1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2023, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/boot.h> 9 #include <kernel/embedded_ts.h> 10 #include <kernel/ldelf_loader.h> 11 #include <kernel/secure_partition.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/spmc_sp_handler.h> 14 #include <kernel/thread_private.h> 15 #include <kernel/thread_spmc.h> 16 #include <kernel/tpm.h> 17 #include <kernel/ts_store.h> 18 #include <ldelf.h> 19 #include <libfdt.h> 20 #include <mm/core_mmu.h> 21 #include <mm/fobj.h> 22 #include <mm/mobj.h> 23 #include <mm/vm.h> 24 #include <optee_ffa.h> 25 #include <stdio.h> 26 #include <string.h> 27 #include <tee_api_types.h> 28 #include <tee/uuid.h> 29 #include <trace.h> 30 #include <types_ext.h> 31 #include <utee_defines.h> 32 #include <util.h> 33 #include <zlib.h> 34 35 #define SP_MANIFEST_ATTR_READ BIT(0) 36 #define SP_MANIFEST_ATTR_WRITE BIT(1) 37 #define SP_MANIFEST_ATTR_EXEC BIT(2) 38 #define SP_MANIFEST_ATTR_NSEC BIT(3) 39 40 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 41 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 42 SP_MANIFEST_ATTR_WRITE) 43 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 44 SP_MANIFEST_ATTR_EXEC) 45 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 46 SP_MANIFEST_ATTR_WRITE | \ 47 SP_MANIFEST_ATTR_EXEC) 48 49 #define SP_MANIFEST_FLAG_NOBITS BIT(0) 50 51 #define SP_PKG_HEADER_MAGIC (0x474b5053) 52 #define SP_PKG_HEADER_VERSION_V1 (0x1) 53 #define SP_PKG_HEADER_VERSION_V2 (0x2) 54 55 struct sp_pkg_header { 56 uint32_t magic; 57 uint32_t version; 58 uint32_t pm_offset; 59 uint32_t pm_size; 60 uint32_t img_offset; 61 uint32_t img_size; 62 }; 63 64 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 65 66 static const struct ts_ops sp_ops; 67 68 /* List that holds all of the loaded SP's */ 69 static struct sp_sessions_head open_sp_sessions = 70 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 71 72 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 73 { 74 const struct sp_image *sp = NULL; 75 const struct fip_sp *fip_sp = NULL; 76 77 for_each_secure_partition(sp) { 78 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 79 return &sp->image; 80 } 81 82 for_each_fip_sp(fip_sp) { 83 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 84 return &fip_sp->sp_img.image; 85 } 86 87 return NULL; 88 } 89 90 bool is_sp_ctx(struct ts_ctx *ctx) 91 { 92 return ctx && (ctx->ops == &sp_ops); 93 } 94 95 static void set_sp_ctx_ops(struct ts_ctx *ctx) 96 { 97 ctx->ops = &sp_ops; 98 } 99 100 struct sp_session *sp_get_session(uint32_t session_id) 101 { 102 struct sp_session *s = NULL; 103 104 TAILQ_FOREACH(s, &open_sp_sessions, link) { 105 if (s->endpoint_id == session_id) 106 return s; 107 } 108 109 return NULL; 110 } 111 112 TEE_Result sp_partition_info_get(struct ffa_partition_info *fpi, 113 const TEE_UUID *ffa_uuid, size_t *elem_count) 114 { 115 size_t in_count = *elem_count; 116 struct sp_session *s = NULL; 117 size_t count = 0; 118 119 TAILQ_FOREACH(s, &open_sp_sessions, link) { 120 if (ffa_uuid && 121 memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid))) 122 continue; 123 124 if (s->state == sp_dead) 125 continue; 126 if (count < in_count) { 127 spmc_fill_partition_entry(fpi, s->endpoint_id, 1); 128 fpi++; 129 } 130 count++; 131 } 132 133 *elem_count = count; 134 if (count > in_count) 135 return TEE_ERROR_SHORT_BUFFER; 136 137 return TEE_SUCCESS; 138 } 139 140 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 141 struct user_mode_ctx *uctx) 142 { 143 /* 144 * Check that we have access to the region if it is supposed to be 145 * mapped to the current context. 146 */ 147 if (uctx) { 148 struct vm_region *region = NULL; 149 150 /* Make sure that each mobj belongs to the SP */ 151 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 152 if (region->mobj == mem->mobj) 153 break; 154 } 155 156 if (!region) 157 return false; 158 } 159 160 /* Check that it is not shared with another SP */ 161 return !sp_mem_is_shared(mem); 162 } 163 164 static uint16_t new_session_id(struct sp_sessions_head *open_sessions) 165 { 166 struct sp_session *last = NULL; 167 uint16_t id = SPMC_ENDPOINT_ID + 1; 168 169 last = TAILQ_LAST(open_sessions, sp_sessions_head); 170 if (last) 171 id = last->endpoint_id + 1; 172 173 assert(id > SPMC_ENDPOINT_ID); 174 return id; 175 } 176 177 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s) 178 { 179 TEE_Result res = TEE_SUCCESS; 180 struct sp_ctx *spc = NULL; 181 182 /* Register context */ 183 spc = calloc(1, sizeof(struct sp_ctx)); 184 if (!spc) 185 return TEE_ERROR_OUT_OF_MEMORY; 186 187 spc->open_session = s; 188 s->ts_sess.ctx = &spc->ts_ctx; 189 spc->ts_ctx.uuid = *bin_uuid; 190 191 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 192 if (res) 193 goto err; 194 195 set_sp_ctx_ops(&spc->ts_ctx); 196 197 return TEE_SUCCESS; 198 199 err: 200 free(spc); 201 return res; 202 } 203 204 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 205 const TEE_UUID *bin_uuid, 206 struct sp_session **sess) 207 { 208 TEE_Result res = TEE_SUCCESS; 209 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 210 211 if (!s) 212 return TEE_ERROR_OUT_OF_MEMORY; 213 214 s->endpoint_id = new_session_id(open_sessions); 215 if (!s->endpoint_id) { 216 res = TEE_ERROR_OVERFLOW; 217 goto err; 218 } 219 220 DMSG("Loading Secure Partition %pUl", (void *)bin_uuid); 221 res = sp_create_ctx(bin_uuid, s); 222 if (res) 223 goto err; 224 225 TAILQ_INSERT_TAIL(open_sessions, s, link); 