xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 273a583ea99627ff3b8ccbbaedbdacecd0909b2e)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2024, Arm Limited.
4  */
5 #include <crypto/crypto.h>
6 #include <initcall.h>
7 #include <kernel/boot.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/phys_mem.h>
23 #include <mm/vm.h>
24 #include <optee_ffa.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <tee/uuid.h>
28 #include <tee_api_types.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 #include <zlib.h>
34 
35 #define BOUNCE_BUFFER_SIZE		4096
36 
37 #define UNDEFINED_BOOT_ORDER_VALUE	UINT32_MAX
38 
39 #define SP_MANIFEST_ATTR_READ		BIT(0)
40 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
41 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
42 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
43 #define SP_MANIFEST_ATTR_GP		BIT(4)
44 
45 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
46 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
47 					 SP_MANIFEST_ATTR_WRITE)
48 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
49 					 SP_MANIFEST_ATTR_EXEC)
50 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
51 					 SP_MANIFEST_ATTR_WRITE | \
52 					 SP_MANIFEST_ATTR_EXEC)
53 
54 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
55 
56 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
57 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
58 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
59 
60 #define SP_MANIFEST_EXEC_STATE_AARCH64	(0x0)
61 #define SP_MANIFEST_EXEC_STATE_AARCH32	(0x1)
62 
63 #define SP_MANIFEST_DIRECT_REQ_RECEIVE	BIT(0)
64 #define SP_MANIFEST_DIRECT_REQ_SEND	BIT(1)
65 #define SP_MANIFEST_INDIRECT_REQ	BIT(2)
66 
67 #define SP_MANIFEST_VM_CREATED_MSG	BIT(0)
68 #define SP_MANIFEST_VM_DESTROYED_MSG	BIT(1)
69 
70 #define SP_PKG_HEADER_MAGIC (0x474b5053)
71 #define SP_PKG_HEADER_VERSION_V1 (0x1)
72 #define SP_PKG_HEADER_VERSION_V2 (0x2)
73 
74 struct sp_pkg_header {
75 	uint32_t magic;
76 	uint32_t version;
77 	uint32_t pm_offset;
78 	uint32_t pm_size;
79 	uint32_t img_offset;
80 	uint32_t img_size;
81 };
82 
83 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
84 
85 static const struct ts_ops sp_ops;
86 
87 /* List that holds all of the loaded SP's */
88 static struct sp_sessions_head open_sp_sessions =
89 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
90 
91 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
92 {
93 	const struct sp_image *sp = NULL;
94 	const struct fip_sp *fip_sp = NULL;
95 
96 	for_each_secure_partition(sp) {
97 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
98 			return &sp->image;
99 	}
100 
101 	for_each_fip_sp(fip_sp) {
102 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
103 			return &fip_sp->sp_img.image;
104 	}
105 
106 	return NULL;
107 }
108 
109 bool is_sp_ctx(struct ts_ctx *ctx)
110 {
111 	return ctx && (ctx->ops == &sp_ops);
112 }
113 
114 static void set_sp_ctx_ops(struct ts_ctx *ctx)
115 {
116 	ctx->ops = &sp_ops;
117 }
118 
119 struct sp_session *sp_get_session(uint32_t session_id)
120 {
121 	struct sp_session *s = NULL;
122 
123 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
124 		if (s->endpoint_id == session_id)
125 			return s;
126 	}
127 
128 	return NULL;
129 }
130 
131 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
132 				 const uint32_t ffa_uuid_words[4],
133 				 size_t *elem_count, bool count_only)
134 {
135 	TEE_Result res = TEE_SUCCESS;
136 	struct sp_session *s = NULL;
137 	TEE_UUID uuid = { };
138 	TEE_UUID *ffa_uuid = NULL;
139 
140 	if (ffa_uuid_words) {
141 		tee_uuid_from_octets(&uuid, (void *)ffa_uuid_words);
142 		ffa_uuid = &uuid;
143 	}
144 
145 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
146 		if (ffa_uuid &&
147 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
148 			continue;
149 
150 		if (s->state == sp_dead)
151 			continue;
152 		if (!count_only && !res) {
153 			uint32_t uuid_words[4] = { 0 };
154 
155 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
156 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
157 							*elem_count,
158 							s->endpoint_id, 1,
159 							s->props, uuid_words);
160 		}
161 		*elem_count += 1;
162 	}
163 
164 	return res;
165 }
166 
167 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
168 			     struct user_mode_ctx *uctx)
169 {
170 	/*
171 	 * Check that we have access to the region if it is supposed to be
172 	 * mapped to the current context.
