xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 59724f223500ec9bf077e8caaa5fc0d8fece39a9)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2024, Arm Limited.
4  */
5 #include <crypto/crypto.h>
6 #include <initcall.h>
7 #include <kernel/boot.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/phys_mem.h>
23 #include <mm/vm.h>
24 #include <optee_ffa.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <tee/uuid.h>
28 #include <tee_api_types.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 #include <zlib.h>
34 
35 #define BOUNCE_BUFFER_SIZE		4096
36 
37 #define SP_MANIFEST_ATTR_READ		BIT(0)
38 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
39 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
40 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
41 #define SP_MANIFEST_ATTR_GP		BIT(4)
42 
43 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
44 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
45 					 SP_MANIFEST_ATTR_WRITE)
46 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
47 					 SP_MANIFEST_ATTR_EXEC)
48 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
49 					 SP_MANIFEST_ATTR_WRITE | \
50 					 SP_MANIFEST_ATTR_EXEC)
51 
52 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
53 
54 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
55 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
56 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
57 
58 #define SP_MANIFEST_EXEC_STATE_AARCH64	(0x0)
59 #define SP_MANIFEST_EXEC_STATE_AARCH32	(0x1)
60 
61 #define SP_MANIFEST_DIRECT_REQ_RECEIVE	BIT(0)
62 #define SP_MANIFEST_DIRECT_REQ_SEND	BIT(1)
63 #define SP_MANIFEST_INDIRECT_REQ	BIT(2)
64 
65 #define SP_MANIFEST_VM_CREATED_MSG	BIT(0)
66 #define SP_MANIFEST_VM_DESTROYED_MSG	BIT(1)
67 
68 #define SP_PKG_HEADER_MAGIC (0x474b5053)
69 #define SP_PKG_HEADER_VERSION_V1 (0x1)
70 #define SP_PKG_HEADER_VERSION_V2 (0x2)
71 
72 struct sp_pkg_header {
73 	uint32_t magic;
74 	uint32_t version;
75 	uint32_t pm_offset;
76 	uint32_t pm_size;
77 	uint32_t img_offset;
78 	uint32_t img_size;
79 };
80 
81 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
82 
83 static const struct ts_ops sp_ops;
84 
85 /* List that holds all of the loaded SP's */
86 static struct sp_sessions_head open_sp_sessions =
87 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
88 
89 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
90 {
91 	const struct sp_image *sp = NULL;
92 	const struct fip_sp *fip_sp = NULL;
93 
94 	for_each_secure_partition(sp) {
95 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
96 			return &sp->image;
97 	}
98 
99 	for_each_fip_sp(fip_sp) {
100 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
101 			return &fip_sp->sp_img.image;
102 	}
103 
104 	return NULL;
105 }
106 
107 bool is_sp_ctx(struct ts_ctx *ctx)
108 {
109 	return ctx && (ctx->ops == &sp_ops);
110 }
111 
112 static void set_sp_ctx_ops(struct ts_ctx *ctx)
113 {
114 	ctx->ops = &sp_ops;
115 }
116 
117 struct sp_session *sp_get_session(uint32_t session_id)
118 {
119 	struct sp_session *s = NULL;
120 
121 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
122 		if (s->endpoint_id == session_id)
123 			return s;
124 	}
125 
126 	return NULL;
127 }
128 
129 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
130 				 const uint32_t ffa_uuid_words[4],
131 				 size_t *elem_count, bool count_only)
132 {
133 	TEE_Result res = TEE_SUCCESS;
134 	struct sp_session *s = NULL;
135 	TEE_UUID uuid = { };
136 	TEE_UUID *ffa_uuid = NULL;
137 
138 	if (ffa_uuid_words) {
139 		tee_uuid_from_octets(&uuid, (void *)ffa_uuid_words);
140 		ffa_uuid = &uuid;
141 	}
142 
143 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
144 		if (ffa_uuid &&
145 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
146 			continue;
147 
148 		if (s->state == sp_dead)
149 			continue;
150 		if (!count_only && !res) {
151 			uint32_t uuid_words[4] = { 0 };
152 
153 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
154 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
155 							*elem_count,
156 							s->endpoint_id, 1,
157 							s->props, uuid_words);
158 		}
159 		*elem_count += 1;
160 	}
161 
162 	return res;
163 }
164 
165 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
166 			     struct user_mode_ctx *uctx)
167 {
168 	/*
169 	 * Check that we have access to the region if it is supposed to be
170 	 * mapped to the current context.
171 	 */
172 	if (uctx) {
173 		struct vm_region *region = NULL;
174 
175 		/* Make sure that each mobj belongs to the SP */
176 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
177 			if (region->mobj == mem->mobj)
178 				break;
179 		}
180 
181 		if (!region)
182 			return false;
183 	}
184 
185 	/* Check that it is not shared with another SP */
186 	return !sp_mem_is_shared(mem);
187 }
188 
189 static bool endpoint_id_is_valid(uint32_t id)
190 {
191 	/*
192 	 * These IDs are assigned at the SPMC init so already have valid values
193 	 * by the time this function gets first called
194 	 */
195 	return !spmc_is_reserved_id(id) && !spmc_find_lsp_by_sp_id(id) &&
196 	       id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX;
197 }
198 
199 static TEE_Result new_session_id(uint16_t *endpoint_id)
200 {
201 	uint32_t id = 0;
202 
203 	/* Find the first available endpoint id */
204 	for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) {
205 		if (endpoint_id_is_valid(id) && !sp_get_session(id)) {
206 			*endpoint_id = id;
207 			return TEE_SUCCESS;
208 		}
209 	}
210 
211 	return TEE_ERROR_BAD_FORMAT;
212 }
213 
214 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
215 {
216 	TEE_Result res = TEE_SUCCESS;
217 	struct sp_ctx *spc = NULL;
218 
219 	/* Register context */
220 	spc = calloc(1, sizeof(struct sp_ctx));
221 	if (!spc)
222 		return TEE_ERROR_OUT_OF_MEMORY;
223 
224 	spc->open_session = s;
225 	s->ts_sess.ctx = &spc->ts_ctx;
226 	spc->ts_ctx.uuid = *bin_uuid;
227 
228 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
229 	if (res)
230 		goto err;
231 
232 	set_sp_ctx_ops(&spc->ts_ctx);
233 
234 #ifdef CFG_TA_PAUTH
235 	crypto_rng_read(&spc->uctx.keys, sizeof(spc->uctx.keys));
236 #endif
237 
238 	return TEE_SUCCESS;
239 
240 err:
241 	free(spc);
242 	return res;
243 }
244 
245 /*
246  * Insert a new sp_session to the sessions list, so that it is ordered
247  * by boot_order.