226 *sess = s; 227 return TEE_SUCCESS; 228 229 err: 230 free(s); 231 return res; 232 } 233 234 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 235 { 236 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 237 238 memset(sp_regs, 0, sizeof(*sp_regs)); 239 sp_regs->sp = ctx->uctx.stack_ptr; 240 sp_regs->pc = ctx->uctx.entry_func; 241 242 return TEE_SUCCESS; 243 } 244 245 TEE_Result sp_map_shared(struct sp_session *s, 246 struct sp_mem_receiver *receiver, 247 struct sp_mem *smem, 248 uint64_t *va) 249 { 250 TEE_Result res = TEE_SUCCESS; 251 struct sp_ctx *ctx = NULL; 252 uint32_t perm = TEE_MATTR_UR; 253 struct sp_mem_map_region *reg = NULL; 254 255 ctx = to_sp_ctx(s->ts_sess.ctx); 256 257 /* Get the permission */ 258 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 259 perm |= TEE_MATTR_UX; 260 261 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 262 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 263 return TEE_ERROR_ACCESS_CONFLICT; 264 265 perm |= TEE_MATTR_UW; 266 } 267 /* 268 * Currently we don't support passing a va. We can't guarantee that the 269 * full region will be mapped in a contiguous region. A smem->region can 270 * have multiple mobj for one share. Currently there doesn't seem to be 271 * an option to guarantee that these will be mapped in a contiguous va 272 * space. 273 */ 274 if (*va) 275 return TEE_ERROR_NOT_SUPPORTED; 276 277 SLIST_FOREACH(reg, &smem->regions, link) { 278 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 279 perm, 0, reg->mobj, reg->page_offset); 280 281 if (res != TEE_SUCCESS) { 282 EMSG("Failed to map memory region %#"PRIx32, res); 283 return res; 284 } 285 } 286 return TEE_SUCCESS; 287 } 288 289 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 290 { 291 TEE_Result res = TEE_SUCCESS; 292 vaddr_t vaddr = 0; 293 size_t len = 0; 294 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 295 struct sp_mem_map_region *reg = NULL; 296 297 SLIST_FOREACH(reg, &smem->regions, link) { 298 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 299 reg->mobj); 300 len = reg->page_count * SMALL_PAGE_SIZE; 301 302 res = vm_unmap(&ctx->uctx, vaddr, len); 303 if (res != TEE_SUCCESS) 304 return res; 305 } 306 307 return TEE_SUCCESS; 308 } 309 310 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 311 uint64_t *value) 312 { 313 const fdt64_t *p = NULL; 314 int len = 0; 315 316 p = fdt_getprop(fdt, node, property, &len); 317 if (!p) 318 return TEE_ERROR_ITEM_NOT_FOUND; 319 320 if (len != sizeof(*p)) 321 return TEE_ERROR_BAD_FORMAT; 322 323 *value = fdt64_ld(p); 324 325 return TEE_SUCCESS; 326 } 327 328 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 329 uint32_t *value) 330 { 331 const fdt32_t *p = NULL; 332 int len = 0; 333 334 p = fdt_getprop(fdt, node, property, &len); 335 if (!p) 336 return TEE_ERROR_ITEM_NOT_FOUND; 337 338 if (len != sizeof(*p)) 339 return TEE_ERROR_BAD_FORMAT; 340 341 *value = fdt32_to_cpu(*p); 342 343 return TEE_SUCCESS; 344 } 345 346 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 347 const char *property, TEE_UUID *uuid) 348 { 349 uint32_t uuid_array[4] = { 0 }; 350 const fdt32_t *p = NULL; 351 int len = 0; 352 int i = 0; 353 354 p = fdt_getprop(fdt, node, property, &len); 355 if (!p) 356 return TEE_ERROR_ITEM_NOT_FOUND; 357 358 if (len != sizeof(TEE_UUID)) 359 return TEE_ERROR_BAD_FORMAT; 360 361 for (i = 0; i < 4; i++) 362 uuid_array[i] = fdt32_to_cpu(p[i]); 363 364 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 365 366 return TEE_SUCCESS; 367 } 368 369 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node, 370 bool *is_elf_format) 371 { 372 TEE_Result res = TEE_SUCCESS; 373 uint32_t elf_format = 0; 374 375 res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format); 376 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) 377 return res; 378 379 *is_elf_format = (elf_format != 0); 380 381 return TEE_SUCCESS; 382 } 383 384 static TEE_Result sp_binary_open(const TEE_UUID *uuid, 385 const struct ts_store_ops **ops, 386 struct ts_store_handle **handle) 387 { 388 TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND; 389 390 SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) { 391 res = (*ops)->open(uuid, handle); 392 if (res != TEE_ERROR_ITEM_NOT_FOUND && 393 res != TEE_ERROR_STORAGE_NOT_AVAILABLE) 394 break; 395 } 396 397 return res; 398 } 399 400 static TEE_Result load_binary_sp(struct ts_session *s, 401 struct user_mode_ctx *uctx) 402 { 403 size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0; 404 const struct ts_store_ops *store_ops = NULL; 405 struct ts_store_handle *handle = NULL; 406 TEE_Result res = TEE_SUCCESS; 407 tee_mm_entry_t *mm = NULL; 408 struct mobj *mobj = NULL; 409 uaddr_t base_addr = 0; 410 uint32_t vm_flags = 0; 411 unsigned int idx = 0; 412 vaddr_t va = 0; 413 414 if (!s || !uctx) 415 return TEE_ERROR_BAD_PARAMETERS; 416 417 DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid); 418 419 vm_set_ctx(uctx->ts_ctx); 420 421 /* Find TS store and open SP binary */ 422 res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle); 423 if (res != TEE_SUCCESS) { 424 EMSG("Failed to open SP binary"); 425 return res; 426 } 427 428 /* Query binary size and calculate page count */ 429 res = store_ops->get_size(handle, &bin_size); 430 if (res != TEE_SUCCESS) 431 goto err; 432 433 if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) { 434 res = TEE_ERROR_OVERFLOW; 435 goto err; 436 } 437 438 bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE; 439 440 /* Allocate memory */ 441 mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded); 442 if (!mm) { 443 res = TEE_ERROR_OUT_OF_MEMORY; 444 goto err; 445 } 446 447 base_addr = tee_mm_get_smem(mm); 448 449 /* Create mobj */ 450 mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true); 451 if (!mobj) { 452 res = TEE_ERROR_OUT_OF_MEMORY; 453 goto err_free_tee_mm; 454 } 455 456 res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count); 457 if (res) 458 goto err_free_mobj; 459 460 /* Map memory area for the SP binary */ 461 res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX, 462 vm_flags, mobj, 0); 463 if (res) 464 goto err_free_mobj; 465 466 /* Read SP binary into the previously mapped memory area */ 467 res = store_ops->read(handle, (void *)va, bin_size); 468 if (res) 469 goto err_unmap; 470 471 /* Set memory protection to allow execution */ 472 res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX); 473 if (res) 474 goto err_unmap; 475 476 mobj_put(mobj); 477 store_ops->close(handle); 478 479 /* The entry point must be at the beginning of the SP binary. */ 480 uctx->entry_func = va; 481 uctx->load_addr = va; 482 uctx->is_32bit = false; 483 484 s->handle_scall = s->ctx->ops->handle_scall; 485 486 return TEE_SUCCESS; 487 488 err_unmap: 489 vm_unmap(uctx, va, bin_size_rounded); 490 491 err_free_mobj: 492 mobj_put(mobj); 493 494 err_free_tee_mm: 495 tee_mm_free(mm); 496 497 err: 498 store_ops->close(handle); 499 500 return res; 501 } 502 503 static TEE_Result sp_open_session(struct sp_session **sess, 504 struct sp_sessions_head *open_sessions, 505 const TEE_UUID *ffa_uuid, 506 const TEE_UUID *bin_uuid, 507 const void *fdt) 508 { 509 TEE_Result res = TEE_SUCCESS; 510 struct sp_session *s = NULL; 511 struct sp_ctx *ctx = NULL; 512 bool is_elf_format = false; 513 514 if (!find_secure_partition(bin_uuid)) 515 return TEE_ERROR_ITEM_NOT_FOUND; 516 517 res = sp_create_session(open_sessions, bin_uuid, &s); 518 if (res != TEE_SUCCESS) { 519 DMSG("sp_create_session failed %#"PRIx32, res); 520 return res; 521 } 522 523 ctx = to_sp_ctx(s->ts_sess.ctx); 524 assert(ctx); 525 if (!ctx) 526 return TEE_ERROR_TARGET_DEAD; 527 *sess = s; 528 529 ts_push_current_session(&s->ts_sess); 530 531 res = sp_is_elf_format(fdt, 0, &is_elf_format); 532 if (res == TEE_SUCCESS) { 533 if (is_elf_format) { 534 /* Load the SP using ldelf. */ 535 ldelf_load_ldelf(&ctx->uctx); 536 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 537 } else { 538 /* Raw binary format SP */ 539 res = load_binary_sp(&s->ts_sess, &ctx->uctx); 540 } 541 } else { 542 EMSG("Failed to detect SP format"); 543 } 544 545 if (res != TEE_SUCCESS) { 546 EMSG("Failed loading SP %#"PRIx32, res); 547 ts_pop_current_session(); 548 return TEE_ERROR_TARGET_DEAD; 549 } 550 551 /* Make the SP ready for its first run */ 552 s->state = sp_idle; 553 s->caller_id = 0; 554 sp_init_set_registers(ctx); 555 memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)); 556 ts_pop_current_session(); 557 558 return TEE_SUCCESS; 559 } 560 561 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid) 562 { 563 const struct fdt_property *description = NULL; 564 int description_name_len = 0; 565 566 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 567 EMSG("Failed loading SP, manifest not found"); 568 return TEE_ERROR_BAD_PARAMETERS; 569 } 570 571 description = fdt_get_property(fdt, 0, "description", 572 &description_name_len); 573 if (description) 574 DMSG("Loading SP: %s", description->data); 575 576 if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) { 577 EMSG("Missing or invalid UUID in SP manifest"); 578 return TEE_ERROR_BAD_FORMAT; 579 } 580 581 return TEE_SUCCESS; 582 } 583 584 /* 585 * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy 586 * the fdt into the allocated page(s) and return a pointer to the new location 587 * of the fdt. This pointer can be used to update data inside the fdt. 588 */ 589 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args, 590 const void * const input_fdt, vaddr_t *va, 591 size_t *num_pgs, void **fdt_copy) 592 { 593 struct sp_ffa_init_info *info = NULL; 594 int nvp_count = 1; 595 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 596 size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count; 597 size_t info_size = sizeof(*info) + nvp_size; 598 size_t fdt_size = total_size - info_size; 599 TEE_Result res = TEE_SUCCESS; 600 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 601 struct fobj *f = NULL; 602 struct mobj *m = NULL; 603 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 604 605 *num_pgs = total_size / SMALL_PAGE_SIZE; 606 607 f = fobj_sec_mem_alloc(*num_pgs); 608 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 609 610 fobj_put(f); 611 if (!m) 612 return TEE_ERROR_OUT_OF_MEMORY; 613 614 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 615 mobj_put(m); 616 if (res) 617 return res; 618 619 info = (struct sp_ffa_init_info *)*va; 620 621 /* magic field is 4 bytes, we don't copy /0 byte. */ 622 memcpy(&info->magic, "FF-A", 4); 623 info->count = nvp_count; 624 args->a0 = (vaddr_t)info; 625 626 /* 627 * Store the fdt after the boot_info and store the pointer in the 628 * first element. 