1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2022, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/embedded_ts.h> 9 #include <kernel/ldelf_loader.h> 10 #include <kernel/secure_partition.h> 11 #include <kernel/spinlock.h> 12 #include <kernel/spmc_sp_handler.h> 13 #include <kernel/thread_private.h> 14 #include <kernel/thread_spmc.h> 15 #include <kernel/tpm.h> 16 #include <kernel/ts_store.h> 17 #include <ldelf.h> 18 #include <libfdt.h> 19 #include <mm/core_mmu.h> 20 #include <mm/fobj.h> 21 #include <mm/mobj.h> 22 #include <mm/vm.h> 23 #include <optee_ffa.h> 24 #include <stdio.h> 25 #include <string.h> 26 #include <tee_api_types.h> 27 #include <tee/uuid.h> 28 #include <trace.h> 29 #include <types_ext.h> 30 #include <utee_defines.h> 31 #include <util.h> 32 #include <zlib.h> 33 34 #define SP_MANIFEST_ATTR_READ BIT(0) 35 #define SP_MANIFEST_ATTR_WRITE BIT(1) 36 #define SP_MANIFEST_ATTR_EXEC BIT(2) 37 #define SP_MANIFEST_ATTR_NSEC BIT(3) 38 39 const struct ts_ops sp_ops; 40 41 /* List that holds all of the loaded SP's */ 42 static struct sp_sessions_head open_sp_sessions = 43 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 44 45 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 46 { 47 const struct sp_image *sp = NULL; 48 49 for_each_secure_partition(sp) { 50 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 51 return &sp->image; 52 } 53 return NULL; 54 } 55 56 bool is_sp_ctx(struct ts_ctx *ctx) 57 { 58 return ctx && (ctx->ops == &sp_ops); 59 } 60 61 static void set_sp_ctx_ops(struct ts_ctx *ctx) 62 { 63 ctx->ops = &sp_ops; 64 } 65 66 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id) 67 { 68 struct sp_session *s = NULL; 69 70 TAILQ_FOREACH(s, &open_sp_sessions, link) { 71 if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) { 72 if (s->state == sp_dead) 73 return TEE_ERROR_TARGET_DEAD; 74 75 *session_id = s->endpoint_id; 76 return TEE_SUCCESS; 77 } 78 } 79 80 return TEE_ERROR_ITEM_NOT_FOUND; 81 } 82 83 struct sp_session *sp_get_session(uint32_t session_id) 84 { 85 struct sp_session *s = NULL; 86 87 TAILQ_FOREACH(s, &open_sp_sessions, link) { 88 if (s->endpoint_id == session_id) 89 return s; 90 } 91 92 return NULL; 93 } 94 95 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi, 96 size_t *elem_count) 97 { 98 size_t in_count = *elem_count; 99 struct sp_session *s = NULL; 100 size_t count = 0; 101 102 TAILQ_FOREACH(s, &open_sp_sessions, link) { 103 if (s->state == sp_dead) 104 continue; 105 if (count < in_count) { 106 spmc_fill_partition_entry(fpi, s->endpoint_id, 1); 107 fpi++; 108 } 109 count++; 110 } 111 112 *elem_count = count; 113 if (count > in_count) 114 return TEE_ERROR_SHORT_BUFFER; 115 116 return TEE_SUCCESS; 117 } 118 119 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 120 struct user_mode_ctx *uctx) 121 { 122 /* 123 * Check that we have access to the region if it is supposed to be 124 * mapped to the current context. 125 */ 126 if (uctx) { 127 struct vm_region *region = NULL; 128 129 /* Make sure that each mobj belongs to the SP */ 130 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 131 if (region->mobj == mem->mobj) 132 break; 133 } 134 135 if (!region) 136 return false; 137 } 138 139 /* Check that it is not shared with another SP */ 140 return !sp_mem_is_shared(mem); 141 } 142 143 static uint16_t new_session_id(struct sp_sessions_head *open_sessions) 144 { 145 struct sp_session *last = NULL; 146 uint16_t id = SPMC_ENDPOINT_ID + 1; 147 148 last = TAILQ_LAST(open_sessions, sp_sessions_head); 149 if (last) 150 id = last->endpoint_id + 1; 151 152 assert(id > SPMC_ENDPOINT_ID); 153 return id; 154 } 155 156 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s) 157 { 158 TEE_Result res = TEE_SUCCESS; 159 struct sp_ctx *spc = NULL; 160 161 /* Register context */ 162 spc = calloc(1, sizeof(struct sp_ctx)); 163 if (!spc) 