1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2024, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/boot.h> 9 #include <kernel/embedded_ts.h> 10 #include <kernel/ldelf_loader.h> 11 #include <kernel/secure_partition.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/spmc_sp_handler.h> 14 #include <kernel/thread_private.h> 15 #include <kernel/thread_spmc.h> 16 #include <kernel/tpm.h> 17 #include <kernel/ts_store.h> 18 #include <ldelf.h> 19 #include <libfdt.h> 20 #include <mm/core_mmu.h> 21 #include <mm/fobj.h> 22 #include <mm/mobj.h> 23 #include <mm/vm.h> 24 #include <optee_ffa.h> 25 #include <stdio.h> 26 #include <string.h> 27 #include <tee_api_types.h> 28 #include <tee/uuid.h> 29 #include <trace.h> 30 #include <types_ext.h> 31 #include <utee_defines.h> 32 #include <util.h> 33 #include <zlib.h> 34 35 #define BOUNCE_BUFFER_SIZE 4096 36 37 #define SP_MANIFEST_ATTR_READ BIT(0) 38 #define SP_MANIFEST_ATTR_WRITE BIT(1) 39 #define SP_MANIFEST_ATTR_EXEC BIT(2) 40 #define SP_MANIFEST_ATTR_NSEC BIT(3) 41 42 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 43 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 44 SP_MANIFEST_ATTR_WRITE) 45 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 46 SP_MANIFEST_ATTR_EXEC) 47 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 48 SP_MANIFEST_ATTR_WRITE | \ 49 SP_MANIFEST_ATTR_EXEC) 50 51 #define SP_MANIFEST_FLAG_NOBITS BIT(0) 52 53 #define SP_MANIFEST_NS_INT_QUEUED (0x0) 54 #define SP_MANIFEST_NS_INT_MANAGED_EXIT (0x1) 55 #define SP_MANIFEST_NS_INT_SIGNALED (0x2) 56 57 #define SP_PKG_HEADER_MAGIC (0x474b5053) 58 #define SP_PKG_HEADER_VERSION_V1 (0x1) 59 #define SP_PKG_HEADER_VERSION_V2 (0x2) 60 61 struct sp_pkg_header { 62 uint32_t magic; 63 uint32_t version; 64 uint32_t pm_offset; 65 uint32_t pm_size; 66 uint32_t img_offset; 67 uint32_t img_size; 68 }; 69 70 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 71 72 static const struct ts_ops sp_ops; 73 74 /* List that holds all of the loaded SP's */ 75 static struct sp_sessions_head open_sp_sessions = 76 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 77 78 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 79 { 80 const struct sp_image *sp = NULL; 81 const struct fip_sp *fip_sp = NULL; 82 83 for_each_secure_partition(sp) { 84 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 85 return &sp->image; 86 } 87 88 for_each_fip_sp(fip_sp) { 89 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 90 return &fip_sp->sp_img.image; 91 } 92 93 return NULL; 94 } 95 96 bool is_sp_ctx(struct ts_ctx *ctx) 97 { 98 return ctx && (ctx->ops == &sp_ops); 99 } 100 101 static void set_sp_ctx_ops(struct ts_ctx *ctx) 102 { 103 ctx->ops = &sp_ops; 104 } 105 106 struct sp_session *sp_get_session(uint32_t session_id) 107 { 108 struct sp_session *s = NULL; 109 110 TAILQ_FOREACH(s, &open_sp_sessions, link) { 111 if (s->endpoint_id == session_id) 112 return s; 113 } 114 115 return NULL; 116 } 117 118 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size, 119 const TEE_UUID *ffa_uuid, size_t *elem_count, 120 bool count_only) 121 { 122 TEE_Result res = TEE_SUCCESS; 123 uint32_t part_props = FFA_PART_PROP_DIRECT_REQ_RECV | 124 FFA_PART_PROP_DIRECT_REQ_SEND; 125 struct sp_session *s = NULL; 126 127 TAILQ_FOREACH(s, &open_sp_sessions, link) { 128 if (ffa_uuid && 129 memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid))) 130 continue; 131 132 if (s->state == sp_dead) 133 continue; 134 if (!count_only && !res) { 135 uint32_t uuid_words[4] = { 0 }; 136 137 tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid); 138 res = spmc_fill_partition_entry(ffa_vers, buf, buf_size, 139 *elem_count, 140 s->endpoint_id, 1, 141 part_props, uuid_words); 142 } 143 *elem_count += 1; 144 } 145 146 return res; 147 } 148 149 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 150 struct user_mode_ctx *uctx) 151 { 152 /* 153 * Check that we have access to the region if it is supposed to be 154 * mapped to the current context. 155 */ 156 if (uctx) { 157 struct vm_region *region = NULL; 158 159 /* Make sure that each mobj belongs to the SP */ 160 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 161 if (region->mobj == mem->mobj) 162 break; 163 } 164 165 if (!region) 166 return false; 167 } 168 169 /* Check that it is not shared with another SP */ 170 return !sp_mem_is_shared(mem); 171 } 172 173 static TEE_Result new_session_id(uint16_t *endpoint_id) 174 { 175 struct sp_session *session = NULL; 176 177 *endpoint_id = SPMC_ENDPOINT_ID; 178 179 /* Find the first available endpoint id */ 180 do { 181 if (*endpoint_id == UINT16_MAX) 182 return TEE_ERROR_BAD_FORMAT; 183 184 (*endpoint_id)++; 185 186 session = sp_get_session(*endpoint_id); 187 } while (session); 188 189 return TEE_SUCCESS; 190 } 191 192 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s) 193 { 194 TEE_Result res = TEE_SUCCESS; 195 struct sp_ctx *spc = NULL; 196 197 /* Register context */ 198 spc = calloc(1, sizeof(struct sp_ctx)); 199 if (!spc) 200 return TEE_ERROR_OUT_OF_MEMORY; 201 202 spc->open_session = s; 203 s->ts_sess.ctx = &spc->ts_ctx; 204 spc->ts_ctx.uuid = *bin_uuid; 205 206 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 207 if (res) 208 goto err; 209 210 set_sp_ctx_ops(&spc->ts_ctx); 211 212 return TEE_SUCCESS; 213 214 err: 215 free(spc); 216 return res; 217 } 218 219 /* 220 * Insert a new sp_session to the sessions list, so that it is ordered 221 * by boot_order. 222 */ 223 static void insert_session_ordered(struct sp_sessions_head *open_sessions, 224 struct sp_session *session) 225 { 226 struct sp_session *s = NULL; 227 228 if (!open_sessions || !session) 229 return; 230 231 TAILQ_FOREACH(s, &open_sp_sessions, link) { 232 if (s->boot_order > session->boot_order) 233 break; 234 } 235 236 if (!s) 237 TAILQ_INSERT_TAIL(open_sessions, session, link); 238 else 239 TAILQ_INSERT_BEFORE(s, session, link); 240 } 241 242 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 243 const TEE_UUID *bin_uuid, 244 const uint32_t boot_order, 245 struct sp_session **sess) 246 { 247 TEE_Result res = TEE_SUCCESS; 248 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 249 250 if (!s) 251 return TEE_ERROR_OUT_OF_MEMORY; 252 253 s->boot_order = boot_order; 254 255 res = new_session_id(&s->endpoint_id); 256 if (res) 257 goto err; 258 259 DMSG("Loading Secure Partition %pUl", (void *)bin_uuid); 260 res = sp_create_ctx(bin_uuid, s); 261 if (res) 262 goto err; 263 264 insert_session_ordered(open_sessions, s); 265 *sess = s; 266 return TEE_SUCCESS; 267 268 err: 269 free(s); 270 return res; 271 } 272 273 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 274 { 275 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 276 277 