629 */ 630 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 631 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 632 info->nvp[0].value = *va + info_size; 633 info->nvp[0].size = fdt_size; 634 *fdt_copy = (void *)info->nvp[0].value; 635 636 if (fdt_open_into(input_fdt, *fdt_copy, fdt_size)) 637 return TEE_ERROR_GENERIC; 638 639 return TEE_SUCCESS; 640 } 641 642 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx, 643 const void *fdt) 644 { 645 int node = 0; 646 int subnode = 0; 647 tee_mm_entry_t *mm = NULL; 648 TEE_Result res = TEE_SUCCESS; 649 650 /* 651 * Memory regions are optional in the SP manifest, it's not an error if 652 * we don't find any. 653 */ 654 node = fdt_node_offset_by_compatible(fdt, 0, 655 "arm,ffa-manifest-memory-regions"); 656 if (node < 0) 657 return TEE_SUCCESS; 658 659 fdt_for_each_subnode(subnode, fdt, node) { 660 uint64_t load_rel_offset = 0; 661 uint32_t attributes = 0; 662 uint64_t base_addr = 0; 663 uint32_t pages_cnt = 0; 664 uint32_t flags = 0; 665 uint32_t perm = 0; 666 size_t size = 0; 667 vaddr_t va = 0; 668 669 mm = NULL; 670 671 /* Load address relative offset of a memory region */ 672 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 673 &load_rel_offset)) { 674 va = ctx->uctx.load_addr + load_rel_offset; 675 } else { 676 /* Skip non load address relative memory regions */ 677 continue; 678 } 679 680 if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 681 EMSG("Both base-address and load-address-relative-offset fields are set"); 682 return TEE_ERROR_BAD_FORMAT; 683 } 684 685 /* Size of memory region as count of 4K pages */ 686 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 687 EMSG("Mandatory field is missing: pages-count"); 688 return TEE_ERROR_BAD_FORMAT; 689 } 690 691 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 692 return TEE_ERROR_OVERFLOW; 693 694 /* Memory region attributes */ 695 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 696 EMSG("Mandatory field is missing: attributes"); 697 return TEE_ERROR_BAD_FORMAT; 698 } 699 700 /* Check instruction and data access permissions */ 701 switch (attributes & SP_MANIFEST_ATTR_RWX) { 702 case SP_MANIFEST_ATTR_RO: 703 perm = TEE_MATTR_UR; 704 break; 705 case SP_MANIFEST_ATTR_RW: 706 perm = TEE_MATTR_URW; 707 break; 708 case SP_MANIFEST_ATTR_RX: 709 perm = TEE_MATTR_URX; 710 break; 711 default: 712 EMSG("Invalid memory access permissions"); 713 return TEE_ERROR_BAD_FORMAT; 714 } 715 716 res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags); 717 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) { 718 EMSG("Optional field with invalid value: flags"); 719 return TEE_ERROR_BAD_FORMAT; 720 } 721 722 /* Load relative regions must be secure */ 723 if (attributes & SP_MANIFEST_ATTR_NSEC) { 724 EMSG("Invalid memory security attribute"); 725 return TEE_ERROR_BAD_FORMAT; 726 } 727 728 if (flags & SP_MANIFEST_FLAG_NOBITS) { 729 /* 730 * NOBITS flag is set, which means that loaded binary 731 * doesn't contain this area, so it's need to be 732 * allocated. 733 */ 734 struct mobj *m = NULL; 735 unsigned int idx = 0; 736 737 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 738 if (!mm) 739 return TEE_ERROR_OUT_OF_MEMORY; 740 741 base_addr = tee_mm_get_smem(mm); 742 743 m = sp_mem_new_mobj(pages_cnt, 744 TEE_MATTR_MEM_TYPE_CACHED, true); 745 if (!m) { 746 res = TEE_ERROR_OUT_OF_MEMORY; 747 goto err_mm_free; 748 } 749 750 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 751 if (res) { 752 mobj_put(m); 753 goto err_mm_free; 754 } 755 756 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 757 mobj_put(m); 758 if (res) 759 goto err_mm_free; 760 } else { 761 /* 762 * If NOBITS is not present the memory area is already 763 * mapped and only need to set the correct permissions. 764 */ 765 res = vm_set_prot(&ctx->uctx, va, size, perm); 766 if (res) 767 return res; 768 } 769 } 770 771 return TEE_SUCCESS; 772 773 err_mm_free: 774 tee_mm_free(mm); 775 return res; 776 } 777 778 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 779 { 780 int node = 0; 781 int subnode = 0; 782 TEE_Result res = TEE_SUCCESS; 783 const char *dt_device_match_table = { 784 "arm,ffa-manifest-device-regions", 785 }; 786 787 /* 788 * Device regions are optional in the SP manifest, it's not an error if 789 * we don't find any 790 */ 791 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 792 if (node < 0) 793 return TEE_SUCCESS; 794 795 fdt_for_each_subnode(subnode, fdt, node) { 796 uint64_t base_addr = 0; 797 uint32_t pages_cnt = 0; 798 uint32_t attributes = 0; 799 struct mobj *m = NULL; 800 bool is_secure = true; 801 uint32_t perm = 0; 802 vaddr_t va = 0; 803 unsigned int idx = 0; 804 805 /* 806 * Physical base address of a device MMIO region. 807 * Currently only physically contiguous region is supported. 808 */ 809 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 810 EMSG("Mandatory field is missing: base-address"); 811 return TEE_ERROR_BAD_FORMAT; 812 } 813 814 /* Total size of MMIO region as count of 4K pages */ 815 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 816 EMSG("Mandatory field is missing: pages-count"); 817 return TEE_ERROR_BAD_FORMAT; 818 } 819 820 /* Data access, instruction access and security attributes */ 821 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 822 EMSG("Mandatory field is missing: attributes"); 823 return TEE_ERROR_BAD_FORMAT; 824 } 825 826 /* Check instruction and data access permissions */ 827 switch (attributes & SP_MANIFEST_ATTR_RWX) { 828 case SP_MANIFEST_ATTR_RO: 829 perm = TEE_MATTR_UR; 830 break; 831 case SP_MANIFEST_ATTR_RW: 832 perm = TEE_MATTR_URW; 833 break; 834 default: 835 EMSG("Invalid memory access permissions"); 