xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 45afee9a1e5b504f13472c48b222b3a7503bb93d)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2023, Arm Limited.
4  */
5 #include <bench.h>
6 #include <crypto/crypto.h>
7 #include <initcall.h>
8 #include <kernel/boot.h>
9 #include <kernel/embedded_ts.h>
10 #include <kernel/ldelf_loader.h>
11 #include <kernel/secure_partition.h>
12 #include <kernel/spinlock.h>
13 #include <kernel/spmc_sp_handler.h>
14 #include <kernel/thread_private.h>
15 #include <kernel/thread_spmc.h>
16 #include <kernel/tpm.h>
17 #include <kernel/ts_store.h>
18 #include <ldelf.h>
19 #include <libfdt.h>
20 #include <mm/core_mmu.h>
21 #include <mm/fobj.h>
22 #include <mm/mobj.h>
23 #include <mm/vm.h>
24 #include <optee_ffa.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <tee_api_types.h>
28 #include <tee/uuid.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 #include <zlib.h>
34 
35 #define SP_MANIFEST_ATTR_READ		BIT(0)
36 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
37 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
38 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
39 
40 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
41 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
42 					 SP_MANIFEST_ATTR_WRITE)
43 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
44 					 SP_MANIFEST_ATTR_EXEC)
45 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
46 					 SP_MANIFEST_ATTR_WRITE | \
47 					 SP_MANIFEST_ATTR_EXEC)
48 
49 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
50 
51 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
52 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
53 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
54 
55 #define SP_PKG_HEADER_MAGIC (0x474b5053)
56 #define SP_PKG_HEADER_VERSION_V1 (0x1)
57 #define SP_PKG_HEADER_VERSION_V2 (0x2)
58 
59 struct sp_pkg_header {
60 	uint32_t magic;
61 	uint32_t version;
62 	uint32_t pm_offset;
63 	uint32_t pm_size;
64 	uint32_t img_offset;
65 	uint32_t img_size;
66 };
67 
68 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
69 
70 static const struct ts_ops sp_ops;
71 
72 /* List that holds all of the loaded SP's */
73 static struct sp_sessions_head open_sp_sessions =
74 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
75 
76 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
77 {
78 	const struct sp_image *sp = NULL;
79 	const struct fip_sp *fip_sp = NULL;
80 
81 	for_each_secure_partition(sp) {
82 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
83 			return &sp->image;
84 	}
85 
86 	for_each_fip_sp(fip_sp) {
87 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
88 			return &fip_sp->sp_img.image;
89 	}
90 
91 	return NULL;
92 }
93 
94 bool is_sp_ctx(struct ts_ctx *ctx)
95 {
96 	return ctx && (ctx->ops == &sp_ops);
97 }
98 
99 static void set_sp_ctx_ops(struct ts_ctx *ctx)
100 {
101 	ctx->ops = &sp_ops;
102 }
103 
104 struct sp_session *sp_get_session(uint32_t session_id)
105 {
106 	struct sp_session *s = NULL;
107 
108 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
109 		if (s->endpoint_id == session_id)
110 			return s;
111 	}
112 
113 	return NULL;
114 }
115 
116 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
117 				 const TEE_UUID *ffa_uuid, size_t *elem_count,
118 				 bool count_only)
119 {
120 	TEE_Result res = TEE_SUCCESS;
121 	uint32_t part_props = FFA_PART_PROP_DIRECT_REQ_RECV |
122 			      FFA_PART_PROP_DIRECT_REQ_SEND;
123 	struct sp_session *s = NULL;
124 
125 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
126 		if (ffa_uuid &&
127 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
128 			continue;
129 
130 		if (s->state == sp_dead)
131 			continue;
132 		if (!count_only && !res) {
133 			uint32_t uuid_words[4] = { 0 };
134 
135 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
136 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
137 							*elem_count,
138 							s->endpoint_id, 1,
139 							part_props, uuid_words);
140 		}
141 		*elem_count += 1;
142 	}
143 
144 	return res;
145 }
146 
147 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
148 			     struct user_mode_ctx *uctx)
149 {
150 	/*
151 	 * Check that we have access to the region if it is supposed to be
152 	 * mapped to the current context.
153 	 */
154 	if (uctx) {
155 		struct vm_region *region = NULL;
156 
157 		/* Make sure that each mobj belongs to the SP */
158 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
159 			if (region->mobj == mem->mobj)
160 				break;
161 		}
162 
163 		if (!region)
164 			return false;
165 	}
166 
167 	/* Check that it is not shared with another SP */
168 	return !sp_mem_is_shared(mem);
169 }
170 
171 static uint16_t new_session_id(struct sp_sessions_head *open_sessions)
172 {
173 	struct sp_session *last = NULL;
174 	uint16_t id = SPMC_ENDPOINT_ID + 1;
175 
176 	last = TAILQ_LAST(open_sessions, sp_sessions_head);
177 	if (last)
178 		id = last->endpoint_id + 1;
179 
180 	assert(id > SPMC_ENDPOINT_ID);
181 	return id;
182 }
183 
184 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
185 {
186 	TEE_Result res = TEE_SUCCESS;
187 	struct sp_ctx *spc = NULL;
188 
189 	/* Register context */
190 	spc = calloc(1, sizeof(struct sp_ctx));
191 	if (!spc)
192 		return TEE_ERROR_OUT_OF_MEMORY;
193 
194 	spc->open_session = s;
195 	s->ts_sess.ctx = &spc->ts_ctx;
196 	spc->ts_ctx.uuid = *bin_uuid;
197 
198 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
199 	if (res)
200 		goto err;
201 
202 	set_sp_ctx_ops(&spc->ts_ctx);
203 
204 	return TEE_SUCCESS;
205 
206 err:
207 	free(spc);
208 	return res;
209 }
210 
211 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
212 				    const TEE_UUID *bin_uuid,
213 				    struct sp_session **sess)
214 {
215 	TEE_Result res = TEE_SUCCESS;
216 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
217 
218 	if (!s)
219 		return TEE_ERROR_OUT_OF_MEMORY;
220 
221 	s->endpoint_id = new_session_id(open_sessions);
222 	if (!s->endpoint_id) {
223 		res = TEE_ERROR_OVERFLOW;
224 		goto err;
225 	}
226 
227 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
228 	res = sp_create_ctx(bin_uuid, s);
229 	if (res)
230 		goto err;
231 
232 	TAILQ_INSERT_TAIL(open_sessions, s, link);
233 	*sess = s;
234 	return TEE_SUCCESS;
235 
236 err:
237 	free(s);
238 	return res;
239 }
240 
241 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
242 {
243 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
244 
245 	memset(sp_regs, 0, sizeof(*sp_regs));
246 	sp_regs->sp = ctx->uctx.stack_ptr;
247 	sp_regs->pc = ctx->uctx.entry_func;
248 
249 	return TEE_SUCCESS;
250 }
251 
252 TEE_Result sp_map_shared(struct sp_session *s,
253 			 struct sp_mem_receiver *receiver,
254 			 struct sp_mem *smem,
255 			 uint64_t *va)
256 {
257 	TEE_Result res = TEE_SUCCESS;
258 	struct sp_ctx *ctx = NULL;
259 	uint32_t perm = TEE_MATTR_UR;
260 	struct sp_mem_map_region *reg = NULL;
261 
262 	ctx = to_sp_ctx(s->ts_sess.ctx);
263 
264 	/* Get the permission */
265 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
266 		perm |= TEE_MATTR_UX;
267 
268 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
269 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
270 			return TEE_ERROR_ACCESS_CONFLICT;
271 
272 		perm |= TEE_MATTR_UW;
273 	}
274 	/*
275 	 * Currently we don't support passing a va. We can't guarantee that the
276 	 * full region will be mapped in a contiguous region. A smem->region can
277 	 * have multiple mobj for one share. Currently there doesn't seem to be
278 	 * an option to guarantee that these will be mapped in a contiguous va
279 	 * space.