173 	 */
174 	if (uctx) {
175 		struct vm_region *region = NULL;
176 
177 		/* Make sure that each mobj belongs to the SP */
178 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
179 			if (region->mobj == mem->mobj)
180 				break;
181 		}
182 
183 		if (!region)
184 			return false;
185 	}
186 
187 	/* Check that it is not shared with another SP */
188 	return !sp_mem_is_shared(mem);
189 }
190 
191 static bool endpoint_id_is_valid(uint32_t id)
192 {
193 	/*
194 	 * These IDs are assigned at the SPMC init so already have valid values
195 	 * by the time this function gets first called
196 	 */
197 	return !spmc_is_reserved_id(id) && !spmc_find_lsp_by_sp_id(id) &&
198 	       id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX;
199 }
200 
201 static TEE_Result new_session_id(uint16_t *endpoint_id)
202 {
203 	uint32_t id = 0;
204 
205 	/* Find the first available endpoint id */
206 	for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) {
207 		if (endpoint_id_is_valid(id) && !sp_get_session(id)) {
208 			*endpoint_id = id;
209 			return TEE_SUCCESS;
210 		}
211 	}
212 
213 	return TEE_ERROR_BAD_FORMAT;
214 }
215 
216 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
217 {
218 	TEE_Result res = TEE_SUCCESS;
219 	struct sp_ctx *spc = NULL;
220 
221 	/* Register context */
222 	spc = calloc(1, sizeof(struct sp_ctx));
223 	if (!spc)
224 		return TEE_ERROR_OUT_OF_MEMORY;
225 
226 	spc->open_session = s;
227 	s->ts_sess.ctx = &spc->ts_ctx;
228 	spc->ts_ctx.uuid = *bin_uuid;
229 
230 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
231 	if (res)
232 		goto err;
233 
234 	set_sp_ctx_ops(&spc->ts_ctx);
235 
236 #ifdef CFG_TA_PAUTH
237 	crypto_rng_read(&spc->uctx.keys, sizeof(spc->uctx.keys));
238 #endif
239 
240 	return TEE_SUCCESS;
241 
242 err:
243 	free(spc);
244 	return res;
245 }
246 
247 /*
248  * Insert a new sp_session to the sessions list, so that it is ordered
249  * by boot_order.
250  */
251 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
252 				   struct sp_session *session)
253 {
254 	struct sp_session *s = NULL;
255 
256 	if (!open_sessions || !session)
257 		return;
258 
259 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
260 		if (s->boot_order > session->boot_order)
261 			break;
262 	}
263 
264 	if (!s)
265 		TAILQ_INSERT_TAIL(open_sessions, session, link);
266 	else
267 		TAILQ_INSERT_BEFORE(s, session, link);
268 }
269 
270 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
271 				    const TEE_UUID *bin_uuid,
272 				    const uint32_t boot_order,
273 				    struct sp_session **sess)
274 {
275 	TEE_Result res = TEE_SUCCESS;
276 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
277 
278 	if (!s)
279 		return TEE_ERROR_OUT_OF_MEMORY;
280 
281 	s->boot_order = boot_order;
282 
283 	/* Other properties are filled later, based on the SP's manifest */
284 	s->props = FFA_PART_PROP_IS_PE_ID;
285 
286 	res = new_session_id(&s->endpoint_id);
287 	if (res)
288 		goto err;
289 
290 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
291 	res = sp_create_ctx(bin_uuid, s);
292 	if (res)
293 		goto err;
294 
295 	insert_session_ordered(open_sessions, s);
296 	*sess = s;
297 	return TEE_SUCCESS;
298 
299 err:
300 	free(s);
301 	return res;
302 }
303 
304 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
305 {
306 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
307 
308 	memset(sp_regs, 0, sizeof(*sp_regs));
309 	sp_regs->sp = ctx->uctx.stack_ptr;
310 	sp_regs->pc = ctx->uctx.entry_func;
311 
312 	return TEE_SUCCESS;
313 }
314 
315 TEE_Result sp_map_shared(struct sp_session *s,
316 			 struct sp_mem_receiver *receiver,
317 			 struct sp_mem *smem,
318 			 uint64_t *va)
319 {
320 	TEE_Result res = TEE_SUCCESS;
321 	struct sp_ctx *ctx = NULL;
322 	uint32_t perm = TEE_MATTR_UR;
323 	struct sp_mem_map_region *reg = NULL;
324 
325 	ctx = to_sp_ctx(s->ts_sess.ctx);
326 
327 	/* Get the permission */
328 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
329 		perm |= TEE_MATTR_UX;
330 
331 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
332 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
333 			return TEE_ERROR_ACCESS_CONFLICT;
334 
335 		perm |= TEE_MATTR_UW;
336 	}
337 	/*
338 	 * Currently we don't support passing a va. We can't guarantee that the
339 	 * full region will be mapped in a contiguous region. A smem->region can
340 	 * have multiple mobj for one share. Currently there doesn't seem to be
341 	 * an option to guarantee that these will be mapped in a contiguous va
342 	 * space.