248  */
249 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
250 				   struct sp_session *session)
251 {
252 	struct sp_session *s = NULL;
253 
254 	if (!open_sessions || !session)
255 		return;
256 
257 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
258 		if (s->boot_order > session->boot_order)
259 			break;
260 	}
261 
262 	if (!s)
263 		TAILQ_INSERT_TAIL(open_sessions, session, link);
264 	else
265 		TAILQ_INSERT_BEFORE(s, session, link);
266 }
267 
268 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
269 				    const TEE_UUID *bin_uuid,
270 				    const uint32_t boot_order,
271 				    struct sp_session **sess)
272 {
273 	TEE_Result res = TEE_SUCCESS;
274 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
275 
276 	if (!s)
277 		return TEE_ERROR_OUT_OF_MEMORY;
278 
279 	s->boot_order = boot_order;
280 
281 	/* Other properties are filled later, based on the SP's manifest */
282 	s->props = FFA_PART_PROP_IS_PE_ID;
283 
284 	res = new_session_id(&s->endpoint_id);
285 	if (res)
286 		goto err;
287 
288 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
289 	res = sp_create_ctx(bin_uuid, s);
290 	if (res)
291 		goto err;
292 
293 	insert_session_ordered(open_sessions, s);
294 	*sess = s;
295 	return TEE_SUCCESS;
296 
297 err:
298 	free(s);
299 	return res;
300 }
301 
302 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
303 {
304 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
305 
306 	memset(sp_regs, 0, sizeof(*sp_regs));
307 	sp_regs->sp = ctx->uctx.stack_ptr;
308 	sp_regs->pc = ctx->uctx.entry_func;
309 
310 	return TEE_SUCCESS;
311 }
312 
313 TEE_Result sp_map_shared(struct sp_session *s,
314 			 struct sp_mem_receiver *receiver,
315 			 struct sp_mem *smem,
316 			 uint64_t *va)
317 {
318 	TEE_Result res = TEE_SUCCESS;
319 	struct sp_ctx *ctx = NULL;
320 	uint32_t perm = TEE_MATTR_UR;
321 	struct sp_mem_map_region *reg = NULL;
322 
323 	ctx = to_sp_ctx(s->ts_sess.ctx);
324 
325 	/* Get the permission */
326 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
327 		perm |= TEE_MATTR_UX;
328 
329 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
330 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
331 			return TEE_ERROR_ACCESS_CONFLICT;
332 
333 		perm |= TEE_MATTR_UW;
334 	}
335 	/*
336 	 * Currently we don't support passing a va. We can't guarantee that the
337 	 * full region will be mapped in a contiguous region. A smem->region can
338 	 * have multiple mobj for one share. Currently there doesn't seem to be
339 	 * an option to guarantee that these will be mapped in a contiguous va
340 	 * space.
341 	 */
342 	if (*va)
343 		return TEE_ERROR_NOT_SUPPORTED;
344 
345 	SLIST_FOREACH(reg, &smem->regions, link) {
346 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
347 			     perm, 0, reg->mobj, reg->page_offset);
348 
349 		if (res != TEE_SUCCESS) {
350 			EMSG("Failed to map memory region %#"PRIx32, res);
351 			return res;
352 		}
353 	}
354 	return TEE_SUCCESS;
355 }
356 
357 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
358 {
359 	TEE_Result res = TEE_SUCCESS;
360 	vaddr_t vaddr = 0;
361 	size_t len = 0;
362 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
363 	struct sp_mem_map_region *reg = NULL;
364 
365 	SLIST_FOREACH(reg, &smem->regions, link) {
366 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
367 					       reg->mobj);
368 		len = reg->page_count * SMALL_PAGE_SIZE;
369 
370 		res = vm_unmap(&ctx->uctx, vaddr, len);
371 		if (res != TEE_SUCCESS)
372 			return res;
373 	}
374 
375 	return TEE_SUCCESS;
376 }
377 
378 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
379 				uint64_t *value)
380 {
381 	const fdt64_t *p = NULL;
382 	int len = 0;
383 
384 	p = fdt_getprop(fdt, node, property, &len);
385 	if (!p)
386 		return TEE_ERROR_ITEM_NOT_FOUND;
387 
388 	if (len != sizeof(*p))
389 		return TEE_ERROR_BAD_FORMAT;
390 
391 	*value = fdt64_ld(p);
392 
393 	return TEE_SUCCESS;
394 }
395 
396 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
397 				uint32_t *value)
398 {
399 	const fdt32_t *p = NULL;
400 	int len = 0;
401 
402 	p = fdt_getprop(fdt, node, property, &len);
403 	if (!p)
404 		return TEE_ERROR_ITEM_NOT_FOUND;
405 
406 	if (len != sizeof(*p))
407 		return TEE_ERROR_BAD_FORMAT;
408 
409 	*value = fdt32_to_cpu(*p);
410 
411 	return TEE_SUCCESS;
412 }
413 
414 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
415 				uint16_t *value)
416 {
417 	const fdt16_t *p = NULL;
418 	int len = 0;
419 
420 	p = fdt_getprop(fdt, node, property, &len);
421 	if (!p)
422 		return TEE_ERROR_ITEM_NOT_FOUND;
423 
424 	if (len != sizeof(*p))
425 		return TEE_ERROR_BAD_FORMAT;
426 
427 	*value = fdt16_to_cpu(*p);
428 
429 	return TEE_SUCCESS;
430 }
431 
432 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
433 				 const char *property, TEE_UUID *uuid)
434 {
435 	uint32_t uuid_array[4] = { 0 };
436 	const fdt32_t *p = NULL;
437 	int len = 0;
438 	int i = 0;
439 
440 	p = fdt_getprop(fdt, node, property, &len);
441 	if (!p)
442 		return TEE_ERROR_ITEM_NOT_FOUND;
443 
444 	if (len != sizeof(TEE_UUID))
445 		return TEE_ERROR_BAD_FORMAT;
446 
447 	for (i = 0; i < 4; i++)
448 		uuid_array[i] = fdt32_to_cpu(p[i]);
449 
450 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
451 
452 	return TEE_SUCCESS;
453 }
454 
455 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
456 				   bool *is_elf_format)
457 {
458 	TEE_Result res = TEE_SUCCESS;
459 	uint32_t elf_format = 0;
460 
461 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
462 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
463 		return res;
464 
465 	*is_elf_format = (elf_format != 0);
466 
467 	return TEE_SUCCESS;
468 }
469 
470 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
471 				 const struct ts_store_ops **ops,
472 				 struct ts_store_handle **handle)
473 {
474 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
475 
476 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
477 		res = (*ops)->open(uuid, handle);
478 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
479 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
480 			break;
481 	}
482 
483 	return res;
484 }
485 
486 static TEE_Result load_binary_sp(struct ts_session *s,
487 				 struct user_mode_ctx *uctx)
488 {
489 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
490 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
491 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
492 	const struct ts_store_ops *store_ops = NULL;
493 	struct ts_store_handle *handle = NULL;
494 	TEE_Result res = TEE_SUCCESS;
495 	tee_mm_entry_t *mm = NULL;
496 	struct fobj *fobj = NULL;
497 	struct mobj *mobj = NULL;
498 	uaddr_t base_addr = 0;
499 	uint32_t vm_flags = 0;
500 	unsigned int idx = 0;
501 	vaddr_t va = 0;
502 
503 	if (!s || !uctx)
504 		return TEE_ERROR_BAD_PARAMETERS;
505 
506 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
507 
508 	/* Initialize the bounce buffer */
509 	fobj = fobj_sec_mem_alloc(bb_num_pages);
510 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
511 	fobj_put(fobj);
512 	if (!mobj)
513 		return TEE_ERROR_OUT_OF_MEMORY;
514 
515 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
516 	mobj_put(mobj);
517 	if (res)
518 		return res;
519 
520 	uctx->bbuf = (uint8_t *)va;
521 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
522 
523 	vm_set_ctx(uctx->ts_ctx);
524 
525 	/* Find TS store and open SP binary */
526 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
527 	if (res != TEE_SUCCESS) {
528 		EMSG("Failed to open SP binary");
529 		return res;
530 	}
531 
532 	/* Query binary size and calculate page count */
533 	res = store_ops->get_size(handle, &bin_size);
534 	if (res != TEE_SUCCESS)
535 		goto err;
536 
537 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
538 		res = TEE_ERROR_OVERFLOW;
539 		goto err;
540 	}
541 
542 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
543 
544 	/* Allocate memory */
545 	mm = phys_mem_ta_alloc(bin_size_rounded);
546 	if (!mm) {
547 		res = TEE_ERROR_OUT_OF_MEMORY;
548 		goto err;
549 	}
550 
551 	base_addr = tee_mm_get_smem(mm);
552 
553 	/* Create mobj */
554 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
555 	if (!mobj) {
556 		res = TEE_ERROR_OUT_OF_MEMORY;