280 	 */
281 	if (*va)
282 		return TEE_ERROR_NOT_SUPPORTED;
283 
284 	SLIST_FOREACH(reg, &smem->regions, link) {
285 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
286 			     perm, 0, reg->mobj, reg->page_offset);
287 
288 		if (res != TEE_SUCCESS) {
289 			EMSG("Failed to map memory region %#"PRIx32, res);
290 			return res;
291 		}
292 	}
293 	return TEE_SUCCESS;
294 }
295 
296 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
297 {
298 	TEE_Result res = TEE_SUCCESS;
299 	vaddr_t vaddr = 0;
300 	size_t len = 0;
301 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
302 	struct sp_mem_map_region *reg = NULL;
303 
304 	SLIST_FOREACH(reg, &smem->regions, link) {
305 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
306 					       reg->mobj);
307 		len = reg->page_count * SMALL_PAGE_SIZE;
308 
309 		res = vm_unmap(&ctx->uctx, vaddr, len);
310 		if (res != TEE_SUCCESS)
311 			return res;
312 	}
313 
314 	return TEE_SUCCESS;
315 }
316 
317 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
318 				uint64_t *value)
319 {
320 	const fdt64_t *p = NULL;
321 	int len = 0;
322 
323 	p = fdt_getprop(fdt, node, property, &len);
324 	if (!p)
325 		return TEE_ERROR_ITEM_NOT_FOUND;
326 
327 	if (len != sizeof(*p))
328 		return TEE_ERROR_BAD_FORMAT;
329 
330 	*value = fdt64_ld(p);
331 
332 	return TEE_SUCCESS;
333 }
334 
335 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
336 				uint32_t *value)
337 {
338 	const fdt32_t *p = NULL;
339 	int len = 0;
340 
341 	p = fdt_getprop(fdt, node, property, &len);
342 	if (!p)
343 		return TEE_ERROR_ITEM_NOT_FOUND;
344 
345 	if (len != sizeof(*p))
346 		return TEE_ERROR_BAD_FORMAT;
347 
348 	*value = fdt32_to_cpu(*p);
349 
350 	return TEE_SUCCESS;
351 }
352 
353 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
354 				 const char *property, TEE_UUID *uuid)
355 {
356 	uint32_t uuid_array[4] = { 0 };
357 	const fdt32_t *p = NULL;
358 	int len = 0;
359 	int i = 0;
360 
361 	p = fdt_getprop(fdt, node, property, &len);
362 	if (!p)
363 		return TEE_ERROR_ITEM_NOT_FOUND;
364 
365 	if (len != sizeof(TEE_UUID))
366 		return TEE_ERROR_BAD_FORMAT;
367 
368 	for (i = 0; i < 4; i++)
369 		uuid_array[i] = fdt32_to_cpu(p[i]);
370 
371 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
372 
373 	return TEE_SUCCESS;
374 }
375 
376 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
377 				   bool *is_elf_format)
378 {
379 	TEE_Result res = TEE_SUCCESS;
380 	uint32_t elf_format = 0;
381 
382 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
383 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
384 		return res;
385 
386 	*is_elf_format = (elf_format != 0);
387 
388 	return TEE_SUCCESS;
389 }
390 
391 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
392 				 const struct ts_store_ops **ops,
393 				 struct ts_store_handle **handle)
394 {
395 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
396 
397 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
398 		res = (*ops)->open(uuid, handle);
399 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
400 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
401 			break;
402 	}
403 
404 	return res;
405 }
406 
407 static TEE_Result load_binary_sp(struct ts_session *s,
408 				 struct user_mode_ctx *uctx)
409 {
410 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
411 	const struct ts_store_ops *store_ops = NULL;
412 	struct ts_store_handle *handle = NULL;
413 	TEE_Result res = TEE_SUCCESS;
414 	tee_mm_entry_t *mm = NULL;
415 	struct mobj *mobj = NULL;
416 	uaddr_t base_addr = 0;
417 	uint32_t vm_flags = 0;
418 	unsigned int idx = 0;
419 	vaddr_t va = 0;
420 
421 	if (!s || !uctx)
422 		return TEE_ERROR_BAD_PARAMETERS;
423 
424 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
425 
426 	vm_set_ctx(uctx->ts_ctx);
427 
428 	/* Find TS store and open SP binary */
429 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
430 	if (res != TEE_SUCCESS) {
431 		EMSG("Failed to open SP binary");
432 		return res;
433 	}
434 
435 	/* Query binary size and calculate page count */
436 	res = store_ops->get_size(handle, &bin_size);
437 	if (res != TEE_SUCCESS)
438 		goto err;
439 
440 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
441 		res = TEE_ERROR_OVERFLOW;
442 		goto err;
443 	}
444 
445 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
446 
447 	/* Allocate memory */
448 	mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded);
449 	if (!mm) {
450 		res = TEE_ERROR_OUT_OF_MEMORY;
451 		goto err;
452 	}
453 
454 	base_addr = tee_mm_get_smem(mm);
455 
456 	/* Create mobj */
457 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
458 	if (!mobj) {
459 		res = TEE_ERROR_OUT_OF_MEMORY;
460 		goto err_free_tee_mm;
461 	}
462 
463 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
464 	if (res)
465 		goto err_free_mobj;
466 
467 	/* Map memory area for the SP binary */
468 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
469 		     vm_flags, mobj, 0);
470 	if (res)
471 		goto err_free_mobj;
472 
473 	/* Read SP binary into the previously mapped memory area */
474 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
475 	if (res)
476 		goto err_unmap;
477 
478 	/* Set memory protection to allow execution */
479 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
480 	if (res)
481 		goto err_unmap;
482 
483 	mobj_put(mobj);
484 	store_ops->close(handle);
485 
486 	/* The entry point must be at the beginning of the SP binary. */
487 	uctx->entry_func = va;
488 	uctx->load_addr = va;
489 	uctx->is_32bit = false;
490 
491 	s->handle_scall = s->ctx->ops->handle_scall;
492 
493 	return TEE_SUCCESS;
494 
495 err_unmap:
496 	vm_unmap(uctx, va, bin_size_rounded);
497 
498 err_free_mobj:
499 	mobj_put(mobj);
500 
501 err_free_tee_mm:
502 	tee_mm_free(mm);
503 
504 err:
505 	store_ops->close(handle);
506 
507 	return res;
508 }
509 
510 static TEE_Result sp_open_session(struct sp_session **sess,
511 				  struct sp_sessions_head *open_sessions,
512 				  const TEE_UUID *ffa_uuid,
513 				  const TEE_UUID *bin_uuid,
514 				  const void *fdt)
515 {
516 	TEE_Result res = TEE_SUCCESS;
517 	struct sp_session *s = NULL;
518 	struct sp_ctx *ctx = NULL;
519 	bool is_elf_format = false;
520 
521 	if (!find_secure_partition(bin_uuid))
522 		return TEE_ERROR_ITEM_NOT_FOUND;
523 
524 	res = sp_create_session(open_sessions, bin_uuid, &s);
525 	if (res != TEE_SUCCESS) {
526 		DMSG("sp_create_session failed %#"PRIx32, res);
527 		return res;
