fdt_copy = (void *)va;
691 	*mapped_size = total_size;
692 
693 	return res;
694 }
695 
696 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
697 {
698 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
699 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
700 
701 	memcpy(&info->magic, "FF-A", 4);
702 	info->count = 1;
703 
704 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
705 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
706 	info->nvp[0].value = (uintptr_t)fdt;
707 	info->nvp[0].size = fdt_totalsize(fdt);
708 }
709 
710 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt)
711 {
712 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
713 	struct ffa_boot_info_header_1_1 *header =
714 		(struct ffa_boot_info_header_1_1 *)buf;
715 	struct ffa_boot_info_1_1 *desc =
716 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
717 
718 	header->signature = FFA_BOOT_INFO_SIGNATURE;
719 	header->version = FFA_BOOT_INFO_VERSION;
720 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
721 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
722 	header->desc_count = 1;
723 	header->desc_offset = desc_offs;
724 
725 	memset(&desc[0].name, 0, sizeof(desc[0].name));
726 	/* Type: Standard boot info (bit[7] == 0), FDT type */
727 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
728 	/* Flags: Contents field contains an address */
729 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
730 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
731 	desc[0].size = fdt_totalsize(fdt);
732 	desc[0].contents = (uintptr_t)fdt;
733 }
734 
735 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
736 					   struct thread_smc_args *args,
737 					   vaddr_t *va, size_t *mapped_size)
738 {
739 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
740 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
741 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
742 	TEE_Result res = TEE_SUCCESS;
743 	uint32_t sp_ffa_version = 0;
744 	struct fobj *f = NULL;
745 	struct mobj *m = NULL;
746 	uint32_t info_reg = 0;
747 
748 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &sp_ffa_version);
749 	if (res)
750 		return res;
751 
752 	f = fobj_sec_mem_alloc(num_pages);
753 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
754 	fobj_put(f);
755 	if (!m)
756 		return TEE_ERROR_OUT_OF_MEMORY;
757 
758 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
759 	mobj_put(m);
760 	if (res)
761 		return res;
762 
763 	*mapped_size = total_size;
764 
765 	switch (sp_ffa_version) {
766 	case MAKE_FFA_VERSION(1, 0):
767 		fill_boot_info_1_0(*va, fdt);
768 		break;
769 	case MAKE_FFA_VERSION(1, 1):
770 		fill_boot_info_1_1(*va, fdt);
771 		break;
772 	default:
773 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
774 		return TEE_ERROR_NOT_SUPPORTED;
775 	}
776 
777 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
778 	if (res) {
779 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
780 			/* If the property is not present, set default to x0 */
781 			info_reg = 0;
782 		} else {
783 			return TEE_ERROR_BAD_FORMAT;
784 		}
785 	}
786 
787 	switch (info_reg) {
788 	case 0:
789 		args->a0 = *va;
790 		break;
791 	case 1:
792 		args->a1 = *va;
793 		break;
794 	case 2:
795 		args->a2 = *va;
796 		break;
797 	case 3:
798 		args->a3 = *va;
799 		break;
800 	default:
801 		EMSG("Invalid register selected for passing boot info");
802 		return TEE_ERROR_BAD_FORMAT;
803 	}
804 
805 	return TEE_SUCCESS;
806 }
807 
808 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
809 						       const void *fdt)
810 {
811 	int node = 0;
812 	int subnode = 0;
813 	tee_mm_entry_t *mm = NULL;
814 	TEE_Result res = TEE_SUCCESS;
815 
816 	/*
817 	 * Memory regions are optional in the SP manifest, it's not an error if
818 	 * we don't find any.