557 		goto err_free_tee_mm;
558 	}
559 
560 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
561 	if (res)
562 		goto err_free_mobj;
563 
564 	/* Map memory area for the SP binary */
565 	va = 0;
566 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
567 		     vm_flags, mobj, 0);
568 	if (res)
569 		goto err_free_mobj;
570 
571 	/* Read SP binary into the previously mapped memory area */
572 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
573 	if (res)
574 		goto err_unmap;
575 
576 	/* Set memory protection to allow execution */
577 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
578 	if (res)
579 		goto err_unmap;
580 
581 	mobj_put(mobj);
582 	store_ops->close(handle);
583 
584 	/* The entry point must be at the beginning of the SP binary. */
585 	uctx->entry_func = va;
586 	uctx->load_addr = va;
587 	uctx->is_32bit = false;
588 
589 	s->handle_scall = s->ctx->ops->handle_scall;
590 
591 	return TEE_SUCCESS;
592 
593 err_unmap:
594 	vm_unmap(uctx, va, bin_size_rounded);
595 
596 err_free_mobj:
597 	mobj_put(mobj);
598 
599 err_free_tee_mm:
600 	tee_mm_free(mm);
601 
602 err:
603 	store_ops->close(handle);
604 
605 	return res;
606 }
607 
608 static TEE_Result sp_open_session(struct sp_session **sess,
609 				  struct sp_sessions_head *open_sessions,
610 				  const TEE_UUID *ffa_uuid,
611 				  const TEE_UUID *bin_uuid,
612 				  const uint32_t boot_order,
613 				  const void *fdt)
614 {
615 	TEE_Result res = TEE_SUCCESS;
616 	struct sp_session *s = NULL;
617 	struct sp_ctx *ctx = NULL;
618 	bool is_elf_format = false;
619 
620 	if (!find_secure_partition(bin_uuid))
621 		return TEE_ERROR_ITEM_NOT_FOUND;
622 
623 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
624 	if (res != TEE_SUCCESS) {
625 		DMSG("sp_create_session failed %#"PRIx32, res);
626 		return res;
627 	}
628 
629 	ctx = to_sp_ctx(s->ts_sess.ctx);
630 	assert(ctx);
631 	if (!ctx)
632 		return TEE_ERROR_TARGET_DEAD;
633 	*sess = s;
634 
635 	ts_push_current_session(&s->ts_sess);
636 
637 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
638 	if (res == TEE_SUCCESS) {
639 		if (is_elf_format) {
640 			/* Load the SP using ldelf. */
641 			ldelf_load_ldelf(&ctx->uctx);
642 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
643 		} else {
644 			/* Raw binary format SP */
645 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
646 		}
647 	} else {
648 		EMSG("Failed to detect SP format");
649 	}
650 
651 	if (res != TEE_SUCCESS) {
652 		EMSG("Failed loading SP  %#"PRIx32, res);
653 		ts_pop_current_session();
654 		return TEE_ERROR_TARGET_DEAD;
655 	}
656 
657 	/*
658 	 * Make the SP ready for its first run.
659 	 * Set state to busy to prevent other endpoints from sending messages to
660 	 * the SP before its boot phase is done.
661 	 */
662 	s->state = sp_busy;
663 	s->caller_id = 0;
664 	sp_init_set_registers(ctx);
665 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
666 	ts_pop_current_session();
667 
668 	return TEE_SUCCESS;
669 }
670 
671 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
672 {
673 	const struct fdt_property *description = NULL;
674 	int description_name_len = 0;
675 
676 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
677 		EMSG("Failed loading SP, manifest not found");
678 		return TEE_ERROR_BAD_PARAMETERS;
679 	}
680 
681 	description = fdt_get_property(fdt, 0, "description",
682 				       &description_name_len);
683 	if (description)
684 		DMSG("Loading SP: %s", description->data);
685 
686 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
687 		EMSG("Missing or invalid UUID in SP manifest");
688 		return TEE_ERROR_BAD_FORMAT;
689 	}
690 
691 	return TEE_SUCCESS;
692 }
693 
694 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
695 				   void **fdt_copy, size_t *mapped_size)
696 {
697 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
698 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
699 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
700 	TEE_Result res = TEE_SUCCESS;
701 	struct mobj *m = NULL;
702 	struct fobj *f = NULL;
703 	vaddr_t va = 0;
704 
705 	f = fobj_sec_mem_alloc(num_pages);
706 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
707 	fobj_put(f);
708 	if (!m)
709 		return TEE_ERROR_OUT_OF_MEMORY;
710 
711 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
712 	mobj_put(m);
713 	if (res)
714 		return res;
715 
716 	if (fdt_open_into(fdt, (void *)va, total_size))
717 		return TEE_ERROR_GENERIC;
718 
719 	*fdt_copy = (void *)va;
720 	*mapped_size = total_size;
721 
722 	return res;
723 }
724 
725 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
726 {
727 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
728 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
729 
730 	memcpy(&info->magic, "FF-A", 4);
731 	info->count = 1;
732 
733 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
734 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
735 	info->nvp[0].value = (uintptr_t)fdt;
736 	info->nvp[0].size = fdt_totalsize(fdt);
737 }
738 
739 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt, uint32_t vers)
740 {
741 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
742 	struct ffa_boot_info_header_1_1 *header =
743 		(struct ffa_boot_info_header_1_1 *)buf;
744 	struct ffa_boot_info_1_1 *desc =
745 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
746 
747 	header->signature = FFA_BOOT_INFO_SIGNATURE;
748 	header->version = vers;
749 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
750 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
751 	header->desc_count = 1;
752 	header->desc_offset = desc_offs;
753 
754 	memset(&desc[0].name, 0, sizeof(desc[0].name));
755 	/* Type: Standard boot info (bit[7] == 0), FDT type */
756 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
757 	/* Flags: Contents field contains an address */
758 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
759 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
760 	desc[0].size = fdt_totalsize(fdt);
761 	desc[0].contents = (uintptr_t)fdt;
762 }
763 
764 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
765 					   struct thread_smc_1_2_regs *args,
766 					   vaddr_t *va, size_t *mapped_size,
767 					   uint32_t sp_ffa_version)
768 {
769 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
770 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
771 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
772 	TEE_Result res = TEE_SUCCESS;
773 	struct fobj *f = NULL;
774 	struct mobj *m = NULL;
775 	uint32_t info_reg = 0;
776 
777 	f = fobj_sec_mem_alloc(num_pages);
778 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
779 	fobj_put(f);
780 	if (!m)
781 		return TEE_ERROR_OUT_OF_MEMORY;
782 
783 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
784 	mobj_put(m);
785 	if (res)
786 		return res;
787 
788 	*mapped_size = total_size;
789 
790 	switch (sp_ffa_version) {
791 	case MAKE_FFA_VERSION(1, 0):
792 		fill_boot_info_1_0(*va, fdt);
793 		break;
794 	case MAKE_FFA_VERSION(1, 1):
795 	case MAKE_FFA_VERSION(1, 2):
796 		fill_boot_info_1_1(*va, fdt, sp_ffa_version);
797 		break;
798 	default:
799 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
800 		return TEE_ERROR_NOT_SUPPORTED;
801 	}
802 
803 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
804 	if (res) {
805 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
806 			/* If the property is not present, set default to x0 */
807 			info_reg = 0;
808 		} else {
809 			return TEE_ERROR_BAD_FORMAT;
810 		}
811 	}
812 
813 	switch (info_reg) {
814 	case 0:
815 		args->a0 = *va;
816 		break;
817 	case 1:
818 		args->a1 = *va;
819 		break;
820 	case 2:
821 		args->a2 = *va;
822 		break;
823 	case 3:
824 		args->a3 = *va;
825 		break;
826 	default:
827 		EMSG("Invalid register selected for passing boot info");
828 		return TEE_ERROR_BAD_FORMAT;
829 	}
830 
831 	return TEE_SUCCESS;
832 }
833 
834 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
835 						       const void *fdt)
836 {
837 	int node = 0;
838 	int subnode = 0;
839 	tee_mm_entry_t *mm = NULL;
840 	TEE_Result res = TEE_SUCCESS;
841 
842 	/*
843 	 * Memory regions are optional in the SP manifest, it's not an error if
844 	 * we don't find any.