528 	}
529 
530 	ctx = to_sp_ctx(s->ts_sess.ctx);
531 	assert(ctx);
532 	if (!ctx)
533 		return TEE_ERROR_TARGET_DEAD;
534 	*sess = s;
535 
536 	ts_push_current_session(&s->ts_sess);
537 
538 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
539 	if (res == TEE_SUCCESS) {
540 		if (is_elf_format) {
541 			/* Load the SP using ldelf. */
542 			ldelf_load_ldelf(&ctx->uctx);
543 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
544 		} else {
545 			/* Raw binary format SP */
546 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
547 		}
548 	} else {
549 		EMSG("Failed to detect SP format");
550 	}
551 
552 	if (res != TEE_SUCCESS) {
553 		EMSG("Failed loading SP  %#"PRIx32, res);
554 		ts_pop_current_session();
555 		return TEE_ERROR_TARGET_DEAD;
556 	}
557 
558 	/*
559 	 * Make the SP ready for its first run.
560 	 * Set state to busy to prevent other endpoints from sending messages to
561 	 * the SP before its boot phase is done.
562 	 */
563 	s->state = sp_busy;
564 	s->caller_id = 0;
565 	sp_init_set_registers(ctx);
566 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
567 	ts_pop_current_session();
568 
569 	return TEE_SUCCESS;
570 }
571 
572 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
573 {
574 	const struct fdt_property *description = NULL;
575 	int description_name_len = 0;
576 
577 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
578 		EMSG("Failed loading SP, manifest not found");
579 		return TEE_ERROR_BAD_PARAMETERS;
580 	}
581 
582 	description = fdt_get_property(fdt, 0, "description",
583 				       &description_name_len);
584 	if (description)
585 		DMSG("Loading SP: %s", description->data);
586 
587 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
588 		EMSG("Missing or invalid UUID in SP manifest");
589 		return TEE_ERROR_BAD_FORMAT;
590 	}
591 
592 	return TEE_SUCCESS;
593 }
594 
595 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
596 				   void **fdt_copy, size_t *mapped_size)
597 {
598 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
599 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
600 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
601 	TEE_Result res = TEE_SUCCESS;
602 	struct mobj *m = NULL;
603 	struct fobj *f = NULL;
604 	vaddr_t va = 0;
605 
606 	f = fobj_sec_mem_alloc(num_pages);
607 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
608 	fobj_put(f);
609 	if (!m)
610 		return TEE_ERROR_OUT_OF_MEMORY;
611 
612 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
613 	mobj_put(m);
614 	if (res)
615 		return res;
616 
617 	if (fdt_open_into(fdt, (void *)va, total_size))
618 		return TEE_ERROR_GENERIC;
619 
620 	*fdt_copy = (void *)va;
621 	*mapped_size = total_size;
622 
623 	return res;
624 }
625 
626 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
627 {
628 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
629 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
630 
631 	memcpy(&info->magic, "FF-A", 4);
632 	info->count = 1;
633 
634 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
635 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
636 	info->nvp[0].value = (uintptr_t)fdt;
637 	info->nvp[0].size = fdt_totalsize(fdt);
638 }
639 
640 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt)
641 {
642 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
643 	struct ffa_boot_info_header_1_1 *header =
644 		(struct ffa_boot_info_header_1_1 *)buf;
645 	struct ffa_boot_info_1_1 *desc =
646 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
647 
648 	header->signature = FFA_BOOT_INFO_SIGNATURE;
649 	header->version = FFA_BOOT_INFO_VERSION;
650 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
651 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
652 	header->desc_count = 1;
653 	header->desc_offset = desc_offs;
654 
655 	memset(&desc[0].name, 0, sizeof(desc[0].name));
656 	/* Type: Standard boot info (bit[7] == 0), FDT type */
657 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
658 	/* Flags: Contents field contains an address */
659 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
660 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
661 	desc[0].size = fdt_totalsize(fdt);
662 	desc[0].contents = (uintptr_t)fdt;
663 }
664 
665 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
666 					   struct thread_smc_args *args,
667 					   vaddr_t *va, size_t *mapped_size)
668 {
669 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
670 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
671 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
672 	TEE_Result res = TEE_SUCCESS;
673 	uint32_t sp_ffa_version = 0;
674 	struct fobj *f = NULL;
675 	struct mobj *m = NULL;
676 	uint32_t info_reg = 0;
677 
678 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &sp_ffa_version);
679 	if (res)
680 		return res;
681 
682 	f = fobj_sec_mem_alloc(num_pages);
683 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
684 	fobj_put(f);
685 	if (!m)
686 		return TEE_ERROR_OUT_OF_MEMORY;
687 
688 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
689 	mobj_put(m);
690 	if (res)
691 		return res;
692 
693 	*mapped_size = total_size;
694 
695 	switch (sp_ffa_version) {
696 	case MAKE_FFA_VERSION(1, 0):
697 		fill_boot_info_1_0(*va, fdt);
698 		break;
699 	case MAKE_FFA_VERSION(1, 1):
700 		fill_boot_info_1_1(*va, fdt);
701 		break;
702 	default:
703 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
704 		return TEE_ERROR_NOT_SUPPORTED;
705 	}
706 
707 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
708 	if (res) {
709 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
710 			/* If the property is not present, set default to x0 */
711 			info_reg = 0;
712 		} else {
713 			return TEE_ERROR_BAD_FORMAT;
714 		}
715 	}
716 
717 	switch (info_reg) {
718 	case 0:
719 		args->a0 = *va;
720 		break;
721 	case 1:
722 		args->a1 = *va;
723 		break;
724 	case 2:
725 		args->a2 = *va;
726 		break;
727 	case 3:
728 		args->a3 = *va;
729 		break;
730 	default:
731 		EMSG("Invalid register selected for passing boot info");
732 		return TEE_ERROR_BAD_FORMAT;
733 	}
734 
735 	return TEE_SUCCESS;
736 }
737 
738 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
739 						       const void *fdt)
740 {
741 	int node = 0;
742 	int subnode = 0;
743 	tee_mm_entry_t *mm = NULL;
744 	TEE_Result res = TEE_SUCCESS;
745 
746 	/*
747 	 * Memory regions are optional in the SP manifest, it's not an error if
748 	 * we don't find any.