819 	 */
820 	node = fdt_node_offset_by_compatible(fdt, 0,
821 					     "arm,ffa-manifest-memory-regions");
822 	if (node < 0)
823 		return TEE_SUCCESS;
824 
825 	fdt_for_each_subnode(subnode, fdt, node) {
826 		uint64_t load_rel_offset = 0;
827 		uint32_t attributes = 0;
828 		uint64_t base_addr = 0;
829 		uint32_t pages_cnt = 0;
830 		uint32_t flags = 0;
831 		uint32_t perm = 0;
832 		size_t size = 0;
833 		vaddr_t va = 0;
834 
835 		mm = NULL;
836 
837 		/* Load address relative offset of a memory region */
838 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
839 				   &load_rel_offset)) {
840 			va = ctx->uctx.load_addr + load_rel_offset;
841 		} else {
842 			/* Skip non load address relative memory regions */
843 			continue;
844 		}
845 
846 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
847 			EMSG("Both base-address and load-address-relative-offset fields are set");
848 			return TEE_ERROR_BAD_FORMAT;
849 		}
850 
851 		/* Size of memory region as count of 4K pages */
852 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
853 			EMSG("Mandatory field is missing: pages-count");
854 			return TEE_ERROR_BAD_FORMAT;
855 		}
856 
857 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
858 			return TEE_ERROR_OVERFLOW;
859 
860 		/* Memory region attributes  */
861 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
862 			EMSG("Mandatory field is missing: attributes");
863 			return TEE_ERROR_BAD_FORMAT;
864 		}
865 
866 		/* Check instruction and data access permissions */
867 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
868 		case SP_MANIFEST_ATTR_RO:
869 			perm = TEE_MATTR_UR;
870 			break;
871 		case SP_MANIFEST_ATTR_RW:
872 			perm = TEE_MATTR_URW;
873 			break;
874 		case SP_MANIFEST_ATTR_RX:
875 			perm = TEE_MATTR_URX;
876 			break;
877 		default:
878 			EMSG("Invalid memory access permissions");
879 			return TEE_ERROR_BAD_FORMAT;
880 		}
881 
882 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
883 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
884 			EMSG("Optional field with invalid value: flags");
885 			return TEE_ERROR_BAD_FORMAT;
886 		}
887 
888 		/* Load relative regions must be secure */
889 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
890 			EMSG("Invalid memory security attribute");
891 			return TEE_ERROR_BAD_FORMAT;
892 		}
893 
894 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
895 			/*
896 			 * NOBITS flag is set, which means that loaded binary
897 			 * doesn't contain this area, so it's need to be
898 			 * allocated.
899 			 */
900 			struct mobj *m = NULL;
901 			unsigned int idx = 0;
902 
903 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
904 			if (!mm)
905 				return TEE_ERROR_OUT_OF_MEMORY;
906 
907 			base_addr = tee_mm_get_smem(mm);
908 
909 			m = sp_mem_new_mobj(pages_cnt,
910 					    TEE_MATTR_MEM_TYPE_CACHED, true);
911 			if (!m) {
912 				res = TEE_ERROR_OUT_OF_MEMORY;
913 				goto err_mm_free;
914 			}
915 
916 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
917 			if (res) {
918 				mobj_put(m);
919 				goto err_mm_free;
920 			}
921 
922 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
923 			mobj_put(m);
924 			if (res)
925 				goto err_mm_free;
926 		} else {
927 			/*
928 			 * If NOBITS is not present the memory area is already
929 			 * mapped and only need to set the correct permissions.
930 			 */
931 			res = vm_set_prot(&ctx->uctx, va, size, perm);
932 			if (res)
933 				return res;
934 		}
935 	}
936 
937 	return TEE_SUCCESS;
938 
939 err_mm_free:
940 	tee_mm_free(mm);
941 	return res;
942 }
943 
944 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
945 {
946 	int node = 0;
947 	int subnode = 0;
948 	TEE_Result res = TEE_SUCCESS;
949 	const char *dt_device_match_table = {
950 		"arm,ffa-manifest-device-regions",
951 	};
952 
953 	/*
954 	 * Device regions are optional in the SP manifest, it's not an error if
955 	 * we don't find any
956 	 */
957 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
958 	if (node < 0)
959 		return TEE_SUCCESS;
960 
961 	fdt_for_each_subnode(subnode, fdt, node) {
962 		uint64_t base_addr = 0;
963 		uint32_t pages_cnt = 0;
964 		uint32_t attributes = 0;
965 		struct mobj *m = NULL;
966 		bool is_secure = true;
967 		uint32_t perm = 0;
968 		vaddr_t va = 0;
969 		unsigned int idx = 0;
970 
971 		/*
972 		 * Physical base address of a device MMIO region.
973 		 * Currently only physically contiguous region is supported.
974 		 */
975 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
976 			EMSG("Mandatory field is missing: base-address");
977 			return TEE_ERROR_BAD_FORMAT;
978 		}
979 
980 		/* Total size of MMIO region as count of 4K pages */
981 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
982 			EMSG("Mandatory field is missing: pages-count");
983 			return TEE_ERROR_BAD_FORMAT;
984 		}
985 
986 		/* Data access, instruction access and security attributes */
987 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
988 			EMSG("Mandatory field is missing: attributes");
989 			return TEE_ERROR_BAD_FORMAT;
990 		}
991 
992 		/* Check instruction and data access permissions */
993 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
994 		case SP_MANIFEST_ATTR_RO:
995 			perm = TEE_MATTR_UR;
996 			break;
997 		case SP_MANIFEST_ATTR_RW:
998 			perm = TEE_MATTR_URW;
999 			break;
1000 		default:
1001 			EMSG("Invalid memory access permissions");
1002 			return TEE_ERROR_BAD_FORMAT;
1003 		}
1004 
1005 		/*
1006 		 * The SP is a secure endpoint, security attribute can be
1007 		 * secure or non-secure
1008 		 */
1009 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1010 			is_secure = false;
1011 
1012 		/* Memory attributes must be Device-nGnRnE */
1013 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1014 				    is_secure);
1015 		if (!m)
1016 			return TEE_ERROR_OUT_OF_MEMORY;
1017 
1018 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1019 		if (res) {
1020 			mobj_put(m);
1021 			return res;
1022 		}
1023 
1024 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1025 			     perm, 0, m, 0);
1026 		mobj_put(m);
1027 		if (res)
1028 			return res;
1029 
1030 		/*
1031 		 * Overwrite the device region's PA in the fdt with the VA. This
1032 		 * fdt will be passed to the SP.