164 return TEE_ERROR_OUT_OF_MEMORY; 165 166 spc->uctx.ts_ctx = &spc->ts_ctx; 167 spc->open_session = s; 168 s->ts_sess.ctx = &spc->ts_ctx; 169 spc->ts_ctx.uuid = *uuid; 170 171 res = vm_info_init(&spc->uctx); 172 if (res) 173 goto err; 174 175 set_sp_ctx_ops(&spc->ts_ctx); 176 177 return TEE_SUCCESS; 178 179 err: 180 free(spc); 181 return res; 182 } 183 184 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 185 const TEE_UUID *uuid, 186 struct sp_session **sess) 187 { 188 TEE_Result res = TEE_SUCCESS; 189 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 190 191 if (!s) 192 return TEE_ERROR_OUT_OF_MEMORY; 193 194 s->endpoint_id = new_session_id(open_sessions); 195 if (!s->endpoint_id) { 196 res = TEE_ERROR_OVERFLOW; 197 goto err; 198 } 199 200 DMSG("Loading Secure Partition %pUl", (void *)uuid); 201 res = sp_create_ctx(uuid, s); 202 if (res) 203 goto err; 204 205 TAILQ_INSERT_TAIL(open_sessions, s, link); 206 *sess = s; 207 return TEE_SUCCESS; 208 209 err: 210 free(s); 211 return res; 212 } 213 214 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 215 { 216 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 217 218 memset(sp_regs, 0, sizeof(*sp_regs)); 219 sp_regs->sp = ctx->uctx.stack_ptr; 220 sp_regs->pc = ctx->uctx.entry_func; 221 222 return TEE_SUCCESS; 223 } 224 225 TEE_Result sp_map_shared(struct sp_session *s, 226 struct sp_mem_receiver *receiver, 227 struct sp_mem *smem, 228 uint64_t *va) 229 { 230 TEE_Result res = TEE_SUCCESS; 231 struct sp_ctx *ctx = NULL; 232 uint32_t perm = TEE_MATTR_UR; 233 struct sp_mem_map_region *reg = NULL; 234 235 ctx = to_sp_ctx(s->ts_sess.ctx); 236 237 /* Get the permission */ 238 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 239 perm |= TEE_MATTR_UX; 240 241 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 242 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 243 return TEE_ERROR_ACCESS_CONFLICT; 244 245 perm |= TEE_MATTR_UW; 246 } 247 /* 248 * Currently we don't support passing a va. We can't guarantee that the 249 * full region will be mapped in a contiguous region. A smem->region can 250 * have multiple mobj for one share. Currently there doesn't seem to be 251 * an option to guarantee that these will be mapped in a contiguous va 252 * space. 253 */ 254 if (*va) 255 return TEE_ERROR_NOT_SUPPORTED; 256 257 SLIST_FOREACH(reg, &smem->regions, link) { 258 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 259 perm, 0, reg->mobj, reg->page_offset); 260 261 if (res != TEE_SUCCESS) { 262 EMSG("Failed to map memory region %#"PRIx32, res); 263 return res; 264 } 265 } 266 return TEE_SUCCESS; 267 } 268 269 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 270 { 271 TEE_Result res = TEE_SUCCESS; 272 vaddr_t vaddr = 0; 273 size_t len = 0; 274 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 275 struct sp_mem_map_region *reg = NULL; 276 277 SLIST_FOREACH(reg, &smem->regions, link) { 278 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 279 reg->mobj); 280 len = reg->page_count * SMALL_PAGE_SIZE; 281 282 res = vm_unmap(&ctx->uctx, vaddr, len); 283 if (res != TEE_SUCCESS) 284 return res; 285 } 286 287 return TEE_SUCCESS; 288 } 289 290 static TEE_Result sp_open_session(struct sp_session **sess, 291 struct sp_sessions_head *open_sessions, 292 const TEE_UUID *uuid) 293 { 294 TEE_Result res = TEE_SUCCESS; 295 struct sp_session *s = NULL; 296 struct sp_ctx *ctx = NULL; 297 298 if (!find_secure_partition(uuid)) 299 return TEE_ERROR_ITEM_NOT_FOUND; 300 301 res = sp_create_session(open_sessions, uuid, &s); 302 if (res != TEE_SUCCESS) { 303 DMSG("sp_create_session failed %#"PRIx32, res); 304 return res; 305 } 306 307 ctx = to_sp_ctx(s->ts_sess.ctx); 308 assert(ctx); 309 if (!ctx) 310 return TEE_ERROR_TARGET_DEAD; 311 *sess = s; 312 313 ts_push_current_session(&s->ts_sess); 314 /* Load the SP using ldelf. */ 315 