749 	 */
750 	node = fdt_node_offset_by_compatible(fdt, 0,
751 					     "arm,ffa-manifest-memory-regions");
752 	if (node < 0)
753 		return TEE_SUCCESS;
754 
755 	fdt_for_each_subnode(subnode, fdt, node) {
756 		uint64_t load_rel_offset = 0;
757 		uint32_t attributes = 0;
758 		uint64_t base_addr = 0;
759 		uint32_t pages_cnt = 0;
760 		uint32_t flags = 0;
761 		uint32_t perm = 0;
762 		size_t size = 0;
763 		vaddr_t va = 0;
764 
765 		mm = NULL;
766 
767 		/* Load address relative offset of a memory region */
768 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
769 				   &load_rel_offset)) {
770 			va = ctx->uctx.load_addr + load_rel_offset;
771 		} else {
772 			/* Skip non load address relative memory regions */
773 			continue;
774 		}
775 
776 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
777 			EMSG("Both base-address and load-address-relative-offset fields are set");
778 			return TEE_ERROR_BAD_FORMAT;
779 		}
780 
781 		/* Size of memory region as count of 4K pages */
782 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
783 			EMSG("Mandatory field is missing: pages-count");
784 			return TEE_ERROR_BAD_FORMAT;
785 		}
786 
787 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
788 			return TEE_ERROR_OVERFLOW;
789 
790 		/* Memory region attributes  */
791 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
792 			EMSG("Mandatory field is missing: attributes");
793 			return TEE_ERROR_BAD_FORMAT;
794 		}
795 
796 		/* Check instruction and data access permissions */
797 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
798 		case SP_MANIFEST_ATTR_RO:
799 			perm = TEE_MATTR_UR;
800 			break;
801 		case SP_MANIFEST_ATTR_RW:
802 			perm = TEE_MATTR_URW;
803 			break;
804 		case SP_MANIFEST_ATTR_RX:
805 			perm = TEE_MATTR_URX;
806 			break;
807 		default:
808 			EMSG("Invalid memory access permissions");
809 			return TEE_ERROR_BAD_FORMAT;
810 		}
811 
812 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
813 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
814 			EMSG("Optional field with invalid value: flags");
815 			return TEE_ERROR_BAD_FORMAT;
816 		}
817 
818 		/* Load relative regions must be secure */
819 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
820 			EMSG("Invalid memory security attribute");
821 			return TEE_ERROR_BAD_FORMAT;
822 		}
823 
824 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
825 			/*
826 			 * NOBITS flag is set, which means that loaded binary
827 			 * doesn't contain this area, so it's need to be
828 			 * allocated.
829 			 */
830 			struct mobj *m = NULL;
831 			unsigned int idx = 0;
832 
833 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
834 			if (!mm)
835 				return TEE_ERROR_OUT_OF_MEMORY;
836 
837 			base_addr = tee_mm_get_smem(mm);
838 
839 			m = sp_mem_new_mobj(pages_cnt,
840 					    TEE_MATTR_MEM_TYPE_CACHED, true);
841 			if (!m) {
842 				res = TEE_ERROR_OUT_OF_MEMORY;
843 				goto err_mm_free;
844 			}
845 
846 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
847 			if (res) {
848 				mobj_put(m);
849 				goto err_mm_free;
850 			}
851 
852 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
853 			mobj_put(m);
854 			if (res)
855 				goto err_mm_free;
856 		} else {
857 			/*
858 			 * If NOBITS is not present the memory area is already
859 			 * mapped and only need to set the correct permissions.
860 			 */
861 			res = vm_set_prot(&ctx->uctx, va, size, perm);
862 			if (res)
863 				return res;
864 		}
865 	}
866 
867 	return TEE_SUCCESS;
868 
869 err_mm_free:
870 	tee_mm_free(mm);
871 	return res;
872 }
873 
874 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
875 {
876 	int node = 0;
877 	int subnode = 0;
878 	TEE_Result res = TEE_SUCCESS;
879 	const char *dt_device_match_table = {
880 		"arm,ffa-manifest-device-regions",
881 	};
882 
883 	/*
884 	 * Device regions are optional in the SP manifest, it's not an error if
885 	 * we don't find any
886 	 */
887 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
888 	if (node < 0)
889 		return TEE_SUCCESS;
890 
891 	fdt_for_each_subnode(subnode, fdt, node) {
892 		uint64_t base_addr = 0;
893 		uint32_t pages_cnt = 0;
894 		uint32_t attributes = 0;
895 		struct mobj *m = NULL;
896 		bool is_secure = true;
897 		uint32_t perm = 0;
898 		vaddr_t va = 0;
899 		unsigned int idx = 0;
900 
901 		/*
902 		 * Physical base address of a device MMIO region.
903 		 * Currently only physically contiguous region is supported.
904 		 */
905 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
906 			EMSG("Mandatory field is missing: base-address");
907 			return TEE_ERROR_BAD_FORMAT;
908 		}
909 
910 		/* Total size of MMIO region as count of 4K pages */
911 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
912 			EMSG("Mandatory field is missing: pages-count");
913 			return TEE_ERROR_BAD_FORMAT;
914 		}
915 
916 		/* Data access, instruction access and security attributes */
917 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
918 			EMSG("Mandatory field is missing: attributes");
919 			return TEE_ERROR_BAD_FORMAT;
920 		}
921 
922 		/* Check instruction and data access permissions */
923 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
924 		case SP_MANIFEST_ATTR_RO:
925 			perm = TEE_MATTR_UR;
926 			break;
927 		case SP_MANIFEST_ATTR_RW:
928 			perm = TEE_MATTR_URW;
929 			break;
930 		default:
931 			EMSG("Invalid memory access permissions");
932 			return TEE_ERROR_BAD_FORMAT;
933 		}
934 
935 		/*
936 		 * The SP is a secure endpoint, security attribute can be
937 		 * secure or non-secure
938 		 */
939 		if (attributes & SP_MANIFEST_ATTR_NSEC)
940 			is_secure = false;
941 
942 		/* Memory attributes must be Device-nGnRnE */
943 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
944 				    is_secure);
945 		if (!m)
946 			return TEE_ERROR_OUT_OF_MEMORY;
947 
948 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
949 		if (res) {
950 			mobj_put(m);
951 			return res;
952 		}
953 
954 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
955 			     perm, 0, m, 0);
956 		mobj_put(m);
957 		if (res)
958 			return res;
959 
960 		/*
961 		 * Overwrite the device region's PA in the fdt with the VA. This
962 		 * fdt will be passed to the SP.