1033 		 */
1034 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1035 
1036 		/*
1037 		 * Unmap the region if the overwrite failed since the SP won't
1038 		 * be able to access it without knowing the VA.
1039 		 */
1040 		if (res) {
1041 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1042 			return res;
1043 		}
1044 	}
1045 
1046 	return TEE_SUCCESS;
1047 }
1048 
1049 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1050 				    uint32_t new_endpoint_id)
1051 {
1052 	struct sp_session *session = sp_get_session(endpoint_id);
1053 	uint32_t manifest_endpoint_id = 0;
1054 
1055 	/*
1056 	 * We don't know in which order the SPs are loaded. The endpoint ID
1057 	 * defined in the manifest could already be generated by
1058 	 * new_session_id() and used by another SP. If this is the case, we swap
1059 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1060 	 * not defined twice in the manifest.
1061 	 */
1062 
1063 	/* The endpoint ID was not assigned yet */
1064 	if (!session)
1065 		return TEE_SUCCESS;
1066 
1067 	/*
1068 	 * Read the manifest file from the SP who originally had the endpoint.
1069 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1070 	 * have an endpoint ID defined.
1071 	 */
1072 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1073 		assert(manifest_endpoint_id == endpoint_id);
1074 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1075 		return TEE_ERROR_ACCESS_CONFLICT;
1076 	}
1077 
1078 	session->endpoint_id = new_endpoint_id;
1079 
1080 	return TEE_SUCCESS;
1081 }
1082 
1083 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1084 {
1085 	uint32_t endpoint_id = 0;
1086 
1087 	/*
1088 	 * The endpoint ID can be optionally defined in the manifest file. We
1089 	 * have to map the ID inside the manifest to the SP if it's defined.
1090 	 * If not, the endpoint ID generated inside new_session_id() will be
1091 	 * used.
1092 	 */
1093 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1094 		TEE_Result res = TEE_ERROR_GENERIC;
1095 
1096 		if (endpoint_id <= SPMC_ENDPOINT_ID)
1097 			return TEE_ERROR_BAD_FORMAT;
1098 
1099 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1100 		if (res)
1101 			return res;
1102 
1103 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1104 		     endpoint_id);
1105 		/* Assign the endpoint ID to the current SP */
1106 		s->endpoint_id = endpoint_id;
1107 	}
1108 	return TEE_SUCCESS;
1109 }
1110 
1111 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1112 {
1113 	int node = 0;
1114 	int subnode = 0;
1115 	tee_mm_entry_t *mm = NULL;
1116 	TEE_Result res = TEE_SUCCESS;
1117 
1118 	/*
1119 	 * Memory regions are optional in the SP manifest, it's not an error if
1120 	 * we don't find any.
1121 	 */
1122 	node = fdt_node_offset_by_compatible(fdt, 0,
1123 					     "arm,ffa-manifest-memory-regions");
1124 	if (node < 0)
1125 		return TEE_SUCCESS;
1126 
1127 	fdt_for_each_subnode(subnode, fdt, node) {
1128 		uint64_t load_rel_offset = 0;
1129 		bool alloc_needed = false;
1130 		uint32_t attributes = 0;
1131 		uint64_t base_addr = 0;
1132 		uint32_t pages_cnt = 0;
1133 		bool is_secure = true;
1134 		struct mobj *m = NULL;
1135 		unsigned int idx = 0;
1136 		uint32_t perm = 0;
1137 		size_t size = 0;
1138 		vaddr_t va = 0;
1139 
1140 		mm = NULL;
1141 
1142 		/* Load address relative offset of a memory region */
1143 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1144 				   &load_rel_offset)) {
1145 			/*
1146 			 * At this point the memory region is already mapped by
1147 			 * handle_fdt_load_relative_mem_regions.
1148 			 * Only need to set the base-address in the manifest and
1149 			 * then skip the rest of the mapping process.
1150 			 */
1151 			va = ctx->uctx.load_addr + load_rel_offset;
1152 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1153 			if (res)
1154 				return res;
1155 
1156 			continue;
1157 		}
1158 
1159 		/*
1160 		 * Base address of a memory region.