ldelf_load_ldelf(&ctx->uctx); 316 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 317 318 if (res != TEE_SUCCESS) { 319 EMSG("Failed. loading SP using ldelf %#"PRIx32, res); 320 ts_pop_current_session(); 321 return TEE_ERROR_TARGET_DEAD; 322 } 323 324 /* Make the SP ready for its first run */ 325 s->state = sp_idle; 326 s->caller_id = 0; 327 sp_init_set_registers(ctx); 328 ts_pop_current_session(); 329 330 return TEE_SUCCESS; 331 } 332 333 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 334 uint64_t *value) 335 { 336 const fdt64_t *p = NULL; 337 int len = 0; 338 339 p = fdt_getprop(fdt, node, property, &len); 340 if (!p || len != sizeof(*p)) 341 return TEE_ERROR_ITEM_NOT_FOUND; 342 343 *value = fdt64_to_cpu(*p); 344 345 return TEE_SUCCESS; 346 } 347 348 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 349 uint32_t *value) 350 { 351 const fdt32_t *p = NULL; 352 int len = 0; 353 354 p = fdt_getprop(fdt, node, property, &len); 355 if (!p || len != sizeof(*p)) 356 return TEE_ERROR_ITEM_NOT_FOUND; 357 358 *value = fdt32_to_cpu(*p); 359 360 return TEE_SUCCESS; 361 } 362 363 static TEE_Result check_fdt(const void * const fdt, const TEE_UUID *uuid) 364 { 365 int len = 0; 366 const fdt32_t *prop = NULL; 367 int i = 0; 368 const struct fdt_property *description = NULL; 369 int description_name_len = 0; 370 uint32_t uuid_array[4] = { 0 }; 371 TEE_UUID fdt_uuid = { }; 372 373 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 374 EMSG("Failed loading SP, manifest not found"); 375 return TEE_ERROR_BAD_PARAMETERS; 376 } 377 378 description = fdt_get_property(fdt, 0, "description", 379 &description_name_len); 380 if (description) 381 DMSG("Loading SP: %s", description->data); 382 383 prop = fdt_getprop(fdt, 0, "uuid", &len); 384 if (!prop || len != 16) { 385 EMSG("Missing or invalid UUID in SP manifest"); 386 return TEE_ERROR_BAD_FORMAT; 387 } 388 389 for (i = 0; i < 4; i++) 390 uuid_array[i] = fdt32_to_cpu(prop[i]); 391 tee_uuid_from_octets(&fdt_uuid, (uint8_t *)uuid_array); 392 393 if (memcmp(uuid, &fdt_uuid, sizeof(fdt_uuid))) { 394 EMSG("Failed loading SP, UUID mismatch"); 395 return TEE_ERROR_BAD_FORMAT; 396 } 397 398 return TEE_SUCCESS; 399 } 400 401 /* 402 * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy 403 * the fdt into the allocated page(s) and return a pointer to the new location 404 * of the fdt. This pointer can be used to update data inside the fdt. 405 */ 406 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args, 407 const void * const input_fdt, vaddr_t *va, 408 size_t *num_pgs, void **fdt_copy) 409 { 410 struct sp_ffa_init_info *info = NULL; 411 int nvp_count = 1; 412 size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count; 413 size_t info_size = sizeof(*info) + nvp_size; 414 size_t fdt_size = fdt_totalsize(input_fdt); 415 TEE_Result res = TEE_SUCCESS; 416 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 417 struct fobj *f = NULL; 418 struct mobj *m = NULL; 419 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 420 421 *num_pgs = ROUNDUP(fdt_size + info_size, SMALL_PAGE_SIZE) / 422 SMALL_PAGE_SIZE; 423 424 f = fobj_sec_mem_alloc(*num_pgs); 425 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 426 427 fobj_put(f); 428 if (!m) 429 return TEE_ERROR_OUT_OF_MEMORY; 430 431 res = vm_map(&ctx->uctx, va, fdt_size + info_size, 432 perm, 0, m, 0); 433 mobj_put(m); 434 if (res) 435 return res; 436 437 info = (struct sp_ffa_init_info *)*va; 438 439 /* magic field is 4 bytes, we don't copy /0 byte. */ 440 memcpy(&info->magic, "FF-A", 4); 441 info->count = nvp_count; 442 args->a0 = (vaddr_t)info; 443 444 /* 445 * Store the fdt after the boot_info and store the pointer in the 446 * first element. 