845 	 */
846 	node = fdt_node_offset_by_compatible(fdt, 0,
847 					     "arm,ffa-manifest-memory-regions");
848 	if (node < 0)
849 		return TEE_SUCCESS;
850 
851 	fdt_for_each_subnode(subnode, fdt, node) {
852 		uint64_t load_rel_offset = 0;
853 		uint32_t attributes = 0;
854 		uint64_t base_addr = 0;
855 		uint32_t pages_cnt = 0;
856 		uint32_t flags = 0;
857 		uint32_t perm = 0;
858 		size_t size = 0;
859 		vaddr_t va = 0;
860 
861 		mm = NULL;
862 
863 		/* Load address relative offset of a memory region */
864 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
865 				   &load_rel_offset)) {
866 			va = ctx->uctx.load_addr + load_rel_offset;
867 		} else {
868 			/* Skip non load address relative memory regions */
869 			continue;
870 		}
871 
872 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
873 			EMSG("Both base-address and load-address-relative-offset fields are set");
874 			return TEE_ERROR_BAD_FORMAT;
875 		}
876 
877 		/* Size of memory region as count of 4K pages */
878 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
879 			EMSG("Mandatory field is missing: pages-count");
880 			return TEE_ERROR_BAD_FORMAT;
881 		}
882 
883 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
884 			return TEE_ERROR_OVERFLOW;
885 
886 		/* Memory region attributes  */
887 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
888 			EMSG("Mandatory field is missing: attributes");
889 			return TEE_ERROR_BAD_FORMAT;
890 		}
891 
892 		/* Check instruction and data access permissions */
893 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
894 		case SP_MANIFEST_ATTR_RO:
895 			perm = TEE_MATTR_UR;
896 			break;
897 		case SP_MANIFEST_ATTR_RW:
898 			perm = TEE_MATTR_URW;
899 			break;
900 		case SP_MANIFEST_ATTR_RX:
901 			perm = TEE_MATTR_URX;
902 			break;
903 		default:
904 			EMSG("Invalid memory access permissions");
905 			return TEE_ERROR_BAD_FORMAT;
906 		}
907 
908 		if (IS_ENABLED(CFG_TA_BTI) &&
909 		    attributes & SP_MANIFEST_ATTR_GP) {
910 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
911 				EMSG("Guard only executable region");
912 				return TEE_ERROR_BAD_FORMAT;
913 			}
914 			perm |= TEE_MATTR_GUARDED;
915 		}
916 
917 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
918 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
919 			EMSG("Optional field with invalid value: flags");
920 			return TEE_ERROR_BAD_FORMAT;
921 		}
922 
923 		/* Load relative regions must be secure */
924 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
925 			EMSG("Invalid memory security attribute");
926 			return TEE_ERROR_BAD_FORMAT;
927 		}
928 
929 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
930 			/*
931 			 * NOBITS flag is set, which means that loaded binary
932 			 * doesn't contain this area, so it's need to be
933 			 * allocated.
934 			 */
935 			struct mobj *m = NULL;
936 			unsigned int idx = 0;
937 
938 			mm = phys_mem_ta_alloc(size);
939 			if (!mm)
940 				return TEE_ERROR_OUT_OF_MEMORY;
941 
942 			base_addr = tee_mm_get_smem(mm);
943 
944 			m = sp_mem_new_mobj(pages_cnt,
945 					    TEE_MATTR_MEM_TYPE_CACHED, true);
946 			if (!m) {
947 				res = TEE_ERROR_OUT_OF_MEMORY;
948 				goto err_mm_free;
949 			}
950 
951 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
952 			if (res) {
953 				mobj_put(m);
954 				goto err_mm_free;
955 			}
956 
957 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
958 			mobj_put(m);
959 			if (res)
960 				goto err_mm_free;
961 		} else {
962 			/*
963 			 * If NOBITS is not present the memory area is already
964 			 * mapped and only need to set the correct permissions.
965 			 */
966 			res = vm_set_prot(&ctx->uctx, va, size, perm);
967 			if (res)
968 				return res;
969 		}
970 	}
971 
972 	return TEE_SUCCESS;
973 
974 err_mm_free:
975 	tee_mm_free(mm);
976 	return res;
977 }
978 
979 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
980 {
981 	int node = 0;
982 	int subnode = 0;
983 	TEE_Result res = TEE_SUCCESS;
984 	const char *dt_device_match_table = {
985 		"arm,ffa-manifest-device-regions",
986 	};
987 
988 	/*
989 	 * Device regions are optional in the SP manifest, it's not an error if
990 	 * we don't find any
991 	 */
992 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
993 	if (node < 0)
994 		return TEE_SUCCESS;
995 
996 	fdt_for_each_subnode(subnode, fdt, node) {
997 		uint64_t base_addr = 0;
998 		uint32_t pages_cnt = 0;
999 		uint32_t attributes = 0;
1000 		struct mobj *m = NULL;
1001 		bool is_secure = true;
1002 		uint32_t perm = 0;
1003 		vaddr_t va = 0;
1004 		unsigned int idx = 0;
1005 
1006 		/*
1007 		 * Physical base address of a device MMIO region.
1008 		 * Currently only physically contiguous region is supported.
1009 		 */
1010 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
1011 			EMSG("Mandatory field is missing: base-address");
1012 			return TEE_ERROR_BAD_FORMAT;
1013 		}
1014 
1015 		/* Total size of MMIO region as count of 4K pages */
1016 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1017 			EMSG("Mandatory field is missing: pages-count");
1018 			return TEE_ERROR_BAD_FORMAT;
1019 		}
1020 
1021 		/* Data access, instruction access and security attributes */
1022 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1023 			EMSG("Mandatory field is missing: attributes");
1024 			return TEE_ERROR_BAD_FORMAT;
1025 		}
1026 
1027 		/* Check instruction and data access permissions */
1028 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1029 		case SP_MANIFEST_ATTR_RO:
1030 			perm = TEE_MATTR_UR;
1031 			break;
1032 		case SP_MANIFEST_ATTR_RW:
1033 			perm = TEE_MATTR_URW;
1034 			break;
1035 		default:
1036 			EMSG("Invalid memory access permissions");
1037 			return TEE_ERROR_BAD_FORMAT;
1038 		}
1039 
1040 		/*
1041 		 * The SP is a secure endpoint, security attribute can be
1042 		 * secure or non-secure
1043 		 */
1044 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1045 			is_secure = false;
1046 
1047 		/* Memory attributes must be Device-nGnRnE */
1048 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1049 				    is_secure);
1050 		if (!m)
1051 			return TEE_ERROR_OUT_OF_MEMORY;
1052 
1053 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1054 		if (res) {
1055 			mobj_put(m);
1056 			return res;
1057 		}
1058 
1059 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1060 			     perm, 0, m, 0);
1061 		mobj_put(m);
1062 		if (res)
1063 			return res;
1064 
1065 		/*
1066 		 * Overwrite the device region's PA in the fdt with the VA. This
1067 		 * fdt will be passed to the SP.
1068 		 */
1069 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1070 
1071 		/*
1072 		 * Unmap the region if the overwrite failed since the SP won't
1073 		 * be able to access it without knowing the VA.
1074 		 */
1075 		if (res) {
1076 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1077 			return res;
1078 		}
1079 	}
1080 
1081 	return TEE_SUCCESS;
1082 }
1083 
1084 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1085 				    uint32_t new_endpoint_id)
1086 {
1087 	struct sp_session *session = sp_get_session(endpoint_id);
1088 	uint32_t manifest_endpoint_id = 0;
1089 
1090 	/*
1091 	 * We don't know in which order the SPs are loaded. The endpoint ID
1092 	 * defined in the manifest could already be generated by
1093 	 * new_session_id() and used by another SP. If this is the case, we swap
1094 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1095 	 * not defined twice in the manifest.