963 		 */
964 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
965 
966 		/*
967 		 * Unmap the region if the overwrite failed since the SP won't
968 		 * be able to access it without knowing the VA.
969 		 */
970 		if (res) {
971 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
972 			return res;
973 		}
974 	}
975 
976 	return TEE_SUCCESS;
977 }
978 
979 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
980 				    uint32_t new_endpoint_id)
981 {
982 	struct sp_session *session = sp_get_session(endpoint_id);
983 	uint32_t manifest_endpoint_id = 0;
984 
985 	/*
986 	 * We don't know in which order the SPs are loaded. The endpoint ID
987 	 * defined in the manifest could already be generated by
988 	 * new_session_id() and used by another SP. If this is the case, we swap
989 	 * the ID's of the two SPs. We also have to make sure that the ID's are
990 	 * not defined twice in the manifest.
991 	 */
992 
993 	/* The endpoint ID was not assigned yet */
994 	if (!session)
995 		return TEE_SUCCESS;
996 
997 	/*
998 	 * Read the manifest file from the SP who originally had the endpoint.
999 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1000 	 * have an endpoint ID defined.
1001 	 */
1002 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1003 		assert(manifest_endpoint_id == endpoint_id);
1004 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1005 		return TEE_ERROR_ACCESS_CONFLICT;
1006 	}
1007 
1008 	session->endpoint_id = new_endpoint_id;
1009 
1010 	return TEE_SUCCESS;
1011 }
1012 
1013 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1014 {
1015 	uint32_t endpoint_id = 0;
1016 
1017 	/*
1018 	 * The endpoint ID can be optionally defined in the manifest file. We
1019 	 * have to map the ID inside the manifest to the SP if it's defined.
1020 	 * If not, the endpoint ID generated inside new_session_id() will be
1021 	 * used.
1022 	 */
1023 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1024 		TEE_Result res = TEE_ERROR_GENERIC;
1025 
1026 		if (endpoint_id <= SPMC_ENDPOINT_ID)
1027 			return TEE_ERROR_BAD_FORMAT;
1028 
1029 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1030 		if (res)
1031 			return res;
1032 
1033 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1034 		     endpoint_id);
1035 		/* Assign the endpoint ID to the current SP */
1036 		s->endpoint_id = endpoint_id;
1037 	}
1038 	return TEE_SUCCESS;
1039 }
1040 
1041 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1042 {
1043 	int node = 0;
1044 	int subnode = 0;
1045 	tee_mm_entry_t *mm = NULL;
1046 	TEE_Result res = TEE_SUCCESS;
1047 
1048 	/*
1049 	 * Memory regions are optional in the SP manifest, it's not an error if
1050 	 * we don't find any.
1051 	 */
1052 	node = fdt_node_offset_by_compatible(fdt, 0,
1053 					     "arm,ffa-manifest-memory-regions");
1054 	if (node < 0)
1055 		return TEE_SUCCESS;
1056 
1057 	fdt_for_each_subnode(subnode, fdt, node) {
1058 		uint64_t load_rel_offset = 0;
1059 		bool alloc_needed = false;
1060 		uint32_t attributes = 0;
1061 		uint64_t base_addr = 0;
1062 		uint32_t pages_cnt = 0;
1063 		bool is_secure = true;
1064 		struct mobj *m = NULL;
1065 		unsigned int idx = 0;
1066 		uint32_t perm = 0;
1067 		size_t size = 0;
1068 		vaddr_t va = 0;
1069 
1070 		mm = NULL;
1071 
1072 		/* Load address relative offset of a memory region */
1073 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1074 				   &load_rel_offset)) {
1075 			/*
1076 			 * At this point the memory region is already mapped by
1077 			 * handle_fdt_load_relative_mem_regions.
1078 			 * Only need to set the base-address in the manifest and
1079 			 * then skip the rest of the mapping process.
1080 			 */
1081 			va = ctx->uctx.load_addr + load_rel_offset;
1082 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1083 			if (res)
1084 				return res;
1085 
1086 			continue;
1087 		}
1088 
1089 		/*
1090 		 * Base address of a memory region.
1091 		 * If not present, we have to allocate the specified memory.
1092 		 * If present, this field could specify a PA or VA. Currently
1093 		 * only a PA is supported.
1094 		 */
1095 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1096 			alloc_needed = true;
1097 
1098 		/* Size of memory region as count of 4K pages */
1099 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1100 			EMSG("Mandatory field is missing: pages-count");
1101 			return TEE_ERROR_BAD_FORMAT;
1102 		}
1103 
1104 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1105 			return TEE_ERROR_OVERFLOW;
1106 
1107 		/*
1108 		 * Memory region attributes:
1109 		 * - Instruction/data access permissions
1110 		 * - Cacheability/shareability attributes
1111 		 * - Security attributes
1112 		 *
1113 		 * Cacheability/shareability attributes can be ignored for now.
1114 		 * OP-TEE only supports a single type for normal cached memory
1115 		 * and currently there is no use case that would require to
1116 		 * change this.
1117 		 */
1118 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1119 			EMSG("Mandatory field is missing: attributes");
1120 			return TEE_ERROR_BAD_FORMAT;
1121 		}
1122 
1123 		/* Check instruction and data access permissions */
1124 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1125 		case SP_MANIFEST_ATTR_RO:
1126 			perm = TEE_MATTR_UR;
1127 			break;
1128 		case SP_MANIFEST_ATTR_RW:
1129 			perm = TEE_MATTR_URW;
1130 			break;
1131 		case SP_MANIFEST_ATTR_RX:
1132 			perm = TEE_MATTR_URX;
1133 			break;
1134 		default:
1135 			EMSG("Invalid memory access permissions");
1136 			return TEE_ERROR_BAD_FORMAT;
1137 		}
1138 
1139 		/*
1140 		 * The SP is a secure endpoint, security attribute can be
1141 		 * secure or non-secure.
1142 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1143 		 * address is missing this attribute must be secure.