343 	 */
344 	if (*va)
345 		return TEE_ERROR_NOT_SUPPORTED;
346 
347 	SLIST_FOREACH(reg, &smem->regions, link) {
348 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
349 			     perm, 0, reg->mobj, reg->page_offset);
350 
351 		if (res != TEE_SUCCESS) {
352 			EMSG("Failed to map memory region %#"PRIx32, res);
353 			return res;
354 		}
355 	}
356 	return TEE_SUCCESS;
357 }
358 
359 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
360 {
361 	TEE_Result res = TEE_SUCCESS;
362 	vaddr_t vaddr = 0;
363 	size_t len = 0;
364 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
365 	struct sp_mem_map_region *reg = NULL;
366 
367 	SLIST_FOREACH(reg, &smem->regions, link) {
368 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
369 					       reg->mobj);
370 		len = reg->page_count * SMALL_PAGE_SIZE;
371 
372 		res = vm_unmap(&ctx->uctx, vaddr, len);
373 		if (res != TEE_SUCCESS)
374 			return res;
375 	}
376 
377 	return TEE_SUCCESS;
378 }
379 
380 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
381 				uint64_t *value)
382 {
383 	const fdt64_t *p = NULL;
384 	int len = 0;
385 
386 	p = fdt_getprop(fdt, node, property, &len);
387 	if (!p)
388 		return TEE_ERROR_ITEM_NOT_FOUND;
389 
390 	if (len != sizeof(*p))
391 		return TEE_ERROR_BAD_FORMAT;
392 
393 	*value = fdt64_ld(p);
394 
395 	return TEE_SUCCESS;
396 }
397 
398 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
399 				uint32_t *value)
400 {
401 	const fdt32_t *p = NULL;
402 	int len = 0;
403 
404 	p = fdt_getprop(fdt, node, property, &len);
405 	if (!p)
406 		return TEE_ERROR_ITEM_NOT_FOUND;
407 
408 	if (len != sizeof(*p))
409 		return TEE_ERROR_BAD_FORMAT;
410 
411 	*value = fdt32_to_cpu(*p);
412 
413 	return TEE_SUCCESS;
414 }
415 
416 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
417 				uint16_t *value)
418 {
419 	const fdt16_t *p = NULL;
420 	int len = 0;
421 
422 	p = fdt_getprop(fdt, node, property, &len);
423 	if (!p)
424 		return TEE_ERROR_ITEM_NOT_FOUND;
425 
426 	if (len != sizeof(*p))
427 		return TEE_ERROR_BAD_FORMAT;
428 
429 	*value = fdt16_to_cpu(*p);
430 
431 	return TEE_SUCCESS;
432 }
433 
434 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
435 				 const char *property, TEE_UUID *uuid)
436 {
437 	uint32_t uuid_array[4] = { 0 };
438 	const fdt32_t *p = NULL;
439 	int len = 0;
440 	int i = 0;
441 
442 	p = fdt_getprop(fdt, node, property, &len);
443 	if (!p)
444 		return TEE_ERROR_ITEM_NOT_FOUND;
445 
446 	if (len != sizeof(TEE_UUID))
447 		return TEE_ERROR_BAD_FORMAT;
448 
449 	for (i = 0; i < 4; i++)
450 		uuid_array[i] = fdt32_to_cpu(p[i]);
451 
452 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
453 
454 	return TEE_SUCCESS;
455 }
456 
457 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
458 				   bool *is_elf_format)
459 {
460 	TEE_Result res = TEE_SUCCESS;
461 	uint32_t elf_format = 0;
462 
463 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
464 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
465 		return res;
466 
467 	*is_elf_format = (elf_format != 0);
468 
469 	return TEE_SUCCESS;
470 }
471 
472 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
473 				 const struct ts_store_ops **ops,
474 				 struct ts_store_handle **handle)
475 {
476 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
477 
478 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
479 		res = (*ops)->open(uuid, handle);
480 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
481 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
482 			break;
483 	}
484 
485 	return res;
486 }
487 
488 static TEE_Result load_binary_sp(struct ts_session *s,
489 				 struct user_mode_ctx *uctx)
490 {
491 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
492 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
493 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
494 	const struct ts_store_ops *store_ops = NULL;
495 	struct ts_store_handle *handle = NULL;
496 	TEE_Result res = TEE_SUCCESS;
497 	tee_mm_entry_t *mm = NULL;
498 	struct fobj *fobj = NULL;
499 	struct mobj *mobj = NULL;
500 	uaddr_t base_addr = 0;
501 	uint32_t vm_flags = 0;
502 	unsigned int idx = 0;
503 	vaddr_t va = 0;
504 
505 	if (!s || !uctx)