1096 	 */
1097 
1098 	/* The endpoint ID was not assigned yet */
1099 	if (!session)
1100 		return TEE_SUCCESS;
1101 
1102 	/*
1103 	 * Read the manifest file from the SP who originally had the endpoint.
1104 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1105 	 * have an endpoint ID defined.
1106 	 */
1107 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1108 		assert(manifest_endpoint_id == endpoint_id);
1109 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1110 		return TEE_ERROR_ACCESS_CONFLICT;
1111 	}
1112 
1113 	session->endpoint_id = new_endpoint_id;
1114 
1115 	return TEE_SUCCESS;
1116 }
1117 
1118 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1119 {
1120 	uint32_t endpoint_id = 0;
1121 
1122 	/*
1123 	 * The endpoint ID can be optionally defined in the manifest file. We
1124 	 * have to map the ID inside the manifest to the SP if it's defined.
1125 	 * If not, the endpoint ID generated inside new_session_id() will be
1126 	 * used.
1127 	 */
1128 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1129 		TEE_Result res = TEE_ERROR_GENERIC;
1130 
1131 		if (!endpoint_id_is_valid(endpoint_id)) {
1132 			EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id);
1133 			return TEE_ERROR_BAD_FORMAT;
1134 		}
1135 
1136 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1137 		if (res)
1138 			return res;
1139 
1140 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1141 		     endpoint_id);
1142 		/* Assign the endpoint ID to the current SP */
1143 		s->endpoint_id = endpoint_id;
1144 	}
1145 	return TEE_SUCCESS;
1146 }
1147 
1148 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1149 {
1150 	int node = 0;
1151 	int subnode = 0;
1152 	tee_mm_entry_t *mm = NULL;
1153 	TEE_Result res = TEE_SUCCESS;
1154 
1155 	/*
1156 	 * Memory regions are optional in the SP manifest, it's not an error if
1157 	 * we don't find any.
1158 	 */
1159 	node = fdt_node_offset_by_compatible(fdt, 0,
1160 					     "arm,ffa-manifest-memory-regions");
1161 	if (node < 0)
1162 		return TEE_SUCCESS;
1163 
1164 	fdt_for_each_subnode(subnode, fdt, node) {
1165 		uint64_t load_rel_offset = 0;
1166 		bool alloc_needed = false;
1167 		uint32_t attributes = 0;
1168 		uint64_t base_addr = 0;
1169 		uint32_t pages_cnt = 0;
1170 		bool is_secure = true;
1171 		struct mobj *m = NULL;
1172 		unsigned int idx = 0;
1173 		uint32_t perm = 0;
1174 		size_t size = 0;
1175 		vaddr_t va = 0;
1176 
1177 		mm = NULL;
1178 
1179 		/* Load address relative offset of a memory region */
1180 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1181 				   &load_rel_offset)) {
1182 			/*
1183 			 * At this point the memory region is already mapped by
1184 			 * handle_fdt_load_relative_mem_regions.
1185 			 * Only need to set the base-address in the manifest and
1186 			 * then skip the rest of the mapping process.
1187 			 */
1188 			va = ctx->uctx.load_addr + load_rel_offset;
1189 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1190 			if (res)
1191 				return res;
1192 
1193 			continue;
1194 		}
1195 
1196 		/*
1197 		 * Base address of a memory region.
1198 		 * If not present, we have to allocate the specified memory.
1199 		 * If present, this field could specify a PA or VA. Currently
1200 		 * only a PA is supported.
1201 		 */
1202 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1203 			alloc_needed = true;
1204 
1205 		/* Size of memory region as count of 4K pages */
1206 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1207 			EMSG("Mandatory field is missing: pages-count");
1208 			return TEE_ERROR_BAD_FORMAT;
1209 		}
1210 
1211 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1212 			return TEE_ERROR_OVERFLOW;
1213 
1214 		/*
1215 		 * Memory region attributes:
1216 		 * - Instruction/data access permissions
1217 		 * - Cacheability/shareability attributes
1218 		 * - Security attributes
1219 		 *
1220 		 * Cacheability/shareability attributes can be ignored for now.
1221 		 * OP-TEE only supports a single type for normal cached memory
1222 		 * and currently there is no use case that would require to
1223 		 * change this.
1224 		 */
1225 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1226 			EMSG("Mandatory field is missing: attributes");
1227 			return TEE_ERROR_BAD_FORMAT;
1228 		}
1229 
1230 		/* Check instruction and data access permissions */
1231 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1232 		case SP_MANIFEST_ATTR_RO:
1233 			perm = TEE_MATTR_UR;
1234 			break;
1235 		case SP_MANIFEST_ATTR_RW:
1236 			perm = TEE_MATTR_URW;
1237 			break;
1238 		case SP_MANIFEST_ATTR_RX:
1239 			perm = TEE_MATTR_URX;
1240 			break;
1241 		default:
1242 			EMSG("Invalid memory access permissions");
1243 			return TEE_ERROR_BAD_FORMAT;
1244 		}
1245 
1246 		if (IS_ENABLED(CFG_TA_BTI) &&
1247 		    attributes & SP_MANIFEST_ATTR_GP) {
1248 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
1249 				EMSG("Guard only executable region");
1250 				return TEE_ERROR_BAD_FORMAT;
1251 			}
1252 			perm |= TEE_MATTR_GUARDED;
1253 		}
1254 
1255 		/*
1256 		 * The SP is a secure endpoint, security attribute can be
1257 		 * secure or non-secure.
1258 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1259 		 * address is missing this attribute must be secure.
1260 		 */
1261 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1262 			if (alloc_needed) {
1263 				EMSG("Invalid memory security attribute");
1264 				return TEE_ERROR_BAD_FORMAT;
1265 			}
1266 			is_secure = false;
1267 		}
1268 
1269 		if (alloc_needed) {
1270 			/* Base address is missing, we have to allocate */
1271 			mm = phys_mem_ta_alloc(size);
1272 			if (!mm)
1273 				return TEE_ERROR_OUT_OF_MEMORY;
1274 
1275 			base_addr = tee_mm_get_smem(mm);
1276 		}
1277 
1278 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1279 				    is_secure);
1280 		if (!m) {
1281 			res = TEE_ERROR_OUT_OF_MEMORY;
1282 			goto err_mm_free;
1283 		}
1284 
1285 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1286 		if (res) {
1287 			mobj_put(m);
1288 			goto err_mm_free;
1289 		}
1290 
1291 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1292 		mobj_put(m);
1293 		if (res)
1294 			goto err_mm_free;
1295 
1296 		/*
1297 		 * Overwrite the memory region's base address in the fdt with
1298 		 * the VA. This fdt will be passed to the SP.
1299 		 * If the base-address field was not present in the original
1300 		 * fdt, this function will create it. This doesn't cause issues
1301 		 * since the necessary extra space has been allocated when
1302 		 * opening the fdt.
1303 		 */
1304 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1305 
1306 		/*
1307 		 * Unmap the region if the overwrite failed since the SP won't
1308 		 * be able to access it without knowing the VA.