836 return TEE_ERROR_BAD_FORMAT; 837 } 838 839 /* 840 * The SP is a secure endpoint, security attribute can be 841 * secure or non-secure 842 */ 843 if (attributes & SP_MANIFEST_ATTR_NSEC) 844 is_secure = false; 845 846 /* Memory attributes must be Device-nGnRnE */ 847 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 848 is_secure); 849 if (!m) 850 return TEE_ERROR_OUT_OF_MEMORY; 851 852 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 853 if (res) { 854 mobj_put(m); 855 return res; 856 } 857 858 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 859 perm, 0, m, 0); 860 mobj_put(m); 861 if (res) 862 return res; 863 864 /* 865 * Overwrite the device region's PA in the fdt with the VA. This 866 * fdt will be passed to the SP. 867 */ 868 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 869 870 /* 871 * Unmap the region if the overwrite failed since the SP won't 872 * be able to access it without knowing the VA. 873 */ 874 if (res) { 875 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 876 return res; 877 } 878 } 879 880 return TEE_SUCCESS; 881 } 882 883 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, 884 uint32_t new_endpoint_id) 885 { 886 struct sp_session *session = sp_get_session(endpoint_id); 887 uint32_t manifest_endpoint_id = 0; 888 889 /* 890 * We don't know in which order the SPs are loaded. The endpoint ID 891 * defined in the manifest could already be generated by 892 * new_session_id() and used by another SP. If this is the case, we swap 893 * the ID's of the two SPs. We also have to make sure that the ID's are 894 * not defined twice in the manifest. 895 */ 896 897 /* The endpoint ID was not assigned yet */ 898 if (!session) 899 return TEE_SUCCESS; 900 901 /* 902 * Read the manifest file from the SP who originally had the endpoint. 903 * We can safely swap the endpoint ID's if the manifest file doesn't 904 * have an endpoint ID defined. 905 */ 906 if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { 907 assert(manifest_endpoint_id == endpoint_id); 908 EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); 909 return TEE_ERROR_ACCESS_CONFLICT; 910 } 911 912 session->endpoint_id = new_endpoint_id; 913 914 return TEE_SUCCESS; 915 } 916 917 static TEE_Result read_manifest_endpoint_id(struct sp_session *s) 918 { 919 uint32_t endpoint_id = 0; 920 921 /* 922 * The endpoint ID can be optionally defined in the manifest file. We 923 * have to map the ID inside the manifest to the SP if it's defined. 924 * If not, the endpoint ID generated inside new_session_id() will be 925 * used. 926 */ 927 if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { 928 TEE_Result res = TEE_ERROR_GENERIC; 929 930 if (endpoint_id <= SPMC_ENDPOINT_ID) 931 return TEE_ERROR_BAD_FORMAT; 932 933 res = swap_sp_endpoints(endpoint_id, s->endpoint_id); 934 if (res) 935 return res; 936 937 DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", 938 endpoint_id); 939 /* Assign the endpoint ID to the current SP */ 940 s->endpoint_id = endpoint_id; 941 } 942 return TEE_SUCCESS; 943 } 944 945 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 946 { 947 int node = 0; 948 int subnode = 0; 949 tee_mm_entry_t *mm = NULL; 950 TEE_Result res = TEE_SUCCESS; 951 952 /* 953 * Memory regions are optional in the SP manifest, it's not an error if 954 * we don't find any. 955 */ 956 node = fdt_node_offset_by_compatible(fdt, 0, 957 "arm,ffa-manifest-memory-regions"); 958 if (node < 0) 959 return TEE_SUCCESS; 960 961 fdt_for_each_subnode(subnode, fdt, node) { 962 uint64_t load_rel_offset = 0; 963 bool alloc_needed = false; 964 uint32_t attributes = 0; 965 uint64_t base_addr = 0; 966 uint32_t pages_cnt = 0; 967 bool is_secure = true; 968 struct mobj *m = NULL; 969 unsigned int idx = 0; 970 uint32_t perm = 0; 971 size_t size = 0; 972 vaddr_t va = 0; 973 974 mm = NULL; 975 976 /* Load address relative offset of a memory region */ 977 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 978 &load_rel_offset)) { 979 /* 980 * At this point the memory region is already mapped by 981 * handle_fdt_load_relative_mem_regions. 982 * Only need to set the base-address in the manifest and 983 * then skip the rest of the mapping process. 984 */ 985 va = ctx->uctx.load_addr + load_rel_offset; 986 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 987 if (res) 988 return res; 989 990 continue; 991 } 992 993 /* 994 * Base address of a memory region. 995 * If not present, we have to allocate the specified memory. 996 * If present, this field could specify a PA or VA. Currently 997 * only a PA is supported. 998 */ 999 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 1000 alloc_needed = true; 1001 1002 /* Size of memory region as count of 4K pages */ 1003 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 1004 EMSG("Mandatory field is missing: pages-count"); 1005 return TEE_ERROR_BAD_FORMAT; 1006 } 1007 1008 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 1009 return TEE_ERROR_OVERFLOW; 1010 1011 /* 1012 * Memory region attributes: 1013 * - Instruction/data access permissions 1014 * - Cacheability/shareability attributes 1015 * - Security attributes 1016 * 1017 * Cacheability/shareability attributes can be ignored for now. 1018 * OP-TEE only supports a single type for normal cached memory 1019 * and currently there is no use case that would require to 1020 * change this. 1021 */ 1022 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 1023 EMSG("Mandatory field is missing: attributes"); 1024 return TEE_ERROR_BAD_FORMAT; 1025 } 1026 1027 /* Check instruction and data access permissions */ 1028 switch (attributes & SP_MANIFEST_ATTR_RWX) { 1029 case SP_MANIFEST_ATTR_RO: 1030 perm = TEE_MATTR_UR; 1031 break; 1032 case SP_MANIFEST_ATTR_RW: 1033 perm = TEE_MATTR_URW; 1034 break; 1035 case SP_MANIFEST_ATTR_RX: 1036 perm = TEE_MATTR_URX; 1037 break; 1038 default: 1039 EMSG("Invalid memory access permissions"); 1040 return TEE_ERROR_BAD_FORMAT; 1041 } 1042 1043 /* 1044 * The SP is a secure endpoint, security attribute can be 1045 * secure or non-secure. 