1161 		 * If not present, we have to allocate the specified memory.
1162 		 * If present, this field could specify a PA or VA. Currently
1163 		 * only a PA is supported.
1164 		 */
1165 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1166 			alloc_needed = true;
1167 
1168 		/* Size of memory region as count of 4K pages */
1169 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1170 			EMSG("Mandatory field is missing: pages-count");
1171 			return TEE_ERROR_BAD_FORMAT;
1172 		}
1173 
1174 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1175 			return TEE_ERROR_OVERFLOW;
1176 
1177 		/*
1178 		 * Memory region attributes:
1179 		 * - Instruction/data access permissions
1180 		 * - Cacheability/shareability attributes
1181 		 * - Security attributes
1182 		 *
1183 		 * Cacheability/shareability attributes can be ignored for now.
1184 		 * OP-TEE only supports a single type for normal cached memory
1185 		 * and currently there is no use case that would require to
1186 		 * change this.
1187 		 */
1188 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1189 			EMSG("Mandatory field is missing: attributes");
1190 			return TEE_ERROR_BAD_FORMAT;
1191 		}
1192 
1193 		/* Check instruction and data access permissions */
1194 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1195 		case SP_MANIFEST_ATTR_RO:
1196 			perm = TEE_MATTR_UR;
1197 			break;
1198 		case SP_MANIFEST_ATTR_RW:
1199 			perm = TEE_MATTR_URW;
1200 			break;
1201 		case SP_MANIFEST_ATTR_RX:
1202 			perm = TEE_MATTR_URX;
1203 			break;
1204 		default:
1205 			EMSG("Invalid memory access permissions");
1206 			return TEE_ERROR_BAD_FORMAT;
1207 		}
1208 
1209 		/*
1210 		 * The SP is a secure endpoint, security attribute can be
1211 		 * secure or non-secure.
1212 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1213 		 * address is missing this attribute must be secure.
1214 		 */
1215 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1216 			if (alloc_needed) {
1217 				EMSG("Invalid memory security attribute");
1218 				return TEE_ERROR_BAD_FORMAT;
1219 			}
1220 			is_secure = false;
1221 		}
1222 
1223 		if (alloc_needed) {
1224 			/* Base address is missing, we have to allocate */
1225 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
1226 			if (!mm)
1227 				return TEE_ERROR_OUT_OF_MEMORY;
1228 
1229 			base_addr = tee_mm_get_smem(mm);
1230 		}
1231 
1232 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1233 				    is_secure);
1234 		if (!m) {
1235 			res = TEE_ERROR_OUT_OF_MEMORY;
1236 			goto err_mm_free;
1237 		}
1238 
1239 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1240 		if (res) {
1241 			mobj_put(m);
1242 			goto err_mm_free;
1243 		}
1244 
1245 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1246 		mobj_put(m);
1247 		if (res)
1248 			goto err_mm_free;
1249 
1250 		/*
1251 		 * Overwrite the memory region's base address in the fdt with
1252 		 * the VA. This fdt will be passed to the SP.
1253 		 * If the base-address field was not present in the original
1254 		 * fdt, this function will create it. This doesn't cause issues
1255 		 * since the necessary extra space has been allocated when
1256 		 * opening the fdt.
1257 		 */
1258 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1259 
1260 		/*
1261 		 * Unmap the region if the overwrite failed since the SP won't
1262 		 * be able to access it without knowing the VA.