1309 		 */
1310 		if (res) {
1311 			vm_unmap(&ctx->uctx, va, size);
1312 			goto err_mm_free;
1313 		}
1314 	}
1315 
1316 	return TEE_SUCCESS;
1317 
1318 err_mm_free:
1319 	tee_mm_free(mm);
1320 	return res;
1321 }
1322 
1323 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1324 {
1325 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1326 	uint32_t dummy_size __maybe_unused = 0;
1327 	TEE_Result res = TEE_SUCCESS;
1328 	size_t page_count = 0;
1329 	struct fobj *f = NULL;
1330 	struct mobj *m = NULL;
1331 	vaddr_t log_addr = 0;
1332 	size_t log_size = 0;
1333 	int node = 0;
1334 
1335 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1336 	if (node < 0)
1337 		return TEE_SUCCESS;
1338 
1339 	/* Checking the existence and size of the event log properties */
1340 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1341 		EMSG("tpm_event_log_addr not found or has invalid size");
1342 		return TEE_ERROR_BAD_FORMAT;
1343 	}
1344 
1345 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1346 		EMSG("tpm_event_log_size not found or has invalid size");
1347 		return TEE_ERROR_BAD_FORMAT;
1348 	}
1349 
1350 	/* Validating event log */
1351 	res = tpm_get_event_log_size(&log_size);
1352 	if (res)
1353 		return res;
1354 
1355 	if (!log_size) {
1356 		EMSG("Empty TPM event log was provided");
1357 		return TEE_ERROR_ITEM_NOT_FOUND;
1358 	}
1359 
1360 	/* Allocating memory area for the event log to share with the SP */
1361 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1362 
1363 	f = fobj_sec_mem_alloc(page_count);
1364 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1365 	fobj_put(f);
1366 	if (!m)
1367 		return TEE_ERROR_OUT_OF_MEMORY;
1368 
1369 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1370 	mobj_put(m);
1371 	if (res)
1372 		return res;
1373 
1374 	/* Copy event log */
1375 	res = tpm_get_event_log((void *)log_addr, &log_size);
1376 	if (res)
1377 		goto err_unmap;
1378 
1379 	/* Setting event log details in the manifest */
1380 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1381 	if (res)
1382 		goto err_unmap;
1383 
1384 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1385 	if (res)
1386 		goto err_unmap;
1387 
1388 	return TEE_SUCCESS;
1389 
1390 err_unmap:
1391 	vm_unmap(&ctx->uctx, log_addr, log_size);
1392 
1393 	return res;
1394 }
1395 
1396 /*
1397  * Note: this function is called only on the primary CPU. It assumes that the
1398  * features present on the primary CPU are available on all of the secondary
1399  * CPUs as well.
1400  */
1401 static TEE_Result handle_hw_features(void *fdt)
1402 {
1403 	uint32_t val __maybe_unused = 0;
1404 	TEE_Result res = TEE_SUCCESS;
1405 	int node = 0;
1406 
1407 	/*
1408 	 * HW feature descriptions are optional in the SP manifest, it's not an
1409 	 * error if we don't find any.
1410 	 */
1411 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1412 	if (node < 0)
1413 		return TEE_SUCCESS;
1414 
1415 	/* Modify the crc32 property only if it's already present */
1416 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1417 		res = fdt_setprop_u32(fdt, node, "crc32",
1418 				      feat_crc32_implemented());
1419 		if (res)
1420 			return res;
1421 	}
1422 
1423 	/* Modify the property only if it's already present */
1424 	if (!sp_dt_get_u32(fdt, node, "bti", &val)) {
1425 		res = fdt_setprop_u32(fdt, node, "bti",
1426 				      feat_bti_is_implemented());
1427 		if (res)
1428 			return res;
1429 	}
1430 
1431 	/* Modify the property only if it's already present */
1432 	if (!sp_dt_get_u32(fdt, node, "pauth", &val)) {
1433 		res = fdt_setprop_u32(fdt, node, "pauth",
1434 				      feat_pauth_is_implemented());
1435 		if (res)
1436 			return res;
1437 	}
1438 
1439 	return TEE_SUCCESS;
1440 }
1441 
1442 static TEE_Result read_ns_interrupts_action(const void *fdt,
1443 					    struct sp_session *s)
1444 {
1445 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1446 
1447 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1448 
1449 	if (res) {
1450 		EMSG("Mandatory property is missing: ns-interrupts-action");
1451 		return res;
1452 	}
1453 
1454 	switch (s->ns_int_mode) {
1455 	case SP_MANIFEST_NS_INT_QUEUED:
1456 	case SP_MANIFEST_NS_INT_SIGNALED:
1457 		/* OK */
1458 		break;
1459 
1460 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1461 		EMSG("Managed exit is not implemented");
1462 		return TEE_ERROR_NOT_IMPLEMENTED;
1463 
1464 	default:
1465 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1466 		     s->ns_int_mode);
1467 		return TEE_ERROR_BAD_PARAMETERS;
1468 	}
1469 
1470 	return TEE_SUCCESS;
1471 }
1472 
1473 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s)
1474 {
1475 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1476 	uint32_t ffa_version = 0;
1477 
1478 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version);
1479 	if (res) {
1480 		EMSG("Mandatory property is missing: ffa-version");
1481 		return res;
1482 	}
1483 
1484 	if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) {
1485 		EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version);
1486 		return TEE_ERROR_BAD_PARAMETERS;
1487 	}
1488 
1489 	s->rxtx.ffa_vers = ffa_version;
1490 
1491 	return TEE_SUCCESS;
1492 }
1493 
1494 static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s)
1495 {
1496 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1497 	uint32_t exec_state = 0;
1498 
1499 	res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state);
1500 	if (res) {
1501 		EMSG("Mandatory property is missing: execution-state");
1502 		return res;
1503 	}
1504 
1505 	/* Currently only AArch64 SPs are supported */
1506 	if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) {
1507 		s->props |= FFA_PART_PROP_AARCH64_STATE;
1508 	} else {
1509 		EMSG("Invalid execution-state value: %"PRIu32, exec_state);
1510 		return TEE_ERROR_BAD_PARAMETERS;
1511 	}
1512 
1513 	return TEE_SUCCESS;
1514 }
1515 
1516 static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s)
1517 {
1518 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1519 	uint32_t msg_method = 0;
1520 
1521 	res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method);
1522 	if (res) {
1523 		EMSG("Mandatory property is missing: messaging-method");
1524 		return res;
1525 	}
1526 
1527 	if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE)
1528 		s->props |= FFA_PART_PROP_DIRECT_REQ_RECV;
1529 
1530 	if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND)
1531 		s->props |= FFA_PART_PROP_DIRECT_REQ_SEND;
1532 
1533 	if (msg_method & SP_MANIFEST_INDIRECT_REQ)
1534 		IMSG("Indirect messaging is not supported");
1535 
1536 	return TEE_SUCCESS;
1537 }
1538 
1539 static TEE_Result read_vm_availability_msg(const void *fdt,
1540 					   struct sp_session *s)
1541 {
1542 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1543 	uint32_t v = 0;
1544 
1545 	res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v);
1546 
1547 	/* This field in the manifest is optional */
1548 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1549 		return TEE_SUCCESS;
1550 
1551 	if (res)
1552 		return res;
1553 
1554 	if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) {
1555 		EMSG("Invalid vm-availability-messages value: %"PRIu32, v);
1556 		return TEE_ERROR_BAD_PARAMETERS;
1557 	}
1558 
1559 	if (v & SP_MANIFEST_VM_CREATED_MSG)
1560 		s->props |= FFA_PART_PROP_NOTIF_CREATED;
1561 
1562 	if (v & SP_MANIFEST_VM_DESTROYED_MSG)
1563 		s->props |= FFA_PART_PROP_NOTIF_DESTROYED;
1564 
1565 	return TEE_SUCCESS;
1566 }
1567 
1568 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1569 {
1570 	TEE_Result res = TEE_SUCCESS;
1571 	struct sp_session *sess = NULL;
1572 	TEE_UUID ffa_uuid = {};
1573 	uint16_t boot_order = 0;
1574 	uint32_t boot_order_arg = 0;
1575 
1576 	res = fdt_get_uuid(fdt, &ffa_uuid);
1577 	if (res)
1578 		return res;
1579 
1580 	res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order);
1581 	if (res == TEE_SUCCESS) {
1582 		boot_order_arg = boot_order;
1583 	} else if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1584 		boot_order_arg = UINT32_MAX;
1585 	} else {
1586 		EMSG("Failed reading boot-order property err:%#"PRIx32, res);
1587 		return res;
1588 	}
1589 
1590 	res = sp_open_session(&sess,
1591 			      &open_sp_sessions,
1592 			      &ffa_uuid, bin_uuid, boot_order_arg, fdt);
1593 	if (res)
1594 		return res;
1595 
1596 	sess->fdt = fdt;
1597 
1598 	res = read_manifest_endpoint_id(sess);
1599 	if (res)
1600 		return res;
1601 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1602 
1603 	res = read_ns_interrupts_action(fdt, sess);
1604 	if (res)
1605 		return res;
1606 
1607 	res = read_ffa_version(fdt, sess);
1608 	if (res)
1609 		return res;
1610 
1611 	res = read_sp_exec_state(fdt, sess);
1612 	if (res)
1613 		return res;
1614 
1615 	res = read_sp_msg_types(fdt, sess);
1616 	if (res)
1617 		return res;
1618 
1619 	res = read_vm_availability_msg(fdt, sess);
1620 	if (res)
1621 		return res;
1622 
1623 	return TEE_SUCCESS;
1624 }
1625 
1626 static TEE_Result sp_first_run(struct sp_session *sess)
1627 {
1628 	TEE_Result res = TEE_SUCCESS;
1629 	struct thread_smc_1_2_regs args = { };
1630 	struct sp_ctx *ctx = NULL;
1631 	vaddr_t boot_info_va = 0;
1632 	size_t boot_info_size = 0;
1633 	void *fdt_copy = NULL;
1634 	size_t fdt_size = 0;
1635 
1636 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1637 	ts_push_current_session(&sess->ts_sess);
1638 	sess->is_initialized = false;
1639 
1640 	/*
1641 	 * Load relative memory regions must be handled before doing any other
1642 	 * mapping to prevent conflicts in the VA space.