memset(sp_regs, 0, sizeof(*sp_regs)); 278 sp_regs->sp = ctx->uctx.stack_ptr; 279 sp_regs->pc = ctx->uctx.entry_func; 280 281 return TEE_SUCCESS; 282 } 283 284 TEE_Result sp_map_shared(struct sp_session *s, 285 struct sp_mem_receiver *receiver, 286 struct sp_mem *smem, 287 uint64_t *va) 288 { 289 TEE_Result res = TEE_SUCCESS; 290 struct sp_ctx *ctx = NULL; 291 uint32_t perm = TEE_MATTR_UR; 292 struct sp_mem_map_region *reg = NULL; 293 294 ctx = to_sp_ctx(s->ts_sess.ctx); 295 296 /* Get the permission */ 297 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 298 perm |= TEE_MATTR_UX; 299 300 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 301 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 302 return TEE_ERROR_ACCESS_CONFLICT; 303 304 perm |= TEE_MATTR_UW; 305 } 306 /* 307 * Currently we don't support passing a va. We can't guarantee that the 308 * full region will be mapped in a contiguous region. A smem->region can 309 * have multiple mobj for one share. Currently there doesn't seem to be 310 * an option to guarantee that these will be mapped in a contiguous va 311 * space. 312 */ 313 if (*va) 314 return TEE_ERROR_NOT_SUPPORTED; 315 316 SLIST_FOREACH(reg, &smem->regions, link) { 317 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 318 perm, 0, reg->mobj, reg->page_offset); 319 320 if (res != TEE_SUCCESS) { 321 EMSG("Failed to map memory region %#"PRIx32, res); 322 return res; 323 } 324 } 325 return TEE_SUCCESS; 326 } 327 328 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 329 { 330 TEE_Result res = TEE_SUCCESS; 331 vaddr_t vaddr = 0; 332 size_t len = 0; 333 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 334 struct sp_mem_map_region *reg = NULL; 335 336 SLIST_FOREACH(reg, &smem->regions, link) { 337 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 338 reg->mobj); 339 len = reg->page_count * SMALL_PAGE_SIZE; 340 341 res = vm_unmap(&ctx->uctx, vaddr, len); 342 if (res != TEE_SUCCESS) 343 return res; 344 } 345 346 return TEE_SUCCESS; 347 } 348 349 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 350 uint64_t *value) 351 { 352 const fdt64_t *p = NULL; 353 int len = 0; 354 355 p = fdt_getprop(fdt, node, property, &len); 356 if (!p) 357 return TEE_ERROR_ITEM_NOT_FOUND; 358 359 if (len != sizeof(*p)) 360 return TEE_ERROR_BAD_FORMAT; 361 362 *value = fdt64_ld(p); 363 364 return TEE_SUCCESS; 365 } 366 367 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 368 uint32_t *value) 369 { 370 const fdt32_t *p = NULL; 371 int len = 0; 372 373 p = fdt_getprop(fdt, node, property, &len); 374 if (!p) 375 return TEE_ERROR_ITEM_NOT_FOUND; 376 377 if (len != sizeof(*p)) 378 return TEE_ERROR_BAD_FORMAT; 379 380 *value = fdt32_to_cpu(*p); 381 382 return TEE_SUCCESS; 383 } 384 385 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property, 386 uint16_t *value) 387 { 388 const fdt16_t *p = NULL; 389 int len = 0; 390 391 p = fdt_getprop(fdt, node, property, &len); 392 if (!p) 393 return TEE_ERROR_ITEM_NOT_FOUND; 394 395 if (len != sizeof(*p)) 396 return TEE_ERROR_BAD_FORMAT; 397 398 *value = fdt16_to_cpu(*p); 399 400 return TEE_SUCCESS; 401 } 402 403 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 404 const char *property, TEE_UUID *uuid) 405 { 406 uint32_t uuid_array[4] = { 0 }; 407 const fdt32_t *p = NULL; 408 int len = 0; 409 int i = 0; 410 411 p = fdt_getprop(fdt, node, property, &len); 412 if (!p) 413 return TEE_ERROR_ITEM_NOT_FOUND; 414 415 if (len != sizeof(TEE_UUID)) 416 return TEE_ERROR_BAD_FORMAT; 417 418 for (i = 0; i < 4; i++) 419 uuid_array[i] = fdt32_to_cpu(p[i]); 420 421 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 422 423 return TEE_SUCCESS; 424 } 425 426 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node, 427 bool *is_elf_format) 428 { 429 TEE_Result res = TEE_SUCCESS; 430 uint32_t elf_format = 0; 431 432 res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format); 433 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) 434 return res; 435 436 *is_elf_format = (elf_format != 0); 437 438 return TEE_SUCCESS; 439 } 440 441 static TEE_Result sp_binary_open(const TEE_UUID *uuid, 442 const struct ts_store_ops **ops, 443 struct ts_store_handle **handle) 444 { 445 TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND; 446 447 SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) { 448 res = (*ops)->open(uuid, handle); 449 if (res != TEE_ERROR_ITEM_NOT_FOUND && 450 res != TEE_ERROR_STORAGE_NOT_AVAILABLE) 451 break; 452 } 453 454 return res; 455 } 456 457 static TEE_Result load_binary_sp(struct ts_session *s, 458 struct user_mode_ctx *uctx) 459 { 460 size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0; 461 size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE); 462 size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE; 463 const struct ts_store_ops *store_ops = NULL; 464 struct ts_store_handle *handle = NULL; 465 TEE_Result res = TEE_SUCCESS; 466 tee_mm_entry_t *mm = NULL; 467 struct fobj *fobj = NULL; 468 struct mobj *mobj = NULL; 469 uaddr_t base_addr = 0; 470 uint32_t vm_flags = 0; 471 unsigned int idx = 0; 472 vaddr_t va = 0; 473 474 if (!s || !uctx) 475 return TEE_ERROR_BAD_PARAMETERS; 476 477 DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid); 478 479 /* Initialize the bounce buffer */ 480 fobj = fobj_sec_mem_alloc(bb_num_pages); 481 mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 482 fobj_put(fobj); 483 if (!mobj) 484 return TEE_ERROR_OUT_OF_MEMORY; 485 486 res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0); 487 mobj_put(mobj); 488 if (res) 489 return res; 490 491 uctx->bbuf = (uint8_t *)va; 492 uctx->bbuf_size = BOUNCE_BUFFER_SIZE; 493 494 vm_set_ctx(uctx->ts_ctx); 495 496 /* Find TS store and open SP binary */ 497 res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle); 498 if (res != TEE_SUCCESS) { 499 EMSG("Failed to open SP binary"); 500 return res; 501 } 502 503 /* Query binary size and calculate page count */ 504 res = store_ops->get_size(handle, &bin_size); 505 if (res != TEE_SUCCESS) 506 goto err; 507 508 if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) { 509 res = TEE_ERROR_OVERFLOW; 510 goto err; 511 } 512 513 bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE; 514 515 /* Allocate memory */ 516 mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded); 517 if (!mm) { 518 res = TEE_ERROR_OUT_OF_MEMORY; 519 goto err; 520 } 521 522 base_addr = tee_mm_get_smem(mm); 523 524 /* Create mobj */ 525 mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true); 526 if (!mobj) { 527 res = TEE_ERROR_OUT_OF_MEMORY; 528 goto err_free_tee_mm; 529 } 530 531 res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count); 532 if (res) 533 goto err_free_mobj; 534 535 /* Map memory area for the SP binary */ 536 va = 0; 537 res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX, 538 vm_flags, mobj, 0); 539 if (res) 540 goto err_free_mobj; 541 542 /* Read SP binary into the previously mapped memory area */ 543 res = store_ops->read(handle, NULL, (void *)va, bin_size); 544 if (res) 545 goto err_unmap; 546 547 /* Set memory protection to allow execution */ 548 res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX); 549 if (res) 550 goto err_unmap; 551 552 mobj_put(mobj); 553 store_ops->close(handle); 554 555 /* The entry point must be at the beginning of the SP binary. */ 556 uctx->entry_func = va; 557 uctx->load_addr = va; 558 uctx->is_32bit = false; 559 560 s->handle_scall = s->ctx->ops->handle_scall; 561 562 return TEE_SUCCESS; 563 564 err_unmap: 565 vm_unmap(uctx, va, bin_size_rounded); 566 567 err_free_mobj: 568 mobj_put(mobj); 569 570 err_free_tee_mm: 571 tee_mm_free(mm); 572 573 err: 574 store_ops->close(handle); 575 576 return res; 577 } 578 579 static TEE_Result sp_open_session(struct sp_session **sess, 580 struct sp_sessions_head *open_sessions, 581 const TEE_UUID *ffa_uuid, 582 const TEE_UUID *bin_uuid, 583 const uint32_t boot_order, 584 const void *fdt) 585 { 586 TEE_Result res = TEE_SUCCESS; 587 struct sp_session *s = NULL; 588 struct sp_ctx *ctx = NULL; 589 bool is_elf_format = false; 590 591 if (!find_secure_partition(bin_uuid)) 592 return TEE_ERROR_ITEM_NOT_FOUND; 593 594 res = sp_create_session(open_sessions, bin_uuid, boot_order, &s); 595 if (res != TEE_SUCCESS) { 596 DMSG("sp_create_session failed %#"PRIx32, res); 597 return res; 598 } 599 600 ctx = to_sp_ctx(s->ts_sess.ctx); 601 assert(ctx); 602 if (!ctx) 603 return TEE_ERROR_TARGET_DEAD; 604 *sess = s; 605 606 ts_push_current_session(&s->ts_sess); 607 608 res = sp_is_elf_format(fdt, 0, &is_elf_format); 609 if (res == TEE_SUCCESS) { 610 if (is_elf_format) { 611 /* Load the SP using ldelf. */ 612 ldelf_load_ldelf(&ctx->uctx); 613 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 614 } else { 615 /* Raw binary format SP */ 616 res = load_binary_sp(&s->ts_sess, &ctx->uctx); 617 } 618 } else { 619 EMSG("Failed to detect SP format"); 620 } 621 622 if (res != TEE_SUCCESS) { 623 EMSG("Failed loading SP %#"PRIx32, res); 624 ts_pop_current_session(); 625 return TEE_ERROR_TARGET_DEAD; 626 } 627 628 /* 629 * Make the SP ready for its first run. 630 * Set state to busy to prevent other endpoints from sending messages to 631 * the SP before its boot phase is done. 632 */ 633 s->state = sp_busy; 634 s->caller_id = 0; 635 sp_init_set_registers(ctx); 636 memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)); 637 ts_pop_current_session(); 638 639 return TEE_SUCCESS; 640 } 641 642 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid) 643 { 644 const struct fdt_property *description = NULL; 645 int description_name_len = 0; 646 647 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 648 EMSG("Failed loading SP, manifest not found"); 649 return TEE_ERROR_BAD_PARAMETERS; 650 } 651 652 description = fdt_get_property(fdt, 0, "description", 653 &description_name_len); 654 if (description) 655 DMSG("Loading SP: %s", description->data); 656 657 if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) { 658 EMSG("Missing or invalid UUID in SP manifest"); 659 return TEE_ERROR_BAD_FORMAT; 660 } 661 662 return TEE_SUCCESS; 663 } 664 665 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt, 666 void **fdt_copy, size_t *mapped_size) 667 { 668 size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE); 669 size_t num_pages = total_size / SMALL_PAGE_SIZE; 670 uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; 671 TEE_Result res = TEE_SUCCESS; 672 struct mobj *m = NULL; 673 struct fobj *f = NULL; 674 vaddr_t va = 0; 675 676 f = fobj_sec_mem_alloc(num_pages); 677 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 678 fobj_put(f); 679 if (!m) 680 return TEE_ERROR_OUT_OF_MEMORY; 681 682 res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0); 683 mobj_put(m); 684 if (res) 685 return res; 686 687 if (fdt_open_into(fdt, (void *)va, total_size)) 688 return TEE_ERROR_GENERIC; 689 690 *fdt_copy = (void *)va; 691 *mapped_size = total_size; 692 693 return res; 694 } 695 696 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt) 697 { 698 struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf; 699 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 700 701 memcpy(&info->magic, "FF-A", 4); 702 info->count = 1; 703 704 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 705 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 706 info->nvp[0].value = (uintptr_t)fdt; 707 info->nvp[0].size = fdt_totalsize(fdt); 708 } 709 710 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt) 711 { 712 size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8); 713 struct ffa_boot_info_header_1_1 *header = 714 (struct ffa_boot_info_header_1_1 *)buf; 715 struct ffa_boot_info_1_1 *desc = 716 (struct ffa_boot_info_1_1 *)(buf + desc_offs); 717 718 header->signature = FFA_BOOT_INFO_SIGNATURE; 719 header->version = FFA_BOOT_INFO_VERSION; 720 header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1); 721 header->desc_size = sizeof(struct ffa_boot_info_1_1); 722 header->desc_count = 1; 723 header->desc_offset = desc_offs; 724 725 memset(&desc[0].name, 0, sizeof(desc[0].name)); 726 /* Type: Standard boot info (bit[7] == 0), FDT type */ 727 desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT; 728 /* Flags: Contents field contains an address */ 729 desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR << 730 FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT; 731 desc[0].size = fdt_totalsize(fdt); 732 desc[0].contents = (uintptr_t)fdt; 733 } 734 735 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt, 736 struct thread_smc_args *args, 737 vaddr_t *va, size_t *mapped_size, 738 uint32_t sp_ffa_version) 739 { 740 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 741 size_t num_pages = total_size / SMALL_PAGE_SIZE; 742 uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; 743 TEE_Result res = TEE_SUCCESS; 744 struct fobj *f = NULL; 745 struct mobj *m = NULL; 746 uint32_t info_reg = 0; 747 748 f = fobj_sec_mem_alloc(num_pages); 749 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 750 fobj_put(f); 751 if (!m) 752 return TEE_ERROR_OUT_OF_MEMORY; 753 754 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 755 mobj_put(m); 756 if (res) 757 return res; 758 759 *mapped_size = total_size; 760 761 switch (sp_ffa_version) { 762 case MAKE_FFA_VERSION(1, 0): 763 fill_boot_info_1_0(*va, fdt); 764 break; 765 case MAKE_FFA_VERSION(1, 1): 766 fill_boot_info_1_1(*va, fdt); 767 break; 768 