1263 		 */
1264 		if (res) {
1265 			vm_unmap(&ctx->uctx, va, size);
1266 			goto err_mm_free;
1267 		}
1268 	}
1269 
1270 	return TEE_SUCCESS;
1271 
1272 err_mm_free:
1273 	tee_mm_free(mm);
1274 	return res;
1275 }
1276 
1277 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1278 {
1279 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1280 	uint32_t dummy_size __maybe_unused = 0;
1281 	TEE_Result res = TEE_SUCCESS;
1282 	size_t page_count = 0;
1283 	struct fobj *f = NULL;
1284 	struct mobj *m = NULL;
1285 	vaddr_t log_addr = 0;
1286 	size_t log_size = 0;
1287 	int node = 0;
1288 
1289 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1290 	if (node < 0)
1291 		return TEE_SUCCESS;
1292 
1293 	/* Checking the existence and size of the event log properties */
1294 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1295 		EMSG("tpm_event_log_addr not found or has invalid size");
1296 		return TEE_ERROR_BAD_FORMAT;
1297 	}
1298 
1299 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1300 		EMSG("tpm_event_log_size not found or has invalid size");
1301 		return TEE_ERROR_BAD_FORMAT;
1302 	}
1303 
1304 	/* Validating event log */
1305 	res = tpm_get_event_log_size(&log_size);
1306 	if (res)
1307 		return res;
1308 
1309 	if (!log_size) {
1310 		EMSG("Empty TPM event log was provided");
1311 		return TEE_ERROR_ITEM_NOT_FOUND;
1312 	}
1313 
1314 	/* Allocating memory area for the event log to share with the SP */
1315 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1316 
1317 	f = fobj_sec_mem_alloc(page_count);
1318 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1319 	fobj_put(f);
1320 	if (!m)
1321 		return TEE_ERROR_OUT_OF_MEMORY;
1322 
1323 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1324 	mobj_put(m);
1325 	if (res)
1326 		return res;
1327 
1328 	/* Copy event log */
1329 	res = tpm_get_event_log((void *)log_addr, &log_size);
1330 	if (res)
1331 		goto err_unmap;
1332 
1333 	/* Setting event log details in the manifest */
1334 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1335 	if (res)
1336 		goto err_unmap;
1337 
1338 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1339 	if (res)
1340 		goto err_unmap;
1341 
1342 	return TEE_SUCCESS;
1343 
1344 err_unmap:
1345 	vm_unmap(&ctx->uctx, log_addr, log_size);
1346 
1347 	return res;
1348 }
1349 
1350 /*
1351  * Note: this function is called only on the primary CPU. It assumes that the
1352  * features present on the primary CPU are available on all of the secondary
1353  * CPUs as well.
1354  */
1355 static TEE_Result handle_hw_features(void *fdt)
1356 {
1357 	uint32_t val __maybe_unused = 0;
1358 	TEE_Result res = TEE_SUCCESS;
1359 	int node = 0;
1360 
1361 	/*
1362 	 * HW feature descriptions are optional in the SP manifest, it's not an
1363 	 * error if we don't find any.
1364 	 */
1365 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1366 	if (node < 0)
1367 		return TEE_SUCCESS;
1368 
1369 	/* Modify the crc32 property only if it's already present */
1370 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1371 		res = fdt_setprop_u32(fdt, node, "crc32",
1372 				      feat_crc32_implemented());
1373 		if (res)
1374 			return res;
1375 	}
1376 
1377 	return TEE_SUCCESS;
1378 }
1379 
1380 static TEE_Result read_ns_interrupts_action(const void *fdt,
1381 					    struct sp_session *s)
1382 {
1383 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1384 
1385 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1386 
1387 	if (res) {
1388 		EMSG("Mandatory property is missing: ns-interrupts-action");
1389 		return res;
1390 	}
1391 
1392 	switch (s->ns_int_mode) {
1393 	case SP_MANIFEST_NS_INT_QUEUED:
1394 	case SP_MANIFEST_NS_INT_SIGNALED:
1395 		/* OK */
1396 		break;
1397 
1398 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1399 		EMSG("Managed exit is not implemented");
1400 		return TEE_ERROR_NOT_IMPLEMENTED;
1401 
1402 	default:
1403 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1404 		     s->ns_int_mode);
1405 		return TEE_ERROR_BAD_PARAMETERS;
1406 	}
1407 
1408 	return TEE_SUCCESS;
1409 }
1410 
1411 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1412 {
1413 	TEE_Result res = TEE_SUCCESS;
1414 	struct sp_session *sess = NULL;
1415 	TEE_UUID ffa_uuid = {};
1416 	uint16_t boot_order = 0;
1417 	uint32_t boot_order_arg = 0;
1418 
1419 	res = fdt_get_uuid(fdt, &ffa_uuid);
1420 	if (res)
1421 		return res;
1422 
1423 	res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order);
1424 	if (res == TEE_SUCCESS) {
1425 		boot_order_arg = boot_order;
1426 	} else if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1427 		boot_order_arg = UINT32_MAX;
1428 	} else {
1429 		EMSG("Failed reading boot-order property err:%#"PRIx32, res);
1430 		return res;
1431 	}
1432 
1433 	res = sp_open_session(&sess,
1434 			      &open_sp_sessions,
1435 			      &ffa_uuid, bin_uuid, boot_order_arg, fdt);
1436 	if (res)
1437 		return res;
1438 
1439 	sess->fdt = fdt;
1440 
1441 	res = read_manifest_endpoint_id(sess);
1442 	if (res)
1443 		return res;
1444 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1445 
1446 	res = read_ns_interrupts_action(fdt, sess);
1447 	if (res)
1448 		return res;
1449 
1450 	return TEE_SUCCESS;
1451 }
1452 
1453 static TEE_Result sp_first_run(struct sp_session *sess)
1454 {
1455 	TEE_Result res = TEE_SUCCESS;
1456 	struct thread_smc_args args = { };
1457 	struct sp_ctx *ctx = NULL;
1458 	vaddr_t boot_info_va = 0;
1459 	size_t boot_info_size = 0;
1460 	void *fdt_copy = NULL;
1461 	size_t fdt_size = 0;
1462 
1463 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1464 	ts_push_current_session(&sess->ts_sess);
1465 	sess->is_initialized = false;
1466 
1467 	/*
1468 	 * Load relative memory regions must be handled before doing any other
1469 	 * mapping to prevent conflicts in the VA space.