1144 		 */
1145 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1146 			if (alloc_needed) {
1147 				EMSG("Invalid memory security attribute");
1148 				return TEE_ERROR_BAD_FORMAT;
1149 			}
1150 			is_secure = false;
1151 		}
1152 
1153 		if (alloc_needed) {
1154 			/* Base address is missing, we have to allocate */
1155 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
1156 			if (!mm)
1157 				return TEE_ERROR_OUT_OF_MEMORY;
1158 
1159 			base_addr = tee_mm_get_smem(mm);
1160 		}
1161 
1162 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1163 				    is_secure);
1164 		if (!m) {
1165 			res = TEE_ERROR_OUT_OF_MEMORY;
1166 			goto err_mm_free;
1167 		}
1168 
1169 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1170 		if (res) {
1171 			mobj_put(m);
1172 			goto err_mm_free;
1173 		}
1174 
1175 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1176 		mobj_put(m);
1177 		if (res)
1178 			goto err_mm_free;
1179 
1180 		/*
1181 		 * Overwrite the memory region's base address in the fdt with
1182 		 * the VA. This fdt will be passed to the SP.
1183 		 * If the base-address field was not present in the original
1184 		 * fdt, this function will create it. This doesn't cause issues
1185 		 * since the necessary extra space has been allocated when
1186 		 * opening the fdt.
1187 		 */
1188 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1189 
1190 		/*
1191 		 * Unmap the region if the overwrite failed since the SP won't
1192 		 * be able to access it without knowing the VA.
1193 		 */
1194 		if (res) {
1195 			vm_unmap(&ctx->uctx, va, size);
1196 			goto err_mm_free;
1197 		}
1198 	}
1199 
1200 	return TEE_SUCCESS;
1201 
1202 err_mm_free:
1203 	tee_mm_free(mm);
1204 	return res;
1205 }
1206 
1207 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1208 {
1209 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1210 	uint32_t dummy_size __maybe_unused = 0;
1211 	TEE_Result res = TEE_SUCCESS;
1212 	size_t page_count = 0;
1213 	struct fobj *f = NULL;
1214 	struct mobj *m = NULL;
1215 	vaddr_t log_addr = 0;
1216 	size_t log_size = 0;
1217 	int node = 0;
1218 
1219 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1220 	if (node < 0)
1221 		return TEE_SUCCESS;
1222 
1223 	/* Checking the existence and size of the event log properties */
1224 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1225 		EMSG("tpm_event_log_addr not found or has invalid size");
1226 		return TEE_ERROR_BAD_FORMAT;
1227 	}
1228 
1229 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1230 		EMSG("tpm_event_log_size not found or has invalid size");
1231 		return TEE_ERROR_BAD_FORMAT;
1232 	}
1233 
1234 	/* Validating event log */
1235 	res = tpm_get_event_log_size(&log_size);
1236 	if (res)
1237 		return res;
1238 
1239 	if (!log_size) {
1240 		EMSG("Empty TPM event log was provided");
1241 		return TEE_ERROR_ITEM_NOT_FOUND;
1242 	}
1243 
1244 	/* Allocating memory area for the event log to share with the SP */
1245 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1246 
1247 	f = fobj_sec_mem_alloc(page_count);
1248 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1249 	fobj_put(f);
1250 	if (!m)
1251 		return TEE_ERROR_OUT_OF_MEMORY;
1252 
1253 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1254 	mobj_put(m);
1255 	if (res)
1256 		return res;
1257 
1258 	/* Copy event log */
1259 	res = tpm_get_event_log((void *)log_addr, &log_size);
1260 	if (res)
1261 		goto err_unmap;
1262 
1263 	/* Setting event log details in the manifest */
1264 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1265 	if (res)
1266 		goto err_unmap;
1267 
1268 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1269 	if (res)
1270 		goto err_unmap;
1271 
1272 	return TEE_SUCCESS;
1273 
1274 err_unmap:
1275 	vm_unmap(&ctx->uctx, log_addr, log_size);
1276 
1277 	return res;
1278 }
1279 
1280 /*
1281  * Note: this function is called only on the primary CPU. It assumes that the
1282  * features present on the primary CPU are available on all of the secondary
1283  * CPUs as well.
1284  */
1285 static TEE_Result handle_hw_features(void *fdt)
1286 {
1287 	uint32_t val __maybe_unused = 0;
1288 	TEE_Result res = TEE_SUCCESS;
1289 	int node = 0;
1290 
1291 	/*
1292 	 * HW feature descriptions are optional in the SP manifest, it's not an
1293 	 * error if we don't find any.
1294 	 */
1295 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1296 	if (node < 0)
1297 		return TEE_SUCCESS;
1298 
1299 	/* Modify the crc32 property only if it's already present */
1300 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1301 		res = fdt_setprop_u32(fdt, node, "crc32",
1302 				      feat_crc32_implemented());
1303 		if (res)
1304 			return res;
1305 	}
1306 
1307 	return TEE_SUCCESS;
1308 }
1309 
1310 static TEE_Result read_ns_interrupts_action(const void *fdt,
1311 					    struct sp_session *s)
1312 {
1313 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1314 
1315 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1316 
1317 	if (res) {
1318 		EMSG("Mandatory property is missing: ns-interrupts-action");
1319 		return res;
1320 	}
1321 
1322 	switch (s->ns_int_mode) {
1323 	case SP_MANIFEST_NS_INT_QUEUED:
1324 	case SP_MANIFEST_NS_INT_SIGNALED:
1325 		/* OK */
1326 		break;
1327 
1328 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1329 		EMSG("Managed exit is not implemented");
1330 		return TEE_ERROR_NOT_IMPLEMENTED;
1331 
1332 	default:
1333 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1334 		     s->ns_int_mode);
1335 		return TEE_ERROR_BAD_PARAMETERS;
1336 	}
1337 
1338 	return TEE_SUCCESS;
1339 }
1340 
1341 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1342 {
1343 	TEE_Result res = TEE_SUCCESS;
1344 	struct sp_session *sess = NULL;
1345 	TEE_UUID ffa_uuid = {};
1346 
1347 	res = fdt_get_uuid(fdt, &ffa_uuid);
1348 	if (res)
1349 		return res;
1350 
1351 	res = sp_open_session(&sess,
1352 			      &open_sp_sessions,
1353 			      &ffa_uuid, bin_uuid, fdt);
1354 	if (res)
1355 		return res;
1356 
1357 	sess->fdt = fdt;
1358 	res = read_manifest_endpoint_id(sess);
1359 	if (res)
1360 		return res;
1361 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1362 
1363 	res = read_ns_interrupts_action(fdt, sess);
1364 	if (res)
1365 		return res;
1366 
1367 	return TEE_SUCCESS;
1368 }
1369 
1370 static TEE_Result sp_first_run(struct sp_session *sess)
1371 {
1372 	TEE_Result res = TEE_SUCCESS;
1373 	struct thread_smc_args args = { };
1374 	struct sp_ctx *ctx = NULL;
1375 	vaddr_t boot_info_va = 0;
1376 	size_t boot_info_size = 0;
1377 	void *fdt_copy = NULL;
1378 	size_t fdt_size = 0;
1379 
1380 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1381 	ts_push_current_session(&sess->ts_sess);
1382 	sess->is_initialized = false;
1383 
1384 	/*
1385 	 * Load relative memory regions must be handled before doing any other
1386 	 * mapping to prevent conflicts in the VA space.