default: 769 EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version); 770 return TEE_ERROR_NOT_SUPPORTED; 771 } 772 773 res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg); 774 if (res) { 775 if (res == TEE_ERROR_ITEM_NOT_FOUND) { 776 /* If the property is not present, set default to x0 */ 777 info_reg = 0; 778 } else { 779 return TEE_ERROR_BAD_FORMAT; 780 } 781 } 782 783 switch (info_reg) { 784 case 0: 785 args->a0 = *va; 786 break; 787 case 1: 788 args->a1 = *va; 789 break; 790 case 2: 791 args->a2 = *va; 792 break; 793 case 3: 794 args->a3 = *va; 795 break; 796 default: 797 EMSG("Invalid register selected for passing boot info"); 798 return TEE_ERROR_BAD_FORMAT; 799 } 800 801 return TEE_SUCCESS; 802 } 803 804 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx, 805 const void *fdt) 806 { 807 int node = 0; 808 int subnode = 0; 809 tee_mm_entry_t *mm = NULL; 810 TEE_Result res = TEE_SUCCESS; 811 812 /* 813 * Memory regions are optional in the SP manifest, it's not an error if 814 * we don't find any. 815 */ 816 node = fdt_node_offset_by_compatible(fdt, 0, 817 "arm,ffa-manifest-memory-regions"); 818 if (node < 0) 819 return TEE_SUCCESS; 820 821 fdt_for_each_subnode(subnode, fdt, node) { 822 uint64_t load_rel_offset = 0; 823 uint32_t attributes = 0; 824 uint64_t base_addr = 0; 825 uint32_t pages_cnt = 0; 826 uint32_t flags = 0; 827 uint32_t perm = 0; 828 size_t size = 0; 829 vaddr_t va = 0; 830 831 mm = NULL; 832 833 /* Load address relative offset of a memory region */ 834 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 835 &load_rel_offset)) { 836 va = ctx->uctx.load_addr + load_rel_offset; 837 } else { 838 /* Skip non load address relative memory regions */ 839 continue; 840 } 841 842 if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 843 EMSG("Both base-address and load-address-relative-offset fields are set"); 844 return TEE_ERROR_BAD_FORMAT; 845 } 846 847 /* Size of memory region as count of 4K pages */ 848 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 849 EMSG("Mandatory field is missing: pages-count"); 850 return TEE_ERROR_BAD_FORMAT; 851 } 852 853 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 854 return TEE_ERROR_OVERFLOW; 855 856 /* Memory region attributes */ 857 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 858 EMSG("Mandatory field is missing: attributes"); 859 return TEE_ERROR_BAD_FORMAT; 860 } 861 862 /* Check instruction and data access permissions */ 863 switch (attributes & SP_MANIFEST_ATTR_RWX) { 864 case SP_MANIFEST_ATTR_RO: 865 perm = TEE_MATTR_UR; 866 break; 867 case SP_MANIFEST_ATTR_RW: 868 perm = TEE_MATTR_URW; 869 break; 870 case SP_MANIFEST_ATTR_RX: 871 perm = TEE_MATTR_URX; 872 break; 873 default: 874 EMSG("Invalid memory access permissions"); 875 return TEE_ERROR_BAD_FORMAT; 876 } 877 878 res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags); 879 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) { 880 EMSG("Optional field with invalid value: flags"); 881 return TEE_ERROR_BAD_FORMAT; 882 } 883 884 /* Load relative regions must be secure */ 885 if (attributes & SP_MANIFEST_ATTR_NSEC) { 886 EMSG("Invalid memory security attribute"); 887 return TEE_ERROR_BAD_FORMAT; 888 } 889 890 if (flags & SP_MANIFEST_FLAG_NOBITS) { 891 /* 892 * NOBITS flag is set, which means that loaded binary 893 * doesn't contain this area, so it's need to be 894 * allocated. 895 */ 896 struct mobj *m = NULL; 897 unsigned int idx = 0; 898 899 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 900 if (!mm) 901 return TEE_ERROR_OUT_OF_MEMORY; 902 903 base_addr = tee_mm_get_smem(mm); 904 905 m = sp_mem_new_mobj(pages_cnt, 906 TEE_MATTR_MEM_TYPE_CACHED, true); 907 if (!m) { 908 res = TEE_ERROR_OUT_OF_MEMORY; 909 goto err_mm_free; 910 } 911 912 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 913 if (res) { 914 mobj_put(m); 915 goto err_mm_free; 916 } 917 918 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 919 mobj_put(m); 920 if (res) 921 goto err_mm_free; 922 } else { 923 /* 924 * If NOBITS is not present the memory area is already 925 * mapped and only need to set the correct permissions. 926 */ 927 res = vm_set_prot(&ctx->uctx, va, size, perm); 928 if (res) 929 return res; 930 } 931 } 932 933 return TEE_SUCCESS; 934 935 err_mm_free: 936 tee_mm_free(mm); 937 return res; 938 } 939 940 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 941 { 942 int node = 0; 943 int subnode = 0; 944 TEE_Result res = TEE_SUCCESS; 945 const char *dt_device_match_table = { 946 "arm,ffa-manifest-device-regions", 947 }; 948 949 /* 950 * Device regions are optional in the SP manifest, it's not an error if 951 * we don't find any 952 */ 953 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 954 if (node < 0) 955 return TEE_SUCCESS; 956 957 fdt_for_each_subnode(subnode, fdt, node) { 958 uint64_t base_addr = 0; 959 uint32_t pages_cnt = 0; 960 uint32_t attributes = 0; 961 struct mobj *m = NULL; 962 bool is_secure = true; 963 uint32_t perm = 0; 964 vaddr_t va = 0; 965 unsigned int idx = 0; 966 967 /* 968 * Physical base address of a device MMIO region. 969 * Currently only physically contiguous region is supported. 970 */ 971 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 972 EMSG("Mandatory field is missing: base-address"); 973 return TEE_ERROR_BAD_FORMAT; 974 } 975 976 /* Total size of MMIO region as count of 4K pages */ 977 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 978 EMSG("Mandatory field is missing: pages-count"); 979 return TEE_ERROR_BAD_FORMAT; 980 } 981 982 /* Data access, instruction access and security attributes */ 983 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 984 EMSG("Mandatory field is missing: attributes"); 985 return TEE_ERROR_BAD_FORMAT; 986 } 987 988 /* Check instruction and data access permissions */ 989 switch (attributes & SP_MANIFEST_ATTR_RWX) { 990 case SP_MANIFEST_ATTR_RO: 991 perm = TEE_MATTR_UR; 992 break; 993 case SP_MANIFEST_ATTR_RW: 994 perm = TEE_MATTR_URW; 995 break; 996 default: 997 EMSG("Invalid memory access permissions"); 998 return TEE_ERROR_BAD_FORMAT; 999 } 1000 1001 /* 1002 * The SP is a secure endpoint, security attribute can be 1003 * secure or non-secure 1004 */ 1005 if (attributes & SP_MANIFEST_ATTR_NSEC) 1006 is_secure = false; 1007 1008 /* Memory attributes must be Device-nGnRnE */ 1009 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 1010 is_secure); 1011 if (!m) 1012 return TEE_ERROR_OUT_OF_MEMORY; 1013 1014 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 1015 if (res) { 1016 mobj_put(m); 1017 return res; 1018 } 1019 1020 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 1021 perm, 0, m, 0); 1022 mobj_put(m); 1023 if (res) 1024 return res; 