1643 	 */
1644 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1645 	if (res) {
1646 		ts_pop_current_session();
1647 		return res;
1648 	}
1649 
1650 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1651 	if (res)
1652 		goto out;
1653 
1654 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1655 	if (res)
1656 		goto out;
1657 
1658 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1659 	if (res)
1660 		goto out;
1661 
1662 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1663 		res = handle_tpm_event_log(ctx, fdt_copy);
1664 		if (res)
1665 			goto out;
1666 	}
1667 
1668 	res = handle_hw_features(fdt_copy);
1669 	if (res)
1670 		goto out;
1671 
1672 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1673 				       &boot_info_size, sess->rxtx.ffa_vers);
1674 	if (res)
1675 		goto out;
1676 
1677 	ts_pop_current_session();
1678 
1679 	res = sp_enter(&args, sess);
1680 	if (res) {
1681 		ts_push_current_session(&sess->ts_sess);
1682 		goto out;
1683 	}
1684 
1685 	spmc_sp_msg_handler(&args, sess);
1686 
1687 	ts_push_current_session(&sess->ts_sess);
1688 	sess->is_initialized = true;
1689 
1690 out:
1691 	/* Free the boot info page from the SP memory */
1692 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1693 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1694 	ts_pop_current_session();
1695 
1696 	return res;
1697 }
1698 
1699 TEE_Result sp_enter(struct thread_smc_1_2_regs *args, struct sp_session *sp)
1700 {
1701 	TEE_Result res = TEE_SUCCESS;
1702 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1703 
1704 	ctx->sp_regs.x[0] = args->a0;
1705 	ctx->sp_regs.x[1] = args->a1;
1706 	ctx->sp_regs.x[2] = args->a2;
1707 	ctx->sp_regs.x[3] = args->a3;
1708 	ctx->sp_regs.x[4] = args->a4;
1709 	ctx->sp_regs.x[5] = args->a5;
1710 	ctx->sp_regs.x[6] = args->a6;
1711 	ctx->sp_regs.x[7] = args->a7;
1712 #ifdef CFG_TA_PAUTH
1713 	ctx->sp_regs.apiakey_hi = ctx->uctx.keys.apia_hi;
1714 	ctx->sp_regs.apiakey_lo = ctx->uctx.keys.apia_lo;
1715 #endif
1716 
1717 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1718 
1719 	args->a0 = ctx->sp_regs.x[0];
1720 	args->a1 = ctx->sp_regs.x[1];
1721 	args->a2 = ctx->sp_regs.x[2];
1722 	args->a3 = ctx->sp_regs.x[3];
1723 	args->a4 = ctx->sp_regs.x[4];
1724 	args->a5 = ctx->sp_regs.x[5];
1725 	args->a6 = ctx->sp_regs.x[6];
1726 	args->a7 = ctx->sp_regs.x[7];
1727 
1728 	return res;
1729 }
1730 
1731 /*
1732  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1733  * active on NS interrupt than the callee, the callee must inherit the caller's
1734  * configuration.
1735  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1736  * action will be MIN([self action], [caller's action]) which is stored in the
1737  * ns_int_mode_inherited field.
1738  */
1739 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1740 						 struct ts_session *caller,
1741 						 uint64_t *cpsr)
1742 {
1743 	if (caller) {
1744 		struct sp_session *caller_sp = to_sp_session(caller);
1745 
1746 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1747 					       s->ns_int_mode);
1748 	} else {
1749 		s->ns_int_mode_inherited = s->ns_int_mode;
1750 	}
1751 
1752 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1753 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1754 				   ARM32_CPSR_F_SHIFT);
1755 	else
1756 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1757 				    ARM32_CPSR_F_SHIFT);
1758 }
1759 
1760 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1761 				      uint32_t cmd __unused)
1762 {
1763 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1764 	TEE_Result res = TEE_SUCCESS;
1765 	uint32_t exceptions = 0;
1766 	struct sp_session *sp_s = to_sp_session(s);
1767 	struct ts_session *sess = NULL;
1768 	struct thread_ctx_regs *sp_regs = NULL;
1769 	uint32_t thread_id = THREAD_ID_INVALID;
1770 	struct ts_session *caller = NULL;
1771 	uint32_t rpc_target_info = 0;
1772 	uint32_t panicked = false;
1773 	uint32_t panic_code = 0;
1774 
1775 	sp_regs = &ctx->sp_regs;
1776 	ts_push_current_session(s);
1777 
1778 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1779 
1780 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1781 	caller = ts_get_calling_session();
1782 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1783 
1784 	/*
1785 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1786 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1787 	 */
1788 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1789 	thread_id = thread_get_id();
1790 	assert(thread_id <= UINT16_MAX);
1791 	thread_get_tsd()->rpc_target_info =
1792 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1793 
1794 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1795 
1796 	/* Restore rpc_target_info */
1797 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1798 
1799 	thread_unmask_exceptions(exceptions);
1800 
1801 	thread_user_clear_vfp(&ctx->uctx);
1802 
1803 	if (panicked) {
1804 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1805 		abort_print_current_ts();
1806 
1807 		sess = ts_pop_current_session();
1808 		cpu_spin_lock(&sp_s->spinlock);
1809 		sp_s->state = sp_dead;
1810 		cpu_spin_unlock(&sp_s->spinlock);
1811 
1812 		return TEE_ERROR_TARGET_DEAD;
1813 	}
1814 
1815 	sess = ts_pop_current_session();
1816 	assert(sess == s);
1817 
1818 	return res;
1819 }
1820 
1821 /* We currently don't support 32 bits */
1822 #ifdef ARM64
1823 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1824 				   struct thread_ctx_regs *sp_regs)
1825 {
1826 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1827 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1828 	sp_regs->pc = regs->elr;
1829 	sp_regs->sp = regs->sp_el0;
1830 }
1831 #endif
1832 
1833 static bool sp_handle_scall(struct thread_scall_regs *regs)
1834 {
1835 	struct ts_session *ts = ts_get_current_session();
1836 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1837 	struct sp_session *s = uctx->open_session;
1838 
1839 	assert(s);
1840 
1841 	sp_svc_store_registers(regs, &uctx->sp_regs);
1842 
1843 	regs->x0 = 0;
1844 	regs->x1 = 0; /* panic */
1845 	regs->x2 = 0; /* panic code */
1846 
1847 	/*
1848 	 * All the registers of the SP are saved in the SP session by the SVC
1849 	 * handler.