1046 * The SPMC cannot allocate non-secure memory, i.e. if the base 1047 * address is missing this attribute must be secure. 1048 */ 1049 if (attributes & SP_MANIFEST_ATTR_NSEC) { 1050 if (alloc_needed) { 1051 EMSG("Invalid memory security attribute"); 1052 return TEE_ERROR_BAD_FORMAT; 1053 } 1054 is_secure = false; 1055 } 1056 1057 if (alloc_needed) { 1058 /* Base address is missing, we have to allocate */ 1059 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 1060 if (!mm) 1061 return TEE_ERROR_OUT_OF_MEMORY; 1062 1063 base_addr = tee_mm_get_smem(mm); 1064 } 1065 1066 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 1067 is_secure); 1068 if (!m) { 1069 res = TEE_ERROR_OUT_OF_MEMORY; 1070 goto err_mm_free; 1071 } 1072 1073 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 1074 if (res) { 1075 mobj_put(m); 1076 goto err_mm_free; 1077 } 1078 1079 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 1080 mobj_put(m); 1081 if (res) 1082 goto err_mm_free; 1083 1084 /* 1085 * Overwrite the memory region's base address in the fdt with 1086 * the VA. This fdt will be passed to the SP. 1087 * If the base-address field was not present in the original 1088 * fdt, this function will create it. This doesn't cause issues 1089 * since the necessary extra space has been allocated when 1090 * opening the fdt. 1091 */ 1092 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1093 1094 /* 1095 * Unmap the region if the overwrite failed since the SP won't 1096 * be able to access it without knowing the VA. 1097 */ 1098 if (res) { 1099 vm_unmap(&ctx->uctx, va, size); 1100 goto err_mm_free; 1101 } 1102 } 1103 1104 return TEE_SUCCESS; 1105 1106 err_mm_free: 1107 tee_mm_free(mm); 1108 return res; 1109 } 1110 1111 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 1112 { 1113 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 1114 uint32_t dummy_size __maybe_unused = 0; 1115 TEE_Result res = TEE_SUCCESS; 1116 size_t page_count = 0; 1117 struct fobj *f = NULL; 1118 struct mobj *m = NULL; 1119 vaddr_t log_addr = 0; 1120 size_t log_size = 0; 1121 int node = 0; 1122 1123 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 1124 if (node < 0) 1125 return TEE_SUCCESS; 1126 1127 /* Checking the existence and size of the event log properties */ 1128 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 1129 EMSG("tpm_event_log_addr not found or has invalid size"); 1130 return TEE_ERROR_BAD_FORMAT; 1131 } 1132 1133 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 1134 EMSG("tpm_event_log_size not found or has invalid size"); 1135 return TEE_ERROR_BAD_FORMAT; 1136 } 1137 1138 /* Validating event log */ 1139 res = tpm_get_event_log_size(&log_size); 1140 if (res) 1141 return res; 1142 1143 if (!log_size) { 1144 EMSG("Empty TPM event log was provided"); 1145 return TEE_ERROR_ITEM_NOT_FOUND; 1146 } 1147 1148 /* Allocating memory area for the event log to share with the SP */ 1149 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 1150 1151 f = fobj_sec_mem_alloc(page_count); 1152 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 1153 fobj_put(f); 1154 if (!m) 1155 return TEE_ERROR_OUT_OF_MEMORY; 1156 1157 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 1158 mobj_put(m); 1159 if (res) 1160 return res; 1161 1162 /* Copy event log */ 1163 res = tpm_get_event_log((void *)log_addr, &log_size); 1164 if (res) 1165 goto err_unmap; 1166 1167 /* Setting event log details in the manifest */ 1168 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 1169 if (res) 1170 goto err_unmap; 1171 1172 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 1173 if (res) 1174 goto err_unmap; 1175 1176 return TEE_SUCCESS; 1177 1178 err_unmap: 1179 vm_unmap(&ctx->uctx, log_addr, log_size); 1180 1181 return res; 1182 } 1183 1184 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt) 1185 { 1186 TEE_Result res = TEE_SUCCESS; 1187 struct sp_session *sess = NULL; 1188 TEE_UUID ffa_uuid = {}; 1189 1190 res = fdt_get_uuid(fdt, &ffa_uuid); 1191 if (res) 1192 return res; 1193 1194 res = sp_open_session(&sess, 1195 &open_sp_sessions, 1196 &ffa_uuid, bin_uuid, fdt); 1197 if (res) 1198 return res; 1199 1200 sess->fdt = fdt; 1201 res = read_manifest_endpoint_id(sess); 1202 if (res) 1203 return res; 1204 DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); 1205 1206 return TEE_SUCCESS; 1207 } 1208 1209 static TEE_Result sp_first_run(struct sp_session *sess) 1210 { 1211 TEE_Result res = TEE_SUCCESS; 1212 struct thread_smc_args args = { }; 1213 vaddr_t va = 0; 1214 size_t num_pgs = 0; 1215 struct sp_ctx *ctx = NULL; 1216 void *fdt_copy = NULL; 1217 1218 ctx = to_sp_ctx(sess->ts_sess.ctx); 1219 ts_push_current_session(&sess->ts_sess); 1220 1221 /* 1222 * Load relative memory regions must be handled before doing any other 1223 * mapping to prevent conflicts in the VA space. 