1025 1026 /* 1027 * Overwrite the device region's PA in the fdt with the VA. This 1028 * fdt will be passed to the SP. 1029 */ 1030 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1031 1032 /* 1033 * Unmap the region if the overwrite failed since the SP won't 1034 * be able to access it without knowing the VA. 1035 */ 1036 if (res) { 1037 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 1038 return res; 1039 } 1040 } 1041 1042 return TEE_SUCCESS; 1043 } 1044 1045 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, 1046 uint32_t new_endpoint_id) 1047 { 1048 struct sp_session *session = sp_get_session(endpoint_id); 1049 uint32_t manifest_endpoint_id = 0; 1050 1051 /* 1052 * We don't know in which order the SPs are loaded. The endpoint ID 1053 * defined in the manifest could already be generated by 1054 * new_session_id() and used by another SP. If this is the case, we swap 1055 * the ID's of the two SPs. We also have to make sure that the ID's are 1056 * not defined twice in the manifest. 1057 */ 1058 1059 /* The endpoint ID was not assigned yet */ 1060 if (!session) 1061 return TEE_SUCCESS; 1062 1063 /* 1064 * Read the manifest file from the SP who originally had the endpoint. 1065 * We can safely swap the endpoint ID's if the manifest file doesn't 1066 * have an endpoint ID defined. 1067 */ 1068 if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { 1069 assert(manifest_endpoint_id == endpoint_id); 1070 EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); 1071 return TEE_ERROR_ACCESS_CONFLICT; 1072 } 1073 1074 session->endpoint_id = new_endpoint_id; 1075 1076 return TEE_SUCCESS; 1077 } 1078 1079 static TEE_Result read_manifest_endpoint_id(struct sp_session *s) 1080 { 1081 uint32_t endpoint_id = 0; 1082 1083 /* 1084 * The endpoint ID can be optionally defined in the manifest file. We 1085 * have to map the ID inside the manifest to the SP if it's defined. 1086 * If not, the endpoint ID generated inside new_session_id() will be 1087 * used. 1088 */ 1089 if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { 1090 TEE_Result res = TEE_ERROR_GENERIC; 1091 1092 if (endpoint_id <= SPMC_ENDPOINT_ID) 1093 return TEE_ERROR_BAD_FORMAT; 1094 1095 res = swap_sp_endpoints(endpoint_id, s->endpoint_id); 1096 if (res) 1097 return res; 1098 1099 DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", 1100 endpoint_id); 1101 /* Assign the endpoint ID to the current SP */ 1102 s->endpoint_id = endpoint_id; 1103 } 1104 return TEE_SUCCESS; 1105 } 1106 1107 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 1108 { 1109 int node = 0; 1110 int subnode = 0; 1111 tee_mm_entry_t *mm = NULL; 1112 TEE_Result res = TEE_SUCCESS; 1113 1114 /* 1115 * Memory regions are optional in the SP manifest, it's not an error if 1116 * we don't find any. 1117 */ 1118 node = fdt_node_offset_by_compatible(fdt, 0, 1119 "arm,ffa-manifest-memory-regions"); 1120 if (node < 0) 1121 return TEE_SUCCESS; 1122 1123 fdt_for_each_subnode(subnode, fdt, node) { 1124 uint64_t load_rel_offset = 0; 1125 bool alloc_needed = false; 1126 uint32_t attributes = 0; 1127 uint64_t base_addr = 0; 1128 uint32_t pages_cnt = 0; 1129 bool is_secure = true; 1130 struct mobj *m = NULL; 1131 unsigned int idx = 0; 1132 uint32_t perm = 0; 1133 size_t size = 0; 1134 vaddr_t va = 0; 1135 1136 mm = NULL; 1137 1138 /* Load address relative offset of a memory region */ 1139 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 1140 &load_rel_offset)) { 1141 /* 1142 * At this point the memory region is already mapped by 1143 * handle_fdt_load_relative_mem_regions. 1144 * Only need to set the base-address in the manifest and 1145 * then skip the rest of the mapping process. 1146 */ 1147 va = ctx->uctx.load_addr + load_rel_offset; 1148 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1149 if (res) 1150 return res; 1151 1152 continue; 1153 } 1154 1155 /* 1156 * Base address of a memory region. 1157 * If not present, we have to allocate the specified memory. 1158 * If present, this field could specify a PA or VA. Currently 1159 * only a PA is supported. 1160 */ 1161 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 1162 alloc_needed = true; 1163 1164 /* Size of memory region as count of 4K pages */ 1165 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 1166 EMSG("Mandatory field is missing: pages-count"); 1167 return TEE_ERROR_BAD_FORMAT; 1168 } 1169 1170 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 1171 return TEE_ERROR_OVERFLOW; 1172 1173 /* 1174 * Memory region attributes: 1175 * - Instruction/data access permissions 1176 * - Cacheability/shareability attributes 1177 * - Security attributes 1178 * 1179 * Cacheability/shareability attributes can be ignored for now. 1180 * OP-TEE only supports a single type for normal cached memory 1181 * and currently there is no use case that would require to 1182 * change this. 1183 */ 1184 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 1185 EMSG("Mandatory field is missing: attributes"); 1186 return TEE_ERROR_BAD_FORMAT; 1187 } 1188 1189 /* Check instruction and data access permissions */ 1190 switch (attributes & SP_MANIFEST_ATTR_RWX) { 1191 case SP_MANIFEST_ATTR_RO: 1192 perm = TEE_MATTR_UR; 1193 break; 1194 case SP_MANIFEST_ATTR_RW: 1195 perm = TEE_MATTR_URW; 1196 break; 1197 case SP_MANIFEST_ATTR_RX: 1198 perm = TEE_MATTR_URX; 1199 break; 1200 default: 1201 EMSG("Invalid memory access permissions"); 1202 return TEE_ERROR_BAD_FORMAT; 1203 } 1204 1205 /* 1206 * The SP is a secure endpoint, security attribute can be 1207 * secure or non-secure. 1208 * The SPMC cannot allocate non-secure memory, i.e. if the base 1209 * address is missing this attribute must be secure. 1210 */ 1211 if (attributes & SP_MANIFEST_ATTR_NSEC) { 1212 if (alloc_needed) { 1213 EMSG("Invalid memory security attribute"); 1214 return TEE_ERROR_BAD_FORMAT; 1215 } 1216 is_secure = false; 1217 } 1218 1219 if (alloc_needed) { 1220 /* Base address is missing, we have to allocate */ 1221 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 1222 if (!mm) 1223 return TEE_ERROR_OUT_OF_MEMORY; 1224 1225 base_addr = tee_mm_get_smem(mm); 1226 } 1227 1228 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 1229 is_secure); 1230 if (!m) { 1231 res = TEE_ERROR_OUT_OF_MEMORY; 1232 goto err_mm_free; 1233 } 1234 1235 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 1236 if (res) { 1237 mobj_put(m); 1238 goto err_mm_free; 1239 } 1240 1241 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 1242 mobj_put(m); 1243 if (res) 1244 goto err_mm_free; 1245 1246 /* 1247 * Overwrite the memory region's base address in the fdt with 1248 * the VA. This fdt will be passed to the SP. 1249 * If the base-address field was not