1387 	 */
1388 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1389 	if (res) {
1390 		ts_pop_current_session();
1391 		return res;
1392 	}
1393 
1394 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1395 	if (res)
1396 		goto out;
1397 
1398 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1399 	if (res)
1400 		goto out;
1401 
1402 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1403 	if (res)
1404 		goto out;
1405 
1406 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1407 		res = handle_tpm_event_log(ctx, fdt_copy);
1408 		if (res)
1409 			goto out;
1410 	}
1411 
1412 	res = handle_hw_features(fdt_copy);
1413 	if (res)
1414 		goto out;
1415 
1416 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1417 				       &boot_info_size);
1418 	if (res)
1419 		goto out;
1420 
1421 	ts_pop_current_session();
1422 
1423 	res = sp_enter(&args, sess);
1424 	if (res) {
1425 		ts_push_current_session(&sess->ts_sess);
1426 		goto out;
1427 	}
1428 
1429 	spmc_sp_msg_handler(&args, sess);
1430 
1431 	ts_push_current_session(&sess->ts_sess);
1432 	sess->is_initialized = true;
1433 
1434 out:
1435 	/* Free the boot info page from the SP memory */
1436 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1437 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1438 	ts_pop_current_session();
1439 
1440 	return res;
1441 }
1442 
1443 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
1444 {
1445 	TEE_Result res = TEE_SUCCESS;
1446 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1447 
1448 	ctx->sp_regs.x[0] = args->a0;
1449 	ctx->sp_regs.x[1] = args->a1;
1450 	ctx->sp_regs.x[2] = args->a2;
1451 	ctx->sp_regs.x[3] = args->a3;
1452 	ctx->sp_regs.x[4] = args->a4;
1453 	ctx->sp_regs.x[5] = args->a5;
1454 	ctx->sp_regs.x[6] = args->a6;
1455 	ctx->sp_regs.x[7] = args->a7;
1456 
1457 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1458 
1459 	args->a0 = ctx->sp_regs.x[0];
1460 	args->a1 = ctx->sp_regs.x[1];
1461 	args->a2 = ctx->sp_regs.x[2];
1462 	args->a3 = ctx->sp_regs.x[3];
1463 	args->a4 = ctx->sp_regs.x[4];
1464 	args->a5 = ctx->sp_regs.x[5];
1465 	args->a6 = ctx->sp_regs.x[6];
1466 	args->a7 = ctx->sp_regs.x[7];
1467 
1468 	return res;
1469 }
1470 
1471 /*
1472  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1473  * active on NS interrupt than the callee, the callee must inherit the caller's
1474  * configuration.
1475  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1476  * action will be MIN([self action], [caller's action]) which is stored in the
1477  * ns_int_mode_inherited field.
1478  */
1479 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1480 						 struct ts_session *caller,
1481 						 uint64_t *cpsr)
1482 {
1483 	if (caller) {
1484 		struct sp_session *caller_sp = to_sp_session(caller);
1485 
1486 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1487 					       s->ns_int_mode);
1488 	} else {
1489 		s->ns_int_mode_inherited = s->ns_int_mode;
1490 	}
1491 
1492 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1493 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1494 				   ARM32_CPSR_F_SHIFT);
1495 	else
1496 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1497 				    ARM32_CPSR_F_SHIFT);
1498 }
1499 
1500 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1501 				      uint32_t cmd __unused)
1502 {
1503 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1504 	TEE_Result res = TEE_SUCCESS;
1505 	uint32_t exceptions = 0;
1506 	struct sp_session *sp_s = to_sp_session(s);
1507 	struct ts_session *sess = NULL;
1508 	struct thread_ctx_regs *sp_regs = NULL;
1509 	uint32_t thread_id = THREAD_ID_INVALID;
1510 	struct ts_session *caller = NULL;
1511 	uint32_t rpc_target_info = 0;
1512 	uint32_t panicked = false;
1513 	uint32_t panic_code = 0;
1514 
1515 	bm_timestamp();
1516 
1517 	sp_regs = &ctx->sp_regs;
1518 	ts_push_current_session(s);
1519 
1520 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1521 
1522 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1523 	caller = ts_get_calling_session();
1524 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1525 
1526 	/*
1527 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1528 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1529 	 */
1530 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1531 	thread_id = thread_get_id();
1532 	assert(thread_id <= UINT16_MAX);
1533 	thread_get_tsd()->rpc_target_info =
1534 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1535 
1536 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1537 
1538 	/* Restore rpc_target_info */
1539 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1540 
1541 	thread_unmask_exceptions(exceptions);
1542 
1543 	thread_user_clear_vfp(&ctx->uctx);
1544 
1545 	if (panicked) {
1546 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1547 		abort_print_current_ts();
1548 
1549 		sess = ts_pop_current_session();
1550 		cpu_spin_lock(&sp_s->spinlock);
1551 		sp_s->state = sp_dead;
1552 		cpu_spin_unlock(&sp_s->spinlock);
1553 
1554 		return TEE_ERROR_TARGET_DEAD;
1555 	}
1556 
1557 	sess = ts_pop_current_session();
1558 	assert(sess == s);
1559 
1560 	bm_timestamp();
1561 
1562 	return res;
1563 }
1564 
1565 /* We currently don't support 32 bits */
1566 #ifdef ARM64
1567 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1568 				   struct thread_ctx_regs *sp_regs)
1569 {
1570 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1571 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1572 	sp_regs->pc = regs->elr;
1573 	sp_regs->sp = regs->sp_el0;
1574 }
1575 #endif
1576 
1577 static bool sp_handle_scall(struct thread_scall_regs *regs)
1578 {
1579 	struct ts_session *ts = ts_get_current_session();
1580 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1581 	struct sp_session *s = uctx->open_session;
1582 
1583 	assert(s);
1584 
1585 	sp_svc_store_registers(regs, &uctx->sp_regs);
1586 
1587 	regs->x0 = 0;
1588 	regs->x1 = 0; /* panic */
1589 	regs->x2 = 0; /* panic code */
1590 
1591 	/*
1592 	 * All the registers of the SP are saved in the SP session by the SVC
1593 	 * handler.