1224 */ 1225 res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt); 1226 if (res) { 1227 ts_pop_current_session(); 1228 return res; 1229 } 1230 1231 res = sp_init_info(ctx, &args, sess->fdt, &va, &num_pgs, &fdt_copy); 1232 if (res) 1233 goto out; 1234 1235 res = handle_fdt_dev_regions(ctx, fdt_copy); 1236 if (res) 1237 goto out; 1238 1239 res = handle_fdt_mem_regions(ctx, fdt_copy); 1240 if (res) 1241 goto out; 1242 1243 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 1244 res = handle_tpm_event_log(ctx, fdt_copy); 1245 if (res) 1246 goto out; 1247 } 1248 1249 ts_pop_current_session(); 1250 1251 sess->is_initialized = false; 1252 if (sp_enter(&args, sess)) { 1253 vm_unmap(&ctx->uctx, va, num_pgs); 1254 return FFA_ABORTED; 1255 } 1256 1257 spmc_sp_msg_handler(&args, sess); 1258 1259 sess->is_initialized = true; 1260 1261 ts_push_current_session(&sess->ts_sess); 1262 out: 1263 /* Free the boot info page from the SP memory */ 1264 vm_unmap(&ctx->uctx, va, num_pgs); 1265 ts_pop_current_session(); 1266 1267 return res; 1268 } 1269 1270 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 1271 { 1272 TEE_Result res = FFA_OK; 1273 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 1274 1275 ctx->sp_regs.x[0] = args->a0; 1276 ctx->sp_regs.x[1] = args->a1; 1277 ctx->sp_regs.x[2] = args->a2; 1278 ctx->sp_regs.x[3] = args->a3; 1279 ctx->sp_regs.x[4] = args->a4; 1280 ctx->sp_regs.x[5] = args->a5; 1281 ctx->sp_regs.x[6] = args->a6; 1282 ctx->sp_regs.x[7] = args->a7; 1283 1284 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 1285 1286 args->a0 = ctx->sp_regs.x[0]; 1287 args->a1 = ctx->sp_regs.x[1]; 1288 args->a2 = ctx->sp_regs.x[2]; 1289 args->a3 = ctx->sp_regs.x[3]; 1290 args->a4 = ctx->sp_regs.x[4]; 1291 args->a5 = ctx->sp_regs.x[5]; 1292 args->a6 = ctx->sp_regs.x[6]; 1293 args->a7 = ctx->sp_regs.x[7]; 1294 1295 return res; 1296 } 1297 1298 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 1299 uint32_t cmd __unused) 1300 { 1301 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 1302 TEE_Result res = TEE_SUCCESS; 1303 uint32_t exceptions = 0; 1304 uint64_t cpsr = 0; 1305 struct sp_session *sp_s = to_sp_session(s); 1306 struct ts_session *sess = NULL; 1307 struct thread_ctx_regs *sp_regs = NULL; 1308 uint32_t panicked = false; 1309 uint32_t panic_code = 0; 1310 1311 bm_timestamp(); 1312 1313 sp_regs = &ctx->sp_regs; 1314 ts_push_current_session(s); 1315 1316 cpsr = sp_regs->cpsr; 1317 sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1318 1319 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 1320 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 1321 sp_regs->cpsr = cpsr; 1322 thread_unmask_exceptions(exceptions); 1323 1324 thread_user_clear_vfp(&ctx->uctx); 1325 1326 if (panicked) { 1327 DMSG("SP panicked with code %#"PRIx32, panic_code); 1328 abort_print_current_ts(); 1329 1330 sess = ts_pop_current_session(); 1331 cpu_spin_lock(&sp_s->spinlock); 1332 sp_s->state = sp_dead; 1333 cpu_spin_unlock(&sp_s->spinlock); 1334 1335 return TEE_ERROR_TARGET_DEAD; 1336 } 1337 1338 sess = ts_pop_current_session(); 1339 assert(sess == s); 1340 1341 bm_timestamp(); 1342 1343 return res; 1344 } 1345 1346 /* We currently don't support 32 bits */ 1347 #ifdef ARM64 1348 static void sp_svc_store_registers(struct thread_scall_regs *regs, 1349 struct thread_ctx_regs *sp_regs) 1350 { 1351 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 1352 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 1353 sp_regs->pc = regs->elr; 1354 sp_regs->sp = regs->sp_el0; 1355 } 1356 #endif 1357 1358 static bool sp_handle_scall(struct thread_scall_regs *regs) 1359 { 1360 struct ts_session *ts = ts_get_current_session(); 1361 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 1362 struct sp_session *s = uctx->open_session; 1363 1364 assert(s); 1365 1366 sp_svc_store_registers(regs, &uctx->sp_regs); 1367 1368 regs->x0 = 0; 1369 regs->x1 = 0; /* panic */ 1370 regs->x2 = 0; /* panic code */ 1371 1372 /* 1373 * All the registers of the SP are saved in the SP session by the SVC 1374 * handler. 1375 * We always return to S-El1 after handling the SVC. We will continue 1376 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 1377 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 1378 * saved registers to the thread_smc_args. The thread_smc_args object is 1379 * afterward used by the spmc_sp_msg_handler() to handle the 1380 * FF-A message send by the SP. 1381 */ 1382 return false; 1383 } 1384 1385 static void sp_dump_state(struct ts_ctx *ctx) 1386 { 1387 struct sp_ctx *utc = to_sp_ctx(ctx); 1388 1389 if (utc->uctx.dump_entry_func) { 1390 TEE_Result res = ldelf_dump_state(&utc->uctx); 1391 1392 if (!res || res == TEE_ERROR_TARGET_DEAD) 1393 return; 1394 } 1395 1396 user_mode_ctx_print_mappings(&utc->uctx); 1397 } 1398 1399 static const struct ts_ops sp_ops = { 1400 .enter_invoke_cmd = sp_enter_invoke_cmd, 1401 .handle_scall = sp_handle_scall, 1402 .dump_state = sp_dump_state, 1403 }; 1404 1405 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1406 { 1407 enum teecore_memtypes mtype = MEM_AREA_TA_RAM; 1408 struct sp_pkg_header *sp_pkg_hdr = NULL; 1409 struct fip_sp *sp = NULL; 1410 uint64_t sp_fdt_end = 0; 1411 size_t sp_pkg_size = 0; 1412 vaddr_t sp_pkg_va = 0; 1413 1414 /* Process the first page which contains the SP package header */ 1415 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE); 1416 if (!sp_pkg_va) { 1417 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1418 return TEE_ERROR_GENERIC; 