1470 	 */
1471 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1472 	if (res) {
1473 		ts_pop_current_session();
1474 		return res;
1475 	}
1476 
1477 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1478 	if (res)
1479 		goto out;
1480 
1481 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1482 	if (res)
1483 		goto out;
1484 
1485 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1486 	if (res)
1487 		goto out;
1488 
1489 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1490 		res = handle_tpm_event_log(ctx, fdt_copy);
1491 		if (res)
1492 			goto out;
1493 	}
1494 
1495 	res = handle_hw_features(fdt_copy);
1496 	if (res)
1497 		goto out;
1498 
1499 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1500 				       &boot_info_size);
1501 	if (res)
1502 		goto out;
1503 
1504 	ts_pop_current_session();
1505 
1506 	res = sp_enter(&args, sess);
1507 	if (res) {
1508 		ts_push_current_session(&sess->ts_sess);
1509 		goto out;
1510 	}
1511 
1512 	spmc_sp_msg_handler(&args, sess);
1513 
1514 	ts_push_current_session(&sess->ts_sess);
1515 	sess->is_initialized = true;
1516 
1517 out:
1518 	/* Free the boot info page from the SP memory */
1519 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1520 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1521 	ts_pop_current_session();
1522 
1523 	return res;
1524 }
1525 
1526 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
1527 {
1528 	TEE_Result res = TEE_SUCCESS;
1529 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1530 
1531 	ctx->sp_regs.x[0] = args->a0;
1532 	ctx->sp_regs.x[1] = args->a1;
1533 	ctx->sp_regs.x[2] = args->a2;
1534 	ctx->sp_regs.x[3] = args->a3;
1535 	ctx->sp_regs.x[4] = args->a4;
1536 	ctx->sp_regs.x[5] = args->a5;
1537 	ctx->sp_regs.x[6] = args->a6;
1538 	ctx->sp_regs.x[7] = args->a7;
1539 
1540 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1541 
1542 	args->a0 = ctx->sp_regs.x[0];
1543 	args->a1 = ctx->sp_regs.x[1];
1544 	args->a2 = ctx->sp_regs.x[2];
1545 	args->a3 = ctx->sp_regs.x[3];
1546 	args->a4 = ctx->sp_regs.x[4];
1547 	args->a5 = ctx->sp_regs.x[5];
1548 	args->a6 = ctx->sp_regs.x[6];
1549 	args->a7 = ctx->sp_regs.x[7];
1550 
1551 	return res;
1552 }
1553 
1554 /*
1555  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1556  * active on NS interrupt than the callee, the callee must inherit the caller's
1557  * configuration.
1558  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1559  * action will be MIN([self action], [caller's action]) which is stored in the
1560  * ns_int_mode_inherited field.
1561  */
1562 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1563 						 struct ts_session *caller,
1564 						 uint64_t *cpsr)
1565 {
1566 	if (caller) {
1567 		struct sp_session *caller_sp = to_sp_session(caller);
1568 
1569 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1570 					       s->ns_int_mode);
1571 	} else {
1572 		s->ns_int_mode_inherited = s->ns_int_mode;
1573 	}
1574 
1575 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1576 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1577 				   ARM32_CPSR_F_SHIFT);
1578 	else
1579 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1580 				    ARM32_CPSR_F_SHIFT);
1581 }
1582 
1583 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1584 				      uint32_t cmd __unused)
1585 {
1586 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1587 	TEE_Result res = TEE_SUCCESS;
1588 	uint32_t exceptions = 0;
1589 	struct sp_session *sp_s = to_sp_session(s);
1590 	struct ts_session *sess = NULL;
1591 	struct thread_ctx_regs *sp_regs = NULL;
1592 	uint32_t thread_id = THREAD_ID_INVALID;
1593 	struct ts_session *caller = NULL;
1594 	uint32_t rpc_target_info = 0;
1595 	uint32_t panicked = false;
1596 	uint32_t panic_code = 0;
1597 
1598 	bm_timestamp();
1599 
1600 	sp_regs = &ctx->sp_regs;
1601 	ts_push_current_session(s);
1602 
1603 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1604 
1605 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1606 	caller = ts_get_calling_session();
1607 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1608 
1609 	/*
1610 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1611 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1612 	 */
1613 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1614 	thread_id = thread_get_id();
1615 	assert(thread_id <= UINT16_MAX);
1616 	thread_get_tsd()->rpc_target_info =
1617 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1618 
1619 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1620 
1621 	/* Restore rpc_target_info */
1622 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1623 