1594 	 * We always return to S-El1 after handling the SVC. We will continue
1595 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1596 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1597 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1598 	 * afterward used by the spmc_sp_msg_handler() to handle the
1599 	 * FF-A message send by the SP.
1600 	 */
1601 	return false;
1602 }
1603 
1604 static void sp_dump_state(struct ts_ctx *ctx)
1605 {
1606 	struct sp_ctx *utc = to_sp_ctx(ctx);
1607 
1608 	if (utc->uctx.dump_entry_func) {
1609 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1610 
1611 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1612 			return;
1613 	}
1614 
1615 	user_mode_ctx_print_mappings(&utc->uctx);
1616 }
1617 
1618 static const struct ts_ops sp_ops = {
1619 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1620 	.handle_scall = sp_handle_scall,
1621 	.dump_state = sp_dump_state,
1622 };
1623 
1624 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1625 {
1626 	enum teecore_memtypes mtype = MEM_AREA_TA_RAM;
1627 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1628 	struct fip_sp *sp = NULL;
1629 	uint64_t sp_fdt_end = 0;
1630 	size_t sp_pkg_size = 0;
1631 	vaddr_t sp_pkg_va = 0;
1632 
1633 	/* Process the first page which contains the SP package header */
1634 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1635 	if (!sp_pkg_va) {
1636 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1637 		return TEE_ERROR_GENERIC;
1638 	}
1639 
1640 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1641 
1642 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1643 		EMSG("Invalid SP package magic");
1644 		return TEE_ERROR_BAD_FORMAT;
1645 	}
1646 
1647 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1648 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1649 		EMSG("Invalid SP header version");
1650 		return TEE_ERROR_BAD_FORMAT;
1651 	}
1652 
1653 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1654 			 &sp_pkg_size)) {
1655 		EMSG("Invalid SP package size");
1656 		return TEE_ERROR_BAD_FORMAT;
1657 	}
1658 
1659 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1660 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1661 		EMSG("Invalid SP manifest size");
1662 		return TEE_ERROR_BAD_FORMAT;
1663 	}
1664 
1665 	/* Process the whole SP package now that the size is known */
1666 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1667 	if (!sp_pkg_va) {
1668 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1669 		return TEE_ERROR_GENERIC;
1670 	}
1671 
1672 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1673 
1674 	sp = calloc(1, sizeof(struct fip_sp));
1675 	if (!sp)
1676 		return TEE_ERROR_OUT_OF_MEMORY;
1677 
1678 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1679 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1680 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1681 	sp->sp_img.image.flags = 0;
1682 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1683 
1684 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1685 
1686 	return TEE_SUCCESS;
1687 }
1688 
1689 static TEE_Result fip_sp_init_all(void)
1690 {
1691 	TEE_Result res = TEE_SUCCESS;
1692 	uint64_t sp_pkg_addr = 0;
1693 	const void *fdt = NULL;
1694 	TEE_UUID sp_uuid = { };
1695 	int sp_pkgs_node = 0;
1696 	int subnode = 0;
1697 	int root = 0;
1698 
1699 	fdt = get_tos_fw_config_dt();
1700 	if (!fdt) {
1701 		EMSG("No SPMC manifest found");
1702 		return TEE_ERROR_GENERIC;
1703 	}
1704 
1705 	root = fdt_path_offset(fdt, "/");
1706 	if (root < 0)
1707 		return TEE_ERROR_BAD_FORMAT;
1708 
1709 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1710 		return TEE_ERROR_BAD_FORMAT;
1711 
1712 	/* SP packages are optional, it's not an error if we don't find any */
1713 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1714 	if (sp_pkgs_node < 0)
1715 		return TEE_SUCCESS;
1716 
1717 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1718 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1719 		if (res) {
1720 			EMSG("Invalid FIP SP load address");
1721 			return res;
1722 		}
1723 
1724 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1725 		if (res) {
1726 			EMSG("Invalid FIP SP uuid");
1727 			return res;
1728 		}
1729 
1730 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1731 		if (res) {
1732 			EMSG("Invalid FIP SP package");
1733 			return res;
1734 		}
1735 	}
1736 
1737 	return TEE_SUCCESS;
1738 }
1739 
1740 static void fip_sp_deinit_all(void)
1741 {
1742 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1743 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
1744 
1745 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
1746 		free(sp);
1747 	}
1748 }
1749 
1750 static TEE_Result sp_init_all(void)
1751 {
1752 	TEE_Result res = TEE_SUCCESS;
1753 	const struct sp_image *sp = NULL;
1754 	const struct fip_sp *fip_sp = NULL;
1755 	char __maybe_unused msg[60] = { '\0', };
1756 	struct sp_session *s = NULL;
1757 
1758 	for_each_secure_partition(sp) {
1759 		if (sp->image.uncompressed_size)
1760 			snprintf(msg, sizeof(msg),
1761 				 " (compressed, uncompressed %u)",
1762 				 sp->image.uncompressed_size);
1763 		else
1764 			msg[0] = '\0';
1765 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
1766 		     sp->image.size, msg);
1767 
1768 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1769 
1770 		if (res != TEE_SUCCESS) {
1771 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1772 			     &sp->image.uuid, res);
1773 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1774 				panic();
1775 		}
1776 	}
1777 
1778 	res = fip_sp_init_all();
1779 	if (res)
1780 		panic("Failed initializing FIP SPs");
1781 
1782 	for_each_fip_sp(fip_sp) {
1783 		sp = &fip_sp->sp_img;
1784 
1785 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
1786 		     sp->image.size);
1787 
1788 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1789 
1790 		if (res != TEE_SUCCESS) {
1791 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1792 			     &sp->image.uuid, res);
1793 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1794 				panic();
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
1800 	 * loader, so the original images (loaded by BL2) are not needed anymore
1801 	 */
1802 	fip_sp_deinit_all();
1803 
1804 	/* Continue the initialization and run the SP */
1805 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
1806 		res = sp_first_run(s);
1807 		if (res != TEE_SUCCESS) {
1808 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
1809 			     s->endpoint_id, res);
1810 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1811 				panic();
1812 		}
1813 	}
1814 
1815 	return TEE_SUCCESS;
1816 }
1817 
1818 boot_final(sp_init_all);
1819 
1820 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
1821 					struct ts_store_handle **h)
1822 {
1823 	return emb_ts_open(uuid, h, find_secure_partition);
1824 }
1825 
1826 REGISTER_SP_STORE(2) = {
1827 	.description = "SP store",
1828 	.open = secure_partition_open,
1829 	.get_size = emb_ts_get_size,
1830 	.get_tag = emb_ts_get_tag,
1831 	.read = emb_ts_read,
1832 	.close = emb_ts_close,
1833 };
1834