447 */ 448 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 449 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 450 info->nvp[0].value = *va + info_size; 451 info->nvp[0].size = fdt_size; 452 memcpy((void *)info->nvp[0].value, input_fdt, fdt_size); 453 *fdt_copy = (void *)info->nvp[0].value; 454 455 return TEE_SUCCESS; 456 } 457 458 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 459 { 460 int node = 0; 461 int subnode = 0; 462 TEE_Result res = TEE_SUCCESS; 463 const char *dt_device_match_table = { 464 "arm,ffa-manifest-device-regions", 465 }; 466 467 /* 468 * Device regions are optional in the SP manifest, it's not an error if 469 * we don't find any 470 */ 471 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 472 if (node < 0) 473 return TEE_SUCCESS; 474 475 fdt_for_each_subnode(subnode, fdt, node) { 476 uint64_t base_addr = 0; 477 uint32_t pages_cnt = 0; 478 uint32_t attributes = 0; 479 struct mobj *m = NULL; 480 bool is_secure = true; 481 uint32_t perm = 0; 482 vaddr_t va = 0; 483 unsigned int idx = 0; 484 485 /* 486 * Physical base address of a device MMIO region. 487 * Currently only physically contiguous region is supported. 488 */ 489 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 490 EMSG("Mandatory field is missing: base-address"); 491 return TEE_ERROR_BAD_FORMAT; 492 } 493 494 /* Total size of MMIO region as count of 4K pages */ 495 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 496 EMSG("Mandatory field is missing: pages-count"); 497 return TEE_ERROR_BAD_FORMAT; 498 } 499 500 /* Data access, instruction access and security attributes */ 501 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 502 EMSG("Mandatory field is missing: attributes"); 503 return TEE_ERROR_BAD_FORMAT; 504 } 505 506 /* Instruction access permission must be not executable */ 507 if (attributes & SP_MANIFEST_ATTR_EXEC) { 508 EMSG("Invalid instruction access permission"); 509 return TEE_ERROR_BAD_FORMAT; 510 } 511 512 /* Data access permission must be read-only or read/write */ 513 if (attributes & SP_MANIFEST_ATTR_READ) { 514 perm = TEE_MATTR_UR; 515 516 if (attributes & SP_MANIFEST_ATTR_WRITE) 517 perm |= TEE_MATTR_UW; 518 } else { 519 EMSG("Invalid data access permissions"); 520 return TEE_ERROR_BAD_FORMAT; 521 } 522 523 /* 524 * The SP is a secure endpoint, security attribute can be 525 * secure or non-secure 526 */ 527 if (attributes & SP_MANIFEST_ATTR_NSEC) 528 is_secure = false; 529 530 /* Memory attributes must be Device-nGnRnE */ 531 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 532 is_secure); 533 if (!m) 534 return TEE_ERROR_OUT_OF_MEMORY; 535 536 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 537 if (res) { 538 mobj_put(m); 539 return res; 540 } 541 542 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 543 perm, 0, m, 0); 544 mobj_put(m); 545 if (res) 546 return res; 547 548 /* 549 * Overwrite the device region's PA in the fdt with the VA. This 550 * fdt will be passed to the SP. 551 */ 552 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 553 554 /* 555 * Unmap the region if the overwrite failed since the SP won't 556 * be able to access it without knowing the VA. 557 */ 558 if (res) { 559 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 560 return res; 561 } 562 } 563 564 return TEE_SUCCESS; 565 } 566 567 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 568 { 569 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 570 uint32_t dummy_size __maybe_unused = 0; 571 TEE_Result res = TEE_SUCCESS; 572 size_t page_count = 0; 573 struct fobj *f = NULL; 574 struct mobj *m = NULL; 575 vaddr_t log_addr = 0; 576 size_t log_size = 0; 577 int node = 0; 578 579 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 580 if (node < 0) 581 return TEE_SUCCESS; 582 583 /* Checking the existence and size of the event log properties */ 584 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 585 EMSG("tpm_event_log_addr not found or has invalid size"); 586 return