1624 	thread_unmask_exceptions(exceptions);
1625 
1626 	thread_user_clear_vfp(&ctx->uctx);
1627 
1628 	if (panicked) {
1629 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1630 		abort_print_current_ts();
1631 
1632 		sess = ts_pop_current_session();
1633 		cpu_spin_lock(&sp_s->spinlock);
1634 		sp_s->state = sp_dead;
1635 		cpu_spin_unlock(&sp_s->spinlock);
1636 
1637 		return TEE_ERROR_TARGET_DEAD;
1638 	}
1639 
1640 	sess = ts_pop_current_session();
1641 	assert(sess == s);
1642 
1643 	bm_timestamp();
1644 
1645 	return res;
1646 }
1647 
1648 /* We currently don't support 32 bits */
1649 #ifdef ARM64
1650 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1651 				   struct thread_ctx_regs *sp_regs)
1652 {
1653 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1654 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1655 	sp_regs->pc = regs->elr;
1656 	sp_regs->sp = regs->sp_el0;
1657 }
1658 #endif
1659 
1660 static bool sp_handle_scall(struct thread_scall_regs *regs)
1661 {
1662 	struct ts_session *ts = ts_get_current_session();
1663 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1664 	struct sp_session *s = uctx->open_session;
1665 
1666 	assert(s);
1667 
1668 	sp_svc_store_registers(regs, &uctx->sp_regs);
1669 
1670 	regs->x0 = 0;
1671 	regs->x1 = 0; /* panic */
1672 	regs->x2 = 0; /* panic code */
1673 
1674 	/*
1675 	 * All the registers of the SP are saved in the SP session by the SVC
1676 	 * handler.
1677 	 * We always return to S-El1 after handling the SVC. We will continue
1678 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1679 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1680 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1681 	 * afterward used by the spmc_sp_msg_handler() to handle the
1682 	 * FF-A message send by the SP.
1683 	 */
1684 	return false;
1685 }
1686 
1687 static void sp_dump_state(struct ts_ctx *ctx)
1688 {
1689 	struct sp_ctx *utc = to_sp_ctx(ctx);
1690 
1691 	if (utc->uctx.dump_entry_func) {
1692 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1693 
1694 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1695 			return;
1696 	}
1697 
1698 	user_mode_ctx_print_mappings(&utc->uctx);
1699 }
1700 
1701 static const struct ts_ops sp_ops = {
1702 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1703 	.handle_scall = sp_handle_scall,
1704 	.dump_state = sp_dump_state,
1705 };
1706 
1707 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1708 {
1709 	enum teecore_memtypes mtype = MEM_AREA_TA_RAM;
1710 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1711 	struct fip_sp *sp = NULL;
1712 	uint64_t sp_fdt_end = 0;
1713 	size_t sp_pkg_size = 0;
1714 	vaddr_t sp_pkg_va = 0;
1715 
1716 	/* Process the first page which contains the SP package header */
1717 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1718 	if (!sp_pkg_va) {
1719 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1720 		return TEE_ERROR_GENERIC;
1721 	}
1722 
1723 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1724 
1725 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1726 		EMSG("Invalid SP package magic");
1727 		return TEE_ERROR_BAD_FORMAT;
1728 	}
1729 
1730 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1731 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1732 		EMSG("Invalid SP header version");
1733 		return TEE_ERROR_BAD_FORMAT;
1734 	}
1735 
1736 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1737 			 &sp_pkg_size)) {
1738 		EMSG("Invalid SP package size");
1739 		return TEE_ERROR_BAD_FORMAT;
1740 	}
1741 
1742 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1743 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1744 		EMSG("Invalid SP manifest size");
1745 		return TEE_ERROR_BAD_FORMAT;
1746 	}
1747 
1748 	/* Process the whole SP package now that the size is known */
1749 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1750 	if (!sp_pkg_va) {
1751 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1752 		return TEE_ERROR_GENERIC;
1753 	}
1754 
1755 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1756 
1757 	sp = calloc(1, sizeof(struct fip_sp));
1758 	if (!sp)
1759 		return TEE_ERROR_OUT_OF_MEMORY;
1760 
1761 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1762 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1763 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1764 	sp->sp_img.image.flags = 0;
1765 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1766 
1767 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1768 
1769 	return TEE_SUCCESS;
1770 }
1771 
1772 static TEE_Result fip_sp_init_all(void)
1773 {
1774 	TEE_Result res = TEE_SUCCESS;