present in the original 1250 * fdt, this function will create it. This doesn't cause issues 1251 * since the necessary extra space has been allocated when 1252 * opening the fdt. 1253 */ 1254 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1255 1256 /* 1257 * Unmap the region if the overwrite failed since the SP won't 1258 * be able to access it without knowing the VA. 1259 */ 1260 if (res) { 1261 vm_unmap(&ctx->uctx, va, size); 1262 goto err_mm_free; 1263 } 1264 } 1265 1266 return TEE_SUCCESS; 1267 1268 err_mm_free: 1269 tee_mm_free(mm); 1270 return res; 1271 } 1272 1273 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 1274 { 1275 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 1276 uint32_t dummy_size __maybe_unused = 0; 1277 TEE_Result res = TEE_SUCCESS; 1278 size_t page_count = 0; 1279 struct fobj *f = NULL; 1280 struct mobj *m = NULL; 1281 vaddr_t log_addr = 0; 1282 size_t log_size = 0; 1283 int node = 0; 1284 1285 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 1286 if (node < 0) 1287 return TEE_SUCCESS; 1288 1289 /* Checking the existence and size of the event log properties */ 1290 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 1291 EMSG("tpm_event_log_addr not found or has invalid size"); 1292 return TEE_ERROR_BAD_FORMAT; 1293 } 1294 1295 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 1296 EMSG("tpm_event_log_size not found or has invalid size"); 1297 return TEE_ERROR_BAD_FORMAT; 1298 } 1299 1300 /* Validating event log */ 1301 res = tpm_get_event_log_size(&log_size); 1302 if (res) 1303 return res; 1304 1305 if (!log_size) { 1306 EMSG("Empty TPM event log was provided"); 1307 return TEE_ERROR_ITEM_NOT_FOUND; 1308 } 1309 1310 /* Allocating memory area for the event log to share with the SP */ 1311 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 1312 1313 f = fobj_sec_mem_alloc(page_count); 1314 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 1315 fobj_put(f); 1316 if (!m) 1317 return TEE_ERROR_OUT_OF_MEMORY; 1318 1319 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 1320 mobj_put(m); 1321 if (res) 1322 return res; 1323 1324 /* Copy event log */ 1325 res = tpm_get_event_log((void *)log_addr, &log_size); 1326 if (res) 1327 goto err_unmap; 1328 1329 /* Setting event log details in the manifest */ 1330 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 1331 if (res) 1332 goto err_unmap; 1333 1334 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 1335 if (res) 1336 goto err_unmap; 1337 1338 return TEE_SUCCESS; 1339 1340 err_unmap: 1341 vm_unmap(&ctx->uctx, log_addr, log_size); 1342 1343 return res; 1344 } 1345 1346 /* 1347 * Note: this function is called only on the primary CPU. It assumes that the 1348 * features present on the primary CPU are available on all of the secondary 1349 * CPUs as well. 1350 */ 1351 static TEE_Result handle_hw_features(void *fdt) 1352 { 1353 uint32_t val __maybe_unused = 0; 1354 TEE_Result res = TEE_SUCCESS; 1355 int node = 0; 1356 1357 /* 1358 * HW feature descriptions are optional in the SP manifest, it's not an 1359 * error if we don't find any. 1360 */ 1361 node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features"); 1362 if (node < 0) 1363 return TEE_SUCCESS; 1364 1365 /* Modify the crc32 property only if it's already present */ 1366 if (!sp_dt_get_u32(fdt, node, "crc32", &val)) { 1367 res = fdt_setprop_u32(fdt, node, "crc32", 1368 feat_crc32_implemented()); 1369 if (res) 1370 return res; 1371 } 1372 1373 return TEE_SUCCESS; 1374 } 1375 1376 static TEE_Result read_ns_interrupts_action(const void *fdt, 1377 struct sp_session *s) 1378 { 1379 TEE_Result res = TEE_ERROR_BAD_PARAMETERS; 1380 1381 res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode); 1382 1383 if (res) { 1384 EMSG("Mandatory property is missing: ns-interrupts-action"); 1385 return res; 1386 } 1387 1388 switch (s->ns_int_mode) { 1389 case SP_MANIFEST_NS_INT_QUEUED: 1390 case SP_MANIFEST_NS_INT_SIGNALED: 1391 /* OK */ 1392 break; 1393 1394 case SP_MANIFEST_NS_INT_MANAGED_EXIT: 1395 EMSG("Managed exit is not implemented"); 1396 return TEE_ERROR_NOT_IMPLEMENTED; 1397 1398 default: 1399 EMSG("Invalid ns-interrupts-action value: %"PRIu32, 1400 s->ns_int_mode); 1401 return TEE_ERROR_BAD_PARAMETERS; 1402 } 1403 1404 return TEE_SUCCESS; 1405 } 1406 1407 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s) 1408 { 1409 TEE_Result res = TEE_ERROR_BAD_PARAMETERS; 1410 uint32_t ffa_version = 0; 1411 1412 res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version); 1413 if (res) { 1414 EMSG("Mandatory property is missing: ffa-version"); 1415 return res; 1416 } 1417 1418 if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) { 1419 EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version); 1420 return TEE_ERROR_BAD_PARAMETERS; 1421 } 1422 1423 s->rxtx.ffa_vers = ffa_version; 1424 1425 return TEE_SUCCESS; 1426 } 1427 1428 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt) 1429 { 1430 TEE_Result res = TEE_SUCCESS; 1431 struct sp_session *sess = NULL; 1432 TEE_UUID ffa_uuid = {}; 1433 uint16_t boot_order = 0; 1434 uint32_t boot_order_arg = 0; 1435 1436 res = fdt_get_uuid(fdt, &ffa_uuid); 1437 if (res) 1438 return res; 1439 1440 res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order); 1441 if (res == TEE_SUCCESS) { 1442 boot_order_arg = boot_order; 1443 } else if (res == TEE_ERROR_ITEM_NOT_FOUND) { 1444 boot_order_arg = UINT32_MAX; 1445 } else { 1446 EMSG("Failed reading boot-order property err:%#"PRIx32, res); 1447 return res; 1448 } 1449 1450 res = sp_open_session(&sess, 1451 &open_sp_sessions, 1452 &ffa_uuid, bin_uuid, boot_order_arg, fdt); 1453 if (res) 1454 return res; 1455 1456 sess->fdt = fdt; 1457 1458 res = read_manifest_endpoint_id(sess); 1459 if (res) 1460 return res; 1461 DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); 1462 1463 res = read_ns_interrupts_action(fdt, sess); 1464 if (res) 1465 return res; 1466 1467 res = read_ffa_version(fdt, sess); 1468 if (res) 1469 return res; 1470 1471 return TEE_SUCCESS; 1472 } 1473 1474 static TEE_Result sp_first_run(struct sp_session *sess) 1475 { 1476 TEE_Result res = TEE_SUCCESS; 1477 struct thread_smc_args args = { }; 1478 struct sp_ctx *ctx = NULL; 1479 vaddr_t boot_info_va = 0; 1480 size_t boot_info_size = 0; 1481 void *fdt_copy = NULL; 1482 size_t fdt_size = 0; 1483 1484 ctx = to_sp_ctx(sess->ts_sess.ctx); 1485 ts_push_current_session(&sess->ts_sess); 1486 sess->is_initialized = false; 1487 1488 /* 1489 * Load relative memory regions must be handled before doing any other 1490 * mapping to prevent conflicts in the VA space. 