506 		return TEE_ERROR_BAD_PARAMETERS;
507 
508 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
509 
510 	/* Initialize the bounce buffer */
511 	fobj = fobj_sec_mem_alloc(bb_num_pages);
512 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
513 	fobj_put(fobj);
514 	if (!mobj)
515 		return TEE_ERROR_OUT_OF_MEMORY;
516 
517 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
518 	mobj_put(mobj);
519 	if (res)
520 		return res;
521 
522 	uctx->bbuf = (uint8_t *)va;
523 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
524 
525 	vm_set_ctx(uctx->ts_ctx);
526 
527 	/* Find TS store and open SP binary */
528 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
529 	if (res != TEE_SUCCESS) {
530 		EMSG("Failed to open SP binary");
531 		return res;
532 	}
533 
534 	/* Query binary size and calculate page count */
535 	res = store_ops->get_size(handle, &bin_size);
536 	if (res != TEE_SUCCESS)
537 		goto err;
538 
539 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
540 		res = TEE_ERROR_OVERFLOW;
541 		goto err;
542 	}
543 
544 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
545 
546 	/* Allocate memory */
547 	mm = phys_mem_ta_alloc(bin_size_rounded);
548 	if (!mm) {
549 		res = TEE_ERROR_OUT_OF_MEMORY;
550 		goto err;
551 	}
552 
553 	base_addr = tee_mm_get_smem(mm);
554 
555 	/* Create mobj */
556 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
557 	if (!mobj) {
558 		res = TEE_ERROR_OUT_OF_MEMORY;
559 		goto err_free_tee_mm;
560 	}
561 
562 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
563 	if (res)
564 		goto err_free_mobj;
565 
566 	/* Map memory area for the SP binary */
567 	va = 0;
568 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
569 		     vm_flags, mobj, 0);
570 	if (res)
571 		goto err_free_mobj;
572 
573 	/* Read SP binary into the previously mapped memory area */
574 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
575 	if (res)
576 		goto err_unmap;
577 
578 	/* Set memory protection to allow execution */
579 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
580 	if (res)
581 		goto err_unmap;
582 
583 	mobj_put(mobj);
584 	store_ops->close(handle);
585 
586 	/* The entry point must be at the beginning of the SP binary. */
587 	uctx->entry_func = va;
588 	uctx->load_addr = va;
589 	uctx->is_32bit = false;
590 
591 	s->handle_scall = s->ctx->ops->handle_scall;
592 
593 	return TEE_SUCCESS;
594 
595 err_unmap:
596 	vm_unmap(uctx, va, bin_size_rounded);
597 
598 err_free_mobj:
599 	mobj_put(mobj);
600 
601 err_free_tee_mm:
602 	tee_mm_free(mm);
603 
604 err:
605 	store_ops->close(handle);
606 
607 	return res;
608 }
609 
610 static TEE_Result sp_open_session(struct sp_session **sess,
611 				  struct sp_sessions_head *open_sessions,
612 				  const TEE_UUID *ffa_uuid,
613 				  const TEE_UUID *bin_uuid,
614 				  const uint32_t boot_order,
615 				  const void *fdt)
616 {
617 	TEE_Result res = TEE_SUCCESS;
618 	struct sp_session *s = NULL;
619 	struct sp_ctx *ctx = NULL;
620 	bool is_elf_format = false;
621 
622 	if (!find_secure_partition(bin_uuid))
623 		return TEE_ERROR_ITEM_NOT_FOUND;
624 
625 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
626 	if (res != TEE_SUCCESS) {
627 		DMSG("sp_create_session failed %#"PRIx32, res);
628 		return res;
629 	}
630 
631 	ctx = to_sp_ctx(s->ts_sess.ctx);
632 	assert(ctx);
633 	if (!ctx)
634 		return TEE_ERROR_TARGET_DEAD;
635 	*sess = s;
636 
637 	ts_push_current_session(&s->ts_sess);
638 
639 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
640 	if (res == TEE_SUCCESS) {
641 		if (is_elf_format) {
642 			/* Load the SP using ldelf. */
643 			ldelf_load_ldelf(&ctx->uctx);
644 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
645 		} else {
646 			/* Raw binary format SP */
647 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
648 		}
649 	} else {
650 		EMSG("Failed to detect SP format");
651 	}
652 
653 	if (res != TEE_SUCCESS) {
654 		EMSG("Failed loading SP  %#"PRIx32, res);
655 		ts_pop_current_session();
656 		return TEE_ERROR_TARGET_DEAD;
657 	}
658 
659 	/*
660 	 * Make the SP ready for its first run.
661 	 * Set state to busy to prevent other endpoints from sending messages to
662 	 * the SP before its boot phase is done.