TEE_ERROR_BAD_FORMAT; 587 } 588 589 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 590 EMSG("tpm_event_log_size not found or has invalid size"); 591 return TEE_ERROR_BAD_FORMAT; 592 } 593 594 /* Validating event log */ 595 res = tpm_get_event_log_size(&log_size); 596 if (res) 597 return res; 598 599 if (!log_size) { 600 EMSG("Empty TPM event log was provided"); 601 return TEE_ERROR_ITEM_NOT_FOUND; 602 } 603 604 /* Allocating memory area for the event log to share with the SP */ 605 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 606 607 f = fobj_sec_mem_alloc(page_count); 608 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 609 fobj_put(f); 610 if (!m) 611 return TEE_ERROR_OUT_OF_MEMORY; 612 613 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 614 mobj_put(m); 615 if (res) 616 return res; 617 618 /* Copy event log */ 619 res = tpm_get_event_log((void *)log_addr, &log_size); 620 if (res) 621 goto err_unmap; 622 623 /* Setting event log details in the manifest */ 624 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 625 if (res) 626 goto err_unmap; 627 628 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 629 if (res) 630 goto err_unmap; 631 632 return TEE_SUCCESS; 633 634 err_unmap: 635 vm_unmap(&ctx->uctx, log_addr, log_size); 636 637 return res; 638 } 639 640 static TEE_Result sp_init_uuid(const TEE_UUID *uuid, const void * const fdt) 641 { 642 TEE_Result res = TEE_SUCCESS; 643 struct sp_session *sess = NULL; 644 struct thread_smc_args args = { }; 645 vaddr_t va = 0; 646 size_t num_pgs = 0; 647 struct sp_ctx *ctx = NULL; 648 void *fdt_copy = NULL; 649 650 res = sp_open_session(&sess, 651 &open_sp_sessions, 652 uuid); 653 if (res) 654 return res; 655 656 res = check_fdt(fdt, uuid); 657 if (res) 658 return res; 659 660 ctx = to_sp_ctx(sess->ts_sess.ctx); 661 ts_push_current_session(&sess->ts_sess); 662 663 res = sp_init_info(ctx, &args, fdt, &va, &num_pgs, &fdt_copy); 664 if (res) 665 goto out; 666 667 res = handle_fdt_dev_regions(ctx, fdt_copy); 668 if (res) 669 goto out; 670 671 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 672 res = handle_tpm_event_log(ctx, fdt_copy); 673 if (res) 674 goto out; 675 } 676 677 ts_pop_current_session(); 678 679 if (sp_enter(&args, sess)) { 680 vm_unmap(&ctx->uctx, va, num_pgs); 681 return FFA_ABORTED; 682 } 683 684 spmc_sp_msg_handler(&args, sess); 685 686 ts_push_current_session(&sess->ts_sess); 687 out: 688 /* Free the boot info page from the SP memory */ 689 vm_unmap(&ctx->uctx, va, num_pgs); 690 ts_pop_current_session(); 691 692 return res; 693 } 694 695 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 696 { 697 TEE_Result res = FFA_OK; 698 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 699 700 ctx->sp_regs.x[0] = args->a0; 701 ctx->sp_regs.x[1] = args->a1; 702 ctx->sp_regs.x[2] = args->a2; 703 ctx->sp_regs.x[3] = args->a3; 704 ctx->sp_regs.x[4] = args->a4; 705 ctx->sp_regs.x[5] = args->a5; 706 ctx->sp_regs.x[6] = args->a6; 707 ctx->sp_regs.x[7] = args->a7; 708 709 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 710 711 args->a0 = ctx->sp_regs.x[0]; 712 args->a1 = ctx->sp_regs.x[1]; 713 args->a2 = ctx->sp_regs.x[2]; 714 args->a3 = ctx->sp_regs.x[3]; 715 args->a4 = ctx->sp_regs.x[4]; 716 args->a5 = ctx->sp_regs.x[5]; 717 args->a6 = ctx->sp_regs.x[6]; 718 args->a7 = ctx->sp_regs.x[7]; 719 720 return res; 721 } 722 723 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 724 uint32_t cmd __unused) 725 { 726 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 727 TEE_Result res = TEE_SUCCESS; 728 uint32_t exceptions = 0; 729 uint64_t cpsr = 0; 730 struct sp_session *sp_s = to_sp_session(s); 731 struct ts_session *sess = NULL; 732 struct thread_ctx_regs *sp_regs = NULL; 733 uint32_t panicked = false; 734 uint32_t panic_code = 0; 735 736 bm_timestamp(); 737 738 sp_regs = &ctx->sp_regs; 