1491 */ 1492 res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt); 1493 if (res) { 1494 ts_pop_current_session(); 1495 return res; 1496 } 1497 1498 res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size); 1499 if (res) 1500 goto out; 1501 1502 res = handle_fdt_dev_regions(ctx, fdt_copy); 1503 if (res) 1504 goto out; 1505 1506 res = handle_fdt_mem_regions(ctx, fdt_copy); 1507 if (res) 1508 goto out; 1509 1510 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 1511 res = handle_tpm_event_log(ctx, fdt_copy); 1512 if (res) 1513 goto out; 1514 } 1515 1516 res = handle_hw_features(fdt_copy); 1517 if (res) 1518 goto out; 1519 1520 res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va, 1521 &boot_info_size, sess->rxtx.ffa_vers); 1522 if (res) 1523 goto out; 1524 1525 ts_pop_current_session(); 1526 1527 res = sp_enter(&args, sess); 1528 if (res) { 1529 ts_push_current_session(&sess->ts_sess); 1530 goto out; 1531 } 1532 1533 spmc_sp_msg_handler(&args, sess); 1534 1535 ts_push_current_session(&sess->ts_sess); 1536 sess->is_initialized = true; 1537 1538 out: 1539 /* Free the boot info page from the SP memory */ 1540 vm_unmap(&ctx->uctx, boot_info_va, boot_info_size); 1541 vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size); 1542 ts_pop_current_session(); 1543 1544 return res; 1545 } 1546 1547 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 1548 { 1549 TEE_Result res = TEE_SUCCESS; 1550 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 1551 1552 ctx->sp_regs.x[0] = args->a0; 1553 ctx->sp_regs.x[1] = args->a1; 1554 ctx->sp_regs.x[2] = args->a2; 1555 ctx->sp_regs.x[3] = args->a3; 1556 ctx->sp_regs.x[4] = args->a4; 1557 ctx->sp_regs.x[5] = args->a5; 1558 ctx->sp_regs.x[6] = args->a6; 1559 ctx->sp_regs.x[7] = args->a7; 1560 1561 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 1562 1563 args->a0 = ctx->sp_regs.x[0]; 1564 args->a1 = ctx->sp_regs.x[1]; 1565 args->a2 = ctx->sp_regs.x[2]; 1566 args->a3 = ctx->sp_regs.x[3]; 1567 args->a4 = ctx->sp_regs.x[4]; 1568 args->a5 = ctx->sp_regs.x[5]; 1569 args->a6 = ctx->sp_regs.x[6]; 1570 args->a7 = ctx->sp_regs.x[7]; 1571 1572 return res; 1573 } 1574 1575 /* 1576 * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive 1577 * active on NS interrupt than the callee, the callee must inherit the caller's 1578 * configuration. 1579 * Each SP's own NS action setting is stored in ns_int_mode. The effective 1580 * action will be MIN([self action], [caller's action]) which is stored in the 1581 * ns_int_mode_inherited field. 1582 */ 1583 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s, 1584 struct ts_session *caller, 1585 uint64_t *cpsr) 1586 { 1587 if (caller) { 1588 struct sp_session *caller_sp = to_sp_session(caller); 1589 1590 s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited, 1591 s->ns_int_mode); 1592 } else { 1593 s->ns_int_mode_inherited = s->ns_int_mode; 1594 } 1595 1596 if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED) 1597 *cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, 1598 ARM32_CPSR_F_SHIFT); 1599 else 1600 *cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, 1601 ARM32_CPSR_F_SHIFT); 1602 } 1603 1604 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 1605 uint32_t cmd __unused) 1606 { 1607 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 1608 TEE_Result res = TEE_SUCCESS; 1609 uint32_t exceptions = 0; 1610 struct sp_session *sp_s = to_sp_session(s); 1611 struct ts_session *sess = NULL; 1612 struct thread_ctx_regs *sp_regs = NULL; 1613 uint32_t thread_id = THREAD_ID_INVALID; 1614 struct ts_session *caller = NULL; 1615 uint32_t rpc_target_info = 0; 1616 uint32_t panicked = false; 1617 uint32_t panic_code = 0; 1618 1619 bm_timestamp(); 1620 1621 sp_regs = &ctx->sp_regs; 1622 ts_push_current_session(s); 1623 1624 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 1625 1626 /* Enable/disable foreign interrupts in CPSR/SPSR */ 1627 caller = ts_get_calling_session(); 1628 sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr); 1629 1630 /* 1631 * Store endpoint ID and thread ID in rpc_target_info. This will be used 1632 * as w1 in FFA_INTERRUPT in case of a foreign interrupt. 1633 */ 1634 rpc_target_info = thread_get_tsd()->rpc_target_info; 1635 thread_id = thread_get_id(); 1636 assert(thread_id <= UINT16_MAX); 1637 thread_get_tsd()->rpc_target_info = 1638 FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id); 1639 1640 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 1641 1642 /* Restore rpc_target_info */ 1643 thread_get_tsd()->rpc_target_info = rpc_target_info; 1644 1645 thread_unmask_exceptions(exceptions); 1646 1647 thread_user_clear_vfp(&ctx->uctx); 1648 1649 if (panicked) { 1650 DMSG("SP panicked with code %#"PRIx32, panic_code); 1651 abort_print_current_ts(); 1652 1653 sess = ts_pop_current_session(); 1654 cpu_spin_lock(&sp_s->spinlock); 1655 sp_s->state = sp_dead; 1656 cpu_spin_unlock(&sp_s->spinlock); 1657 1658 return TEE_ERROR_TARGET_DEAD; 1659 } 1660 1661 sess = ts_pop_current_session(); 1662 assert(sess == s); 1663 1664 bm_timestamp(); 1665 1666 return res; 1667 } 1668 1669 /* We currently don't support 32 bits */ 1670 #ifdef ARM64 1671 static void sp_svc_store_registers(struct thread_scall_regs *regs, 1672 struct thread_ctx_regs *sp_regs) 1673 { 1674 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 1675 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 1676 sp_regs->pc = regs->elr; 1677 sp_regs->sp = regs->sp_el0; 1678 } 1679 #endif 1680 1681 static bool sp_handle_scall(struct thread_scall_regs *regs) 1682 { 1683 struct ts_session *ts = ts_get_current_session(); 1684 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 1685 struct sp_session *s = uctx->open_session; 1686 1687 assert(s); 1688 1689 sp_svc_store_registers(regs, &uctx->sp_regs); 1690 1691 regs->x0 = 0; 1692 regs->x1 = 0; /* panic */ 1693 regs->x2 = 0; /* panic code */ 1694 1695 /* 1696 * All the registers of the SP are saved in the SP session by the SVC 1697 * handler. 