663 	 */
664 	s->state = sp_busy;
665 	s->caller_id = 0;
666 	sp_init_set_registers(ctx);
667 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
668 	ts_pop_current_session();
669 
670 	return TEE_SUCCESS;
671 }
672 
673 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
674 {
675 	const struct fdt_property *description = NULL;
676 	int description_name_len = 0;
677 
678 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
679 		EMSG("Failed loading SP, manifest not found");
680 		return TEE_ERROR_BAD_PARAMETERS;
681 	}
682 
683 	description = fdt_get_property(fdt, 0, "description",
684 				       &description_name_len);
685 	if (description)
686 		DMSG("Loading SP: %s", description->data);
687 
688 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
689 		EMSG("Missing or invalid UUID in SP manifest");
690 		return TEE_ERROR_BAD_FORMAT;
691 	}
692 
693 	return TEE_SUCCESS;
694 }
695 
696 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
697 				   void **fdt_copy, size_t *mapped_size)
698 {
699 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
700 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
701 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
702 	TEE_Result res = TEE_SUCCESS;
703 	struct mobj *m = NULL;
704 	struct fobj *f = NULL;
705 	vaddr_t va = 0;
706 
707 	f = fobj_sec_mem_alloc(num_pages);
708 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
709 	fobj_put(f);
710 	if (!m)
711 		return TEE_ERROR_OUT_OF_MEMORY;
712 
713 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
714 	mobj_put(m);
715 	if (res)
716 		return res;
717 
718 	if (fdt_open_into(fdt, (void *)va, total_size))
719 		return TEE_ERROR_GENERIC;
720 
721 	*fdt_copy = (void *)va;
722 	*mapped_size = total_size;
723 
724 	return res;
725 }
726 
727 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
728 {
729 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
730 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
731 
732 	memcpy(&info->magic, "FF-A", 4);
733 	info->count = 1;
734 
735 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
736 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
737 	info->nvp[0].value = (uintptr_t)fdt;
738 	info->nvp[0].size = fdt_totalsize(fdt);
739 }
740 
741 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt, uint32_t vers)
742 {
743 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
744 	struct ffa_boot_info_header_1_1 *header =
745 		(struct ffa_boot_info_header_1_1 *)buf;
746 	struct ffa_boot_info_1_1 *desc =
747 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
748 
749 	header->signature = FFA_BOOT_INFO_SIGNATURE;
750 	header->version = vers;
751 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
752 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
753 	header->desc_count = 1;
754 	header->desc_offset = desc_offs;
755 
756 	memset(&desc[0].name, 0, sizeof(desc[0].name));
757 	/* Type: Standard boot info (bit[7] == 0), FDT type */
758 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
759 	/* Flags: Contents field contains an address */
760 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
761 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
762 	desc[0].size = fdt_totalsize(fdt);
763 	desc[0].contents = (uintptr_t)fdt;
764 }
765 
766 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
767 					   struct thread_smc_1_2_regs *args,
768 					   vaddr_t *va, size_t *mapped_size,
769 					   uint32_t sp_ffa_version)
770 {
771 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
772 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
773 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
774 	TEE_Result res = TEE_SUCCESS;
775 	struct fobj *f = NULL;
776 	struct mobj *m = NULL;
777 	uint32_t info_reg = 0;
778 
779 	f = fobj_sec_mem_alloc(num_pages);
780 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
781 	fobj_put(f);
782 	if (!m)
783 		return TEE_ERROR_OUT_OF_MEMORY;
784 
785 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
786 	mobj_put(m);
787 	if (res)
788 		return res;
789 
790 	*mapped_size = total_size;
791 
792 	switch (sp_ffa_version) {
793 	case MAKE_FFA_VERSION(1, 0):
794 		fill_boot_info_1_0(*va, fdt);
795 		break;
796 	case MAKE_FFA_VERSION(1, 1):
797 	case MAKE_FFA_VERSION(1, 2):
798 		fill_boot_info_1_1(*va, fdt, sp_ffa_version);
799 		break;
800 	default:
801 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
802 		return TEE_ERROR_NOT_SUPPORTED;
803 	}
804 
805 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
806 	if (res) {
807 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
808 			/* If the property is not present, set default to x0 */
809 			info_reg = 0;
810 		} else {
811 			return TEE_ERROR_BAD_FORMAT;
812 		}
813 	}
814 
815 	switch (info_reg) {
816 	case 0:
817 		args->a0 = *va;
818 		break;
819 	case 1:
820 		args->a1 = *va;
821 		break;
822 	case 2:
823 		args->a2 = *va;
824 		break;
825 	case 3:
826 		args->a3 = *va;
827 		break;
828 	default:
829 		EMSG("Invalid register selected for passing boot info");
830 		return TEE_ERROR_BAD_FORMAT;
831 	}
832 
833 	return TEE_SUCCESS;
834 }
835 
836 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
837 						       const void *fdt)
838 {
839 	int node = 0;
840 	int subnode = 0;
841 	tee_mm_entry_t *mm = NULL;
842 	TEE_Result res = TEE_SUCCESS;
843 
844 	/*
845 	 * Memory regions are optional in the SP manifest, it's not an error if
846 	 * we don't find any.