1850 	 * We always return to S-El1 after handling the SVC. We will continue
1851 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1852 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1853 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1854 	 * afterward used by the spmc_sp_msg_handler() to handle the
1855 	 * FF-A message send by the SP.
1856 	 */
1857 	return false;
1858 }
1859 
1860 static void sp_dump_state(struct ts_ctx *ctx)
1861 {
1862 	struct sp_ctx *utc = to_sp_ctx(ctx);
1863 
1864 	if (utc->uctx.dump_entry_func) {
1865 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1866 
1867 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1868 			return;
1869 	}
1870 
1871 	user_mode_ctx_print_mappings(&utc->uctx);
1872 }
1873 
1874 static const struct ts_ops sp_ops = {
1875 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1876 	.handle_scall = sp_handle_scall,
1877 	.dump_state = sp_dump_state,
1878 };
1879 
1880 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1881 {
1882 	enum teecore_memtypes mtype = MEM_AREA_SEC_RAM_OVERALL;
1883 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1884 	struct fip_sp *sp = NULL;
1885 	uint64_t sp_fdt_end = 0;
1886 	size_t sp_pkg_size = 0;
1887 	vaddr_t sp_pkg_va = 0;
1888 
1889 	/* Process the first page which contains the SP package header */
1890 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1891 	if (!sp_pkg_va) {
1892 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1893 		return TEE_ERROR_GENERIC;
1894 	}
1895 
1896 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1897 
1898 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1899 		EMSG("Invalid SP package magic");
1900 		return TEE_ERROR_BAD_FORMAT;
1901 	}
1902 
1903 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1904 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1905 		EMSG("Invalid SP header version");
1906 		return TEE_ERROR_BAD_FORMAT;
1907 	}
1908 
1909 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1910 			 &sp_pkg_size)) {
1911 		EMSG("Invalid SP package size");
1912 		return TEE_ERROR_BAD_FORMAT;
1913 	}
1914 
1915 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1916 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1917 		EMSG("Invalid SP manifest size");
1918 		return TEE_ERROR_BAD_FORMAT;
1919 	}
1920 
1921 	/* Process the whole SP package now that the size is known */
1922 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1923 	if (!sp_pkg_va) {
1924 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1925 		return TEE_ERROR_GENERIC;
1926 	}
1927 
1928 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1929 
1930 	sp = calloc(1, sizeof(struct fip_sp));
1931 	if (!sp)
1932 		return TEE_ERROR_OUT_OF_MEMORY;
1933 
1934 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1935 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1936 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1937 	sp->sp_img.image.flags = 0;
1938 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1939 
1940 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1941 
1942 	return TEE_SUCCESS;
1943 }
1944 
1945 static TEE_Result fip_sp_init_all(void)
1946 {
1947 	TEE_Result res = TEE_SUCCESS;
1948 	uint64_t sp_pkg_addr = 0;
1949 	const void *fdt = NULL;
1950 	TEE_UUID sp_uuid = { };
1951 	int sp_pkgs_node = 0;
1952 	int subnode = 0;
1953 	int root = 0;
1954 
1955 	fdt = get_manifest_dt();
1956 	if (!fdt) {
1957 		EMSG("No SPMC manifest found");
1958 		return TEE_ERROR_GENERIC;
1959 	}
1960 
1961 	root = fdt_path_offset(fdt, "/");
1962 	if (root < 0)
1963 		return TEE_ERROR_BAD_FORMAT;
1964 
1965 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1966 		return TEE_ERROR_BAD_FORMAT;
1967 
1968 	/* SP packages are optional, it's not an error if we don't find any */
1969 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1970 	if (sp_pkgs_node < 0)
1971 		return TEE_SUCCESS;
1972 
1973 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1974 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1975 		if (res) {
1976 			EMSG("Invalid FIP SP load address");
1977 			return res;
1978 		}
1979 
1980 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1981 		if (res) {
1982 			EMSG("Invalid FIP SP uuid");
1983 			return res;
1984 		}
1985 
1986 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1987 		if (res) {
1988 			EMSG("Invalid FIP SP package");
1989 			return res;
1990 		}
1991 	}
1992 
1993 	return TEE_SUCCESS;
1994 }
1995 
1996 static void fip_sp_deinit_all(void)
1997 {
1998 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1999 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
2000 
2001 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
2002 		free(sp);
2003 	}
2004 }
2005 
2006 static TEE_Result sp_init_all(void)
2007 {
2008 	TEE_Result res = TEE_SUCCESS;
2009 	const struct sp_image *sp = NULL;
2010 	const struct fip_sp *fip_sp = NULL;
2011 	char __maybe_unused msg[60] = { '\0', };
2012 	struct sp_session *s = NULL;
2013 	struct sp_session *prev_sp = NULL;
2014 
2015 	for_each_secure_partition(sp) {
2016 		if (sp->image.uncompressed_size)
2017 			snprintf(msg, sizeof(msg),
2018 				 " (compressed, uncompressed %u)",
2019 				 sp->image.uncompressed_size);
2020 		else
2021 			msg[0] = '\0';
2022 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
2023 		     sp->image.size, msg);
2024 
2025 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2026 
2027 		if (res != TEE_SUCCESS) {
2028 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2029 			     &sp->image.uuid, res);
2030 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2031 				panic();
2032 		}
2033 	}
2034 
2035 	res = fip_sp_init_all();
2036 	if (res)
2037 		panic("Failed initializing FIP SPs");
2038 
2039 	for_each_fip_sp(fip_sp) {
2040 		sp = &fip_sp->sp_img;
2041 
2042 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
2043 		     sp->image.size);
2044 
2045 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2046 
2047 		if (res != TEE_SUCCESS) {
2048 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2049 			     &sp->image.uuid, res);
2050 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2051 				panic();
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
2057 	 * loader, so the original images (loaded by BL2) are not needed anymore
2058 	 */
2059 	fip_sp_deinit_all();
2060 
2061 	/*
2062 	 * Now that all SPs are loaded, check through the boot order values,
2063 	 * and warn in case there is a non-unique value.
2064 	 */
2065 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2066 		/* User specified boot-order values are uint16 */
2067 		if (s->boot_order > UINT16_MAX)
2068 			break;
2069 
2070 		if (prev_sp && prev_sp->boot_order == s->boot_order)
2071 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
2072 			     &prev_sp->ts_sess.ctx->uuid,
2073 			     &s->ts_sess.ctx->uuid);
2074 
2075 		prev_sp = s;
2076 	}
2077 
2078 	/* Continue the initialization and run the SP */
2079 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2080 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
2081 
2082 		res = sp_first_run(s);
2083 		if (res != TEE_SUCCESS) {
2084 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
2085 			     s->endpoint_id, res);
2086 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2087 				panic();
2088 		}
2089 	}
2090 
2091 	return TEE_SUCCESS;
2092 }
2093 
2094 boot_final(sp_init_all);
2095 
2096 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
2097 					struct ts_store_handle **h)
2098 {
2099 	return emb_ts_open(uuid, h, find_secure_partition);
2100 }
2101 
2102 REGISTER_SP_STORE(2) = {
2103 	.description = "SP store",
2104 	.open = secure_partition_open,
2105 	.get_size = emb_ts_get_size,
2106 	.get_tag = emb_ts_get_tag,
2107 	.read = emb_ts_read,
2108 	.close = emb_ts_close,
2109 };
2110