1698 * We always return to S-El1 after handling the SVC. We will continue 1699 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 1700 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 1701 * saved registers to the thread_smc_args. The thread_smc_args object is 1702 * afterward used by the spmc_sp_msg_handler() to handle the 1703 * FF-A message send by the SP. 1704 */ 1705 return false; 1706 } 1707 1708 static void sp_dump_state(struct ts_ctx *ctx) 1709 { 1710 struct sp_ctx *utc = to_sp_ctx(ctx); 1711 1712 if (utc->uctx.dump_entry_func) { 1713 TEE_Result res = ldelf_dump_state(&utc->uctx); 1714 1715 if (!res || res == TEE_ERROR_TARGET_DEAD) 1716 return; 1717 } 1718 1719 user_mode_ctx_print_mappings(&utc->uctx); 1720 } 1721 1722 static const struct ts_ops sp_ops = { 1723 .enter_invoke_cmd = sp_enter_invoke_cmd, 1724 .handle_scall = sp_handle_scall, 1725 .dump_state = sp_dump_state, 1726 }; 1727 1728 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1729 { 1730 enum teecore_memtypes mtype = MEM_AREA_TA_RAM; 1731 struct sp_pkg_header *sp_pkg_hdr = NULL; 1732 struct fip_sp *sp = NULL; 1733 uint64_t sp_fdt_end = 0; 1734 size_t sp_pkg_size = 0; 1735 vaddr_t sp_pkg_va = 0; 1736 1737 /* Process the first page which contains the SP package header */ 1738 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE); 1739 if (!sp_pkg_va) { 1740 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1741 return TEE_ERROR_GENERIC; 1742 } 1743 1744 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1745 1746 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1747 EMSG("Invalid SP package magic"); 1748 return TEE_ERROR_BAD_FORMAT; 1749 } 1750 1751 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 && 1752 sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) { 1753 EMSG("Invalid SP header version"); 1754 return TEE_ERROR_BAD_FORMAT; 1755 } 1756 1757 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1758 &sp_pkg_size)) { 1759 EMSG("Invalid SP package size"); 1760 return TEE_ERROR_BAD_FORMAT; 1761 } 1762 1763 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1764 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1765 EMSG("Invalid SP manifest size"); 1766 return TEE_ERROR_BAD_FORMAT; 1767 } 1768 1769 /* Process the whole SP package now that the size is known */ 1770 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size); 1771 if (!sp_pkg_va) { 1772 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1773 return TEE_ERROR_GENERIC; 1774 } 1775 1776 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1777 1778 sp = calloc(1, sizeof(struct fip_sp)); 1779 if (!sp) 1780 return TEE_ERROR_OUT_OF_MEMORY; 1781 1782 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1783 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1784 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1785 sp->sp_img.image.flags = 0; 1786 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1787 1788 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1789 1790 return TEE_SUCCESS; 1791 } 1792 1793 static TEE_Result fip_sp_init_all(void) 1794 { 1795 TEE_Result res = TEE_SUCCESS; 1796 uint64_t sp_pkg_addr = 0; 1797 const void *fdt = NULL; 1798 TEE_UUID sp_uuid = { }; 1799 int sp_pkgs_node = 0; 1800 int subnode = 0; 1801 int root = 0; 1802 1803 fdt = get_manifest_dt(); 1804 if (!fdt) { 1805 EMSG("No SPMC manifest found"); 1806 return TEE_ERROR_GENERIC; 1807 } 1808 1809 root = fdt_path_offset(fdt, "/"); 1810 if (root < 0) 1811 return TEE_ERROR_BAD_FORMAT; 1812 1813 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1814 return TEE_ERROR_BAD_FORMAT; 1815 1816 /* SP packages are optional, it's not an error if we don't find any */ 1817 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1818 if (sp_pkgs_node < 0) 1819 return TEE_SUCCESS; 1820 1821 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1822 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1823 if (res) { 1824 EMSG("Invalid FIP SP load address"); 1825 return res; 1826 } 1827 1828 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1829 if (res) { 1830 EMSG("Invalid FIP SP uuid"); 1831 return res; 1832 } 1833 1834 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1835 if (res) { 1836 EMSG("Invalid FIP SP package"); 1837 return res; 1838 } 1839 } 1840 1841 return TEE_SUCCESS; 1842 } 1843 1844 static void fip_sp_deinit_all(void) 1845 { 1846 while (!STAILQ_EMPTY(&fip_sp_list)) { 1847 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1848 1849 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1850 free(sp); 1851 } 1852 } 1853 1854 static TEE_Result sp_init_all(void) 1855 { 1856 TEE_Result res = TEE_SUCCESS; 1857 const struct sp_image *sp = NULL; 1858 const struct fip_sp *fip_sp = NULL; 1859 char __maybe_unused msg[60] = { '\0', }; 1860 struct sp_session *s = NULL; 1861 struct sp_session *prev_sp = NULL; 1862 1863 for_each_secure_partition(sp) { 1864 if (sp->image.uncompressed_size) 1865 snprintf(msg, sizeof(msg), 1866 " (compressed, uncompressed %u)", 1867 sp->image.uncompressed_size); 1868 else 1869 msg[0] = '\0'; 1870 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1871 sp->image.size, msg); 1872 1873 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1874 1875 if (res != TEE_SUCCESS) { 1876 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1877 &sp->image.uuid, res); 1878 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1879 panic(); 1880 } 1881 } 1882 1883 res = fip_sp_init_all(); 1884 if (res) 1885 panic("Failed initializing FIP SPs"); 1886 1887 for_each_fip_sp(fip_sp) { 1888 sp = &fip_sp->sp_img; 1889 1890 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1891 sp->image.size); 1892 1893 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1894 1895 if (res != TEE_SUCCESS) { 1896 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1897 &sp->image.uuid, res); 1898 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1899 panic(); 1900 } 1901 } 1902 1903 /* 1904 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP 1905 * loader, so the original images (loaded by BL2) are not needed anymore 1906 */ 1907 fip_sp_deinit_all(); 1908 1909 /* 1910 * Now that all SPs are loaded, check through the boot order values, 1911 * and warn in case there is a non-unique value. 1912 */ 1913 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1914 /* User specified boot-order values are uint16 */ 1915 if (s->boot_order > UINT16_MAX) 1916 break; 1917 1918 if (prev_sp && prev_sp->boot_order == s->boot_order) 1919 IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)", 1920 &prev_sp->ts_sess.ctx->uuid, 1921 &s->ts_sess.ctx->uuid); 1922 1923 prev_sp = s; 1924 } 1925 1926 /* Continue the initialization and run the SP */ 1927 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1928 DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id); 1929 1930 res = sp_first_run(s); 1931 if (res != TEE_SUCCESS) { 1932 EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, 1933 s->endpoint_id, res); 1934 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1935 panic(); 1936 } 1937 } 1938 1939 return TEE_SUCCESS; 1940 } 1941 1942 boot_final(sp_init_all); 1943 1944 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1945 struct ts_store_handle **h) 1946 { 1947 return emb_ts_open(uuid, h, find_secure_partition); 1948 } 1949 1950 REGISTER_SP_STORE(2) = { 1951 .description = "SP store", 1952 .open = secure_partition_open, 1953 .get_size = emb_ts_get_size, 1954 .get_tag = emb_ts_get_tag, 1955 .read = emb_ts_read, 1956 .close = emb_ts_close, 1957 }; 1958