847 	 */
848 	node = fdt_node_offset_by_compatible(fdt, 0,
849 					     "arm,ffa-manifest-memory-regions");
850 	if (node < 0)
851 		return TEE_SUCCESS;
852 
853 	fdt_for_each_subnode(subnode, fdt, node) {
854 		uint64_t load_rel_offset = 0;
855 		uint32_t attributes = 0;
856 		uint64_t base_addr = 0;
857 		uint32_t pages_cnt = 0;
858 		uint32_t flags = 0;
859 		uint32_t perm = 0;
860 		size_t size = 0;
861 		vaddr_t va = 0;
862 
863 		mm = NULL;
864 
865 		/* Load address relative offset of a memory region */
866 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
867 				   &load_rel_offset)) {
868 			va = ctx->uctx.load_addr + load_rel_offset;
869 		} else {
870 			/* Skip non load address relative memory regions */
871 			continue;
872 		}
873 
874 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
875 			EMSG("Both base-address and load-address-relative-offset fields are set");
876 			return TEE_ERROR_BAD_FORMAT;
877 		}
878 
879 		/* Size of memory region as count of 4K pages */
880 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
881 			EMSG("Mandatory field is missing: pages-count");
882 			return TEE_ERROR_BAD_FORMAT;
883 		}
884 
885 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
886 			return TEE_ERROR_OVERFLOW;
887 
888 		/* Memory region attributes  */
889 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
890 			EMSG("Mandatory field is missing: attributes");
891 			return TEE_ERROR_BAD_FORMAT;
892 		}
893 
894 		/* Check instruction and data access permissions */
895 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
896 		case SP_MANIFEST_ATTR_RO:
897 			perm = TEE_MATTR_UR;
898 			break;
899 		case SP_MANIFEST_ATTR_RW:
900 			perm = TEE_MATTR_URW;
901 			break;
902 		case SP_MANIFEST_ATTR_RX:
903 			perm = TEE_MATTR_URX;
904 			break;
905 		default:
906 			EMSG("Invalid memory access permissions");
907 			return TEE_ERROR_BAD_FORMAT;
908 		}
909 
910 		if (IS_ENABLED(CFG_TA_BTI) &&
911 		    attributes & SP_MANIFEST_ATTR_GP) {
912 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
913 				EMSG("Guard only executable region");
914 				return TEE_ERROR_BAD_FORMAT;
915 			}
916 			perm |= TEE_MATTR_GUARDED;
917 		}
918 
919 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
920 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
921 			EMSG("Optional field with invalid value: flags");
922 			return TEE_ERROR_BAD_FORMAT;
923 		}
924 
925 		/* Load relative regions must be secure */
926 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
927 			EMSG("Invalid memory security attribute");
928 			return TEE_ERROR_BAD_FORMAT;
929 		}
930 
931 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
932 			/*
933 			 * NOBITS flag is set, which means that loaded binary
934 			 * doesn't contain this area, so it's need to be
935 			 * allocated.
936 			 */
937 			struct mobj *m = NULL;
938 			unsigned int idx = 0;
939 
940 			mm = phys_mem_ta_alloc(size);
941 			if (!mm)
942 				return TEE_ERROR_OUT_OF_MEMORY;
943 
944 			base_addr = tee_mm_get_smem(mm);
945 
946 			m = sp_mem_new_mobj(pages_cnt,
947 					    TEE_MATTR_MEM_TYPE_CACHED, true);
948 			if (!m) {
949 				res = TEE_ERROR_OUT_OF_MEMORY;
950 				goto err_mm_free;
951 			}
952 
953 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
954 			if (res) {
955 				mobj_put(m);
956 				goto err_mm_free;
957 			}
958 
959 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
960 			mobj_put(m);
961 			if (res)
962 				goto err_mm_free;
963 		} else {
964 			/*
965 			 * If NOBITS is not present the memory area is already
966 			 * mapped and only need to set the correct permissions.
967 			 */
968 			res = vm_set_prot(&ctx->uctx, va, size, perm);
969 			if (res)
970 				return res;
971 		}
972 	}
973 
974 	return TEE_SUCCESS;
975 
976 err_mm_free:
977 	tee_mm_free(mm);
978 	return res;
979 }
980 
981 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
982 {
983 	int node = 0;
984 	int subnode = 0;
985 	TEE_Result res = TEE_SUCCESS;
986 	const char *dt_device_match_table = {
987 		"arm,ffa-manifest-device-regions",
988 	};
989 
990 	/*
991 	 * Device regions are optional in the SP manifest, it's not an error if
992 	 * we don't find any
993 	 */
994 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
995 	if (node < 0)
996 		return TEE_SUCCESS;
997 
998 	fdt_for_each_subnode(subnode, fdt, node) {
999 		uint64_t base_addr = 0;
1000 		uint32_t pages_cnt = 0;
1001 		uint32_t attributes = 0;
1002 		struct mobj *m = NULL;
1003 		bool is_secure = true;
1004 		uint32_t perm = 0;
1005 		vaddr_t va = 0;
1006 		unsigned int idx = 0;
1007 
1008 		/*
1009 		 * Physical base address of a device MMIO region.
1010 		 * Currently only physically contiguous region is supported.