1419 } 1420 1421 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1422 1423 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1424 EMSG("Invalid SP package magic"); 1425 return TEE_ERROR_BAD_FORMAT; 1426 } 1427 1428 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 && 1429 sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) { 1430 EMSG("Invalid SP header version"); 1431 return TEE_ERROR_BAD_FORMAT; 1432 } 1433 1434 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1435 &sp_pkg_size)) { 1436 EMSG("Invalid SP package size"); 1437 return TEE_ERROR_BAD_FORMAT; 1438 } 1439 1440 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1441 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1442 EMSG("Invalid SP manifest size"); 1443 return TEE_ERROR_BAD_FORMAT; 1444 } 1445 1446 /* Process the whole SP package now that the size is known */ 1447 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size); 1448 if (!sp_pkg_va) { 1449 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1450 return TEE_ERROR_GENERIC; 1451 } 1452 1453 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1454 1455 sp = calloc(1, sizeof(struct fip_sp)); 1456 if (!sp) 1457 return TEE_ERROR_OUT_OF_MEMORY; 1458 1459 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1460 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1461 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1462 sp->sp_img.image.flags = 0; 1463 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1464 1465 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1466 1467 return TEE_SUCCESS; 1468 } 1469 1470 static TEE_Result fip_sp_init_all(void) 1471 { 1472 TEE_Result res = TEE_SUCCESS; 1473 uint64_t sp_pkg_addr = 0; 1474 const void *fdt = NULL; 1475 TEE_UUID sp_uuid = { }; 1476 int sp_pkgs_node = 0; 1477 int subnode = 0; 1478 int root = 0; 1479 1480 fdt = get_tos_fw_config_dt(); 1481 if (!fdt) { 1482 EMSG("No SPMC manifest found"); 1483 return TEE_ERROR_GENERIC; 1484 } 1485 1486 root = fdt_path_offset(fdt, "/"); 1487 if (root < 0) 1488 return TEE_ERROR_BAD_FORMAT; 1489 1490 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1491 return TEE_ERROR_BAD_FORMAT; 1492 1493 /* SP packages are optional, it's not an error if we don't find any */ 1494 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1495 if (sp_pkgs_node < 0) 1496 return TEE_SUCCESS; 1497 1498 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1499 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1500 if (res) { 1501 EMSG("Invalid FIP SP load address"); 1502 return res; 1503 } 1504 1505 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1506 if (res) { 1507 EMSG("Invalid FIP SP uuid"); 1508 return res; 1509 } 1510 1511 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1512 if (res) { 1513 EMSG("Invalid FIP SP package"); 1514 return res; 1515 } 1516 } 1517 1518 return TEE_SUCCESS; 1519 } 1520 1521 static void fip_sp_deinit_all(void) 1522 { 1523 while (!STAILQ_EMPTY(&fip_sp_list)) { 1524 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1525 1526 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1527 free(sp); 1528 } 1529 } 1530 1531 static TEE_Result sp_init_all(void) 1532 { 1533 TEE_Result res = TEE_SUCCESS; 1534 const struct sp_image *sp = NULL; 1535 const struct fip_sp *fip_sp = NULL; 1536 char __maybe_unused msg[60] = { '\0', }; 1537 struct sp_session *s = NULL; 1538 1539 for_each_secure_partition(sp) { 1540 if (sp->image.uncompressed_size) 1541 snprintf(msg, sizeof(msg), 1542 " (compressed, uncompressed %u)", 1543 sp->image.uncompressed_size); 1544 else 1545 msg[0] = '\0'; 1546 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1547 sp->image.size, msg); 1548 1549 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1550 1551 if (res != TEE_SUCCESS) { 1552 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1553 &sp->image.uuid, res); 1554 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1555 panic(); 1556 } 1557 } 1558 1559 res = fip_sp_init_all(); 1560 if (res) 1561 panic("Failed initializing FIP SPs"); 1562 1563 for_each_fip_sp(fip_sp) { 1564 sp = &fip_sp->sp_img; 1565 1566 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1567 sp->image.size); 1568 1569 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1570 1571 if (res != TEE_SUCCESS) { 1572 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1573 &sp->image.uuid, res); 1574 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1575 panic(); 1576 } 1577 } 1578 1579 /* 1580 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP 1581 * loader, so the original images (loaded by BL2) are not needed anymore 1582 */ 1583 fip_sp_deinit_all(); 1584 1585 /* Continue the initialization and run the SP */ 1586 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1587 res = sp_first_run(s); 1588 if (res != TEE_SUCCESS) { 1589 EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, 1590 s->endpoint_id, res); 1591 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1592 panic(); 1593 } 1594 } 1595 1596 return TEE_SUCCESS; 1597 } 1598 1599 boot_final(sp_init_all); 1600 1601 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1602 struct ts_store_handle **h) 1603 { 1604 return emb_ts_open(uuid, h, find_secure_partition); 1605 } 1606 1607 REGISTER_SP_STORE(2) = { 1608 .description = "SP store", 1609 .open = secure_partition_open, 1610 .get_size = emb_ts_get_size, 1611 .get_tag = emb_ts_get_tag, 1612 .read = emb_ts_read, 1613 .close = emb_ts_close, 1614 }; 1615