739 ts_push_current_session(s); 740 741 cpsr = sp_regs->cpsr; 742 sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 743 744 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 745 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 746 sp_regs->cpsr = cpsr; 747 thread_unmask_exceptions(exceptions); 748 749 thread_user_clear_vfp(&ctx->uctx); 750 751 if (panicked) { 752 DMSG("SP panicked with code %#"PRIx32, panic_code); 753 abort_print_current_ts(); 754 755 sess = ts_pop_current_session(); 756 cpu_spin_lock(&sp_s->spinlock); 757 sp_s->state = sp_dead; 758 cpu_spin_unlock(&sp_s->spinlock); 759 760 return TEE_ERROR_TARGET_DEAD; 761 } 762 763 sess = ts_pop_current_session(); 764 assert(sess == s); 765 766 bm_timestamp(); 767 768 return res; 769 } 770 771 /* We currently don't support 32 bits */ 772 #ifdef ARM64 773 static void sp_svc_store_registers(struct thread_svc_regs *regs, 774 struct thread_ctx_regs *sp_regs) 775 { 776 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 777 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 778 sp_regs->pc = regs->elr; 779 sp_regs->sp = regs->sp_el0; 780 } 781 #endif 782 783 static bool sp_handle_svc(struct thread_svc_regs *regs) 784 { 785 struct ts_session *ts = ts_get_current_session(); 786 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 787 struct sp_session *s = uctx->open_session; 788 789 assert(s); 790 791 sp_svc_store_registers(regs, &uctx->sp_regs); 792 793 regs->x0 = 0; 794 regs->x1 = 0; /* panic */ 795 regs->x2 = 0; /* panic code */ 796 797 /* 798 * All the registers of the SP are saved in the SP session by the SVC 799 * handler. 800 * We always return to S-El1 after handling the SVC. We will continue 801 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 802 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 803 * saved registers to the thread_smc_args. The thread_smc_args object is 804 * afterward used by the spmc_sp_msg_handler() to handle the 805 * FF-A message send by the SP. 806 */ 807 return false; 808 } 809 810 static void sp_dump_state(struct ts_ctx *ctx) 811 { 812 struct sp_ctx *utc = to_sp_ctx(ctx); 813 814 if (utc->uctx.dump_entry_func) { 815 TEE_Result res = ldelf_dump_state(&utc->uctx); 816 817 if (!res || res == TEE_ERROR_TARGET_DEAD) 818 return; 819 } 820 821 user_mode_ctx_print_mappings(&utc->uctx); 822 } 823 824 /* 825 * Note: this variable is weak just to ease breaking its dependency chain 826 * when added to the unpaged area. 827 */ 828 const struct ts_ops sp_ops __weak __relrodata_unpaged("sp_ops") = { 829 .enter_invoke_cmd = sp_enter_invoke_cmd, 830 .handle_svc = sp_handle_svc, 831 .dump_state = sp_dump_state, 832 }; 833 834 static TEE_Result sp_init_all(void) 835 { 836 TEE_Result res = TEE_SUCCESS; 837 const struct sp_image *sp = NULL; 838 char __maybe_unused msg[60] = { '\0', }; 839 840 for_each_secure_partition(sp) { 841 if (sp->image.uncompressed_size) 842 snprintf(msg, sizeof(msg), 843 " (compressed, uncompressed %u)", 844 sp->image.uncompressed_size); 845 else 846 msg[0] = '\0'; 847 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 848 sp->image.size, msg); 849 850 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 851 852 if (res != TEE_SUCCESS) { 853 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 854 &sp->image.uuid, res); 855 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 856 panic(); 857 } 858 } 859 860 return TEE_SUCCESS; 861 } 862 863 boot_final(sp_init_all); 864 865 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 866 struct ts_store_handle **h) 867 { 868 return emb_ts_open(uuid, h, find_secure_partition); 869 } 870 871 REGISTER_SP_STORE(2) = { 872 .description = "SP store", 873 .open = secure_partition_open, 874 .get_size = emb_ts_get_size, 875 .get_tag = emb_ts_get_tag, 876 .read = emb_ts_read, 877 .close = emb_ts_close, 878 }; 879