1011 		 */
1012 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
1013 			EMSG("Mandatory field is missing: base-address");
1014 			return TEE_ERROR_BAD_FORMAT;
1015 		}
1016 
1017 		/* Total size of MMIO region as count of 4K pages */
1018 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1019 			EMSG("Mandatory field is missing: pages-count");
1020 			return TEE_ERROR_BAD_FORMAT;
1021 		}
1022 
1023 		/* Data access, instruction access and security attributes */
1024 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1025 			EMSG("Mandatory field is missing: attributes");
1026 			return TEE_ERROR_BAD_FORMAT;
1027 		}
1028 
1029 		/* Check instruction and data access permissions */
1030 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1031 		case SP_MANIFEST_ATTR_RO:
1032 			perm = TEE_MATTR_UR;
1033 			break;
1034 		case SP_MANIFEST_ATTR_RW:
1035 			perm = TEE_MATTR_URW;
1036 			break;
1037 		default:
1038 			EMSG("Invalid memory access permissions");
1039 			return TEE_ERROR_BAD_FORMAT;
1040 		}
1041 
1042 		/*
1043 		 * The SP is a secure endpoint, security attribute can be
1044 		 * secure or non-secure
1045 		 */
1046 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1047 			is_secure = false;
1048 
1049 		/* Memory attributes must be Device-nGnRnE */
1050 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1051 				    is_secure);
1052 		if (!m)
1053 			return TEE_ERROR_OUT_OF_MEMORY;
1054 
1055 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1056 		if (res) {
1057 			mobj_put(m);
1058 			return res;
1059 		}
1060 
1061 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1062 			     perm, 0, m, 0);
1063 		mobj_put(m);
1064 		if (res)
1065 			return res;
1066 
1067 		/*
1068 		 * Overwrite the device region's PA in the fdt with the VA. This
1069 		 * fdt will be passed to the SP.
1070 		 */
1071 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1072 
1073 		/*
1074 		 * Unmap the region if the overwrite failed since the SP won't
1075 		 * be able to access it without knowing the VA.
1076 		 */
1077 		if (res) {
1078 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1079 			return res;
1080 		}
1081 	}
1082 
1083 	return TEE_SUCCESS;
1084 }
1085 
1086 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1087 				    uint32_t new_endpoint_id)
1088 {
1089 	struct sp_session *session = sp_get_session(endpoint_id);
1090 	uint32_t manifest_endpoint_id = 0;
1091 
1092 	/*
1093 	 * We don't know in which order the SPs are loaded. The endpoint ID
1094 	 * defined in the manifest could already be generated by
1095 	 * new_session_id() and used by another SP. If this is the case, we swap
1096 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1097 	 * not defined twice in the manifest.
1098 	 */
1099 
1100 	/* The endpoint ID was not assigned yet */
1101 	if (!session)
1102 		return TEE_SUCCESS;
1103 
1104 	/*
1105 	 * Read the manifest file from the SP who originally had the endpoint.
1106 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1107 	 * have an endpoint ID defined.
1108 	 */
1109 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1110 		assert(manifest_endpoint_id == endpoint_id);
1111 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1112 		return TEE_ERROR_ACCESS_CONFLICT;
1113 	}
1114 
1115 	session->endpoint_id = new_endpoint_id;
1116 
1117 	return TEE_SUCCESS;
1118 }
1119 
1120 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1121 {
1122 	uint32_t endpoint_id = 0;
1123 
1124 	/*
1125 	 * The endpoint ID can be optionally defined in the manifest file. We
1126 	 * have to map the ID inside the manifest to the SP if it's defined.
1127 	 * If not, the endpoint ID generated inside new_session_id() will be
1128 	 * used.
1129 	 */
1130 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1131 		TEE_Result res = TEE_ERROR_GENERIC;
1132 
1133 		if (!endpoint_id_is_valid(endpoint_id)) {
1134 			EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id);
1135 			return TEE_ERROR_BAD_FORMAT;
1136 		}
1137 
1138 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1139 		if (res)
1140 			return res;
1141 
1142 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1143 		     endpoint_id);
1144 		/* Assign the endpoint ID to the current SP */
1145 		s->endpoint_id = endpoint_id;
1146 	}
1147 	return TEE_SUCCESS;
1148 }
1149 
1150 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1151 {
1152 	int node = 0;
1153 	int subnode = 0;
1154 	tee_mm_entry_t *mm = NULL;
1155 	TEE_Result res = TEE_SUCCESS;
1156 
1157 	/*
1158 	 * Memory regions are optional in the SP manifest, it's not an error if
1159 	 * we don't find any.
1160 	 */
1161 	node = fdt_node_offset_by_compatible(fdt, 0,
1162 					     "arm,ffa-manifest-memory-regions");
1163 	if (node < 0)
1164 		return TEE_SUCCESS;
1165 
1166 	fdt_for_each_subnode(subnode, fdt, node) {
1167 		uint64_t load_rel_offset = 0;
1168 		bool alloc_needed = false;
1169 		uint32_t attributes = 0;
1170 		uint64_t base_addr = 0;
1171 		uint32_t pages_cnt = 0;
1172 		bool is_secure = true;
1173 		struct mobj *m = NULL;
1174 		unsigned int idx = 0;
1175 		uint32_t perm = 0;
1176 		size_t size = 0;
1177 		vaddr_t va = 0;
1178 
1179 		mm = NULL;
1180 
1181 		/* Load address relative offset of a memory region */
1182 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1183 				   &load_rel_offset)) {
1184 			/*
1185 			 * At this point the memory region is already mapped by
1186 			 * handle_fdt_load_relative_mem_regions.