1775 	uint64_t sp_pkg_addr = 0;
1776 	const void *fdt = NULL;
1777 	TEE_UUID sp_uuid = { };
1778 	int sp_pkgs_node = 0;
1779 	int subnode = 0;
1780 	int root = 0;
1781 
1782 	fdt = get_manifest_dt();
1783 	if (!fdt) {
1784 		EMSG("No SPMC manifest found");
1785 		return TEE_ERROR_GENERIC;
1786 	}
1787 
1788 	root = fdt_path_offset(fdt, "/");
1789 	if (root < 0)
1790 		return TEE_ERROR_BAD_FORMAT;
1791 
1792 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1793 		return TEE_ERROR_BAD_FORMAT;
1794 
1795 	/* SP packages are optional, it's not an error if we don't find any */
1796 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1797 	if (sp_pkgs_node < 0)
1798 		return TEE_SUCCESS;
1799 
1800 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1801 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1802 		if (res) {
1803 			EMSG("Invalid FIP SP load address");
1804 			return res;
1805 		}
1806 
1807 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1808 		if (res) {
1809 			EMSG("Invalid FIP SP uuid");
1810 			return res;
1811 		}
1812 
1813 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1814 		if (res) {
1815 			EMSG("Invalid FIP SP package");
1816 			return res;
1817 		}
1818 	}
1819 
1820 	return TEE_SUCCESS;
1821 }
1822 
1823 static void fip_sp_deinit_all(void)
1824 {
1825 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1826 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
1827 
1828 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
1829 		free(sp);
1830 	}
1831 }
1832 
1833 static TEE_Result sp_init_all(void)
1834 {
1835 	TEE_Result res = TEE_SUCCESS;
1836 	const struct sp_image *sp = NULL;
1837 	const struct fip_sp *fip_sp = NULL;
1838 	char __maybe_unused msg[60] = { '\0', };
1839 	struct sp_session *s = NULL;
1840 	struct sp_session *prev_sp = NULL;
1841 
1842 	for_each_secure_partition(sp) {
1843 		if (sp->image.uncompressed_size)
1844 			snprintf(msg, sizeof(msg),
1845 				 " (compressed, uncompressed %u)",
1846 				 sp->image.uncompressed_size);
1847 		else
1848 			msg[0] = '\0';
1849 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
1850 		     sp->image.size, msg);
1851 
1852 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1853 
1854 		if (res != TEE_SUCCESS) {
1855 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1856 			     &sp->image.uuid, res);
1857 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1858 				panic();
1859 		}
1860 	}
1861 
1862 	res = fip_sp_init_all();
1863 	if (res)
1864 		panic("Failed initializing FIP SPs");
1865 
1866 	for_each_fip_sp(fip_sp) {
1867 		sp = &fip_sp->sp_img;
1868 
1869 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
1870 		     sp->image.size);
1871 
1872 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1873 
1874 		if (res != TEE_SUCCESS) {
1875 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1876 			     &sp->image.uuid, res);
1877 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1878 				panic();
1879 		}
1880 	}
1881 
1882 	/*
1883 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
1884 	 * loader, so the original images (loaded by BL2) are not needed anymore
1885 	 */
1886 	fip_sp_deinit_all();
1887 
1888 	/*
1889 	 * Now that all SPs are loaded, check through the boot order values,
1890 	 * and warn in case there is a non-unique value.
1891 	 */
1892 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
1893 		/* User specified boot-order values are uint16 */
1894 		if (s->boot_order > UINT16_MAX)
1895 			break;
1896 
1897 		if (prev_sp && prev_sp->boot_order == s->boot_order)
1898 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
1899 			     &prev_sp->ts_sess.ctx->uuid,
1900 			     &s->ts_sess.ctx->uuid);
1901 
1902 		prev_sp = s;
1903 	}
1904 
1905 	/* Continue the initialization and run the SP */
1906 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
1907 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
1908 
1909 		res = sp_first_run(s);
1910 		if (res != TEE_SUCCESS) {
1911 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
1912 			     s->endpoint_id, res);
1913 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1914 				panic();
1915 		}
1916 	}
1917 
1918 	return TEE_SUCCESS;
1919 }
1920 
1921 boot_final(sp_init_all);
1922 
1923 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
1924 					struct ts_store_handle **h)
1925 {
1926 	return emb_ts_open(uuid, h, find_secure_partition);
1927 }
1928 
1929 REGISTER_SP_STORE(2) = {
1930 	.description = "SP store",
1931 	.open = secure_partition_open,
1932 	.get_size = emb_ts_get_size,
1933 	.get_tag = emb_ts_get_tag,
1934 	.read = emb_ts_read,
1935 	.close = emb_ts_close,
1936 };
1937