1187 			 * Only need to set the base-address in the manifest and
1188 			 * then skip the rest of the mapping process.
1189 			 */
1190 			va = ctx->uctx.load_addr + load_rel_offset;
1191 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1192 			if (res)
1193 				return res;
1194 
1195 			continue;
1196 		}
1197 
1198 		/*
1199 		 * Base address of a memory region.
1200 		 * If not present, we have to allocate the specified memory.
1201 		 * If present, this field could specify a PA or VA. Currently
1202 		 * only a PA is supported.
1203 		 */
1204 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1205 			alloc_needed = true;
1206 
1207 		/* Size of memory region as count of 4K pages */
1208 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1209 			EMSG("Mandatory field is missing: pages-count");
1210 			return TEE_ERROR_BAD_FORMAT;
1211 		}
1212 
1213 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1214 			return TEE_ERROR_OVERFLOW;
1215 
1216 		/*
1217 		 * Memory region attributes:
1218 		 * - Instruction/data access permissions
1219 		 * - Cacheability/shareability attributes
1220 		 * - Security attributes
1221 		 *
1222 		 * Cacheability/shareability attributes can be ignored for now.
1223 		 * OP-TEE only supports a single type for normal cached memory
1224 		 * and currently there is no use case that would require to
1225 		 * change this.
1226 		 */
1227 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1228 			EMSG("Mandatory field is missing: attributes");
1229 			return TEE_ERROR_BAD_FORMAT;
1230 		}
1231 
1232 		/* Check instruction and data access permissions */
1233 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1234 		case SP_MANIFEST_ATTR_RO:
1235 			perm = TEE_MATTR_UR;
1236 			break;
1237 		case SP_MANIFEST_ATTR_RW:
1238 			perm = TEE_MATTR_URW;
1239 			break;
1240 		case SP_MANIFEST_ATTR_RX:
1241 			perm = TEE_MATTR_URX;
1242 			break;
1243 		default:
1244 			EMSG("Invalid memory access permissions");
1245 			return TEE_ERROR_BAD_FORMAT;
1246 		}
1247 
1248 		if (IS_ENABLED(CFG_TA_BTI) &&
1249 		    attributes & SP_MANIFEST_ATTR_GP) {
1250 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
1251 				EMSG("Guard only executable region");
1252 				return TEE_ERROR_BAD_FORMAT;
1253 			}
1254 			perm |= TEE_MATTR_GUARDED;
1255 		}
1256 
1257 		/*
1258 		 * The SP is a secure endpoint, security attribute can be
1259 		 * secure or non-secure.
1260 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1261 		 * address is missing this attribute must be secure.
1262 		 */
1263 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1264 			if (alloc_needed) {
1265 				EMSG("Invalid memory security attribute");
1266 				return TEE_ERROR_BAD_FORMAT;
1267 			}
1268 			is_secure = false;
1269 		}
1270 
1271 		if (alloc_needed) {
1272 			/* Base address is missing, we have to allocate */
1273 			mm = phys_mem_ta_alloc(size);
1274 			if (!mm)
1275 				return TEE_ERROR_OUT_OF_MEMORY;
1276 
1277 			base_addr = tee_mm_get_smem(mm);
1278 		}
1279 
1280 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1281 				    is_secure);
1282 		if (!m) {
1283 			res = TEE_ERROR_OUT_OF_MEMORY;
1284 			goto err_mm_free;
1285 		}
1286 
1287 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1288 		if (res) {
1289 			mobj_put(m);
1290 			goto err_mm_free;
1291 		}
1292 
1293 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1294 		mobj_put(m);
1295 		if (res)
1296 			goto err_mm_free;
1297 
1298 		/*
1299 		 * Overwrite the memory region's base address in the fdt with
1300 		 * the VA. This fdt will be passed to the SP.
1301 		 * If the base-address field was not present in the original
1302 		 * fdt, this function will create it. This doesn't cause issues
1303 		 * since the necessary extra space has been allocated when
1304 		 * opening the fdt.
1305 		 */
1306 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1307 
1308 		/*
1309 		 * Unmap the region if the overwrite failed since the SP won't
1310 		 * be able to access it without knowing the VA.
1311 		 */
1312 		if (res) {
1313 			vm_unmap(&ctx->uctx, va, size);
1314 			goto err_mm_free;
1315 		}
1316 	}
1317 
1318 	return TEE_SUCCESS;
1319 
1320 err_mm_free:
1321 	tee_mm_free(mm);
1322 	return res;
1323 }
1324 
1325 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1326 {
1327 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1328 	uint32_t dummy_size __maybe_unused = 0;
1329 	TEE_Result res = TEE_SUCCESS;
1330 	size_t page_count = 0;
1331 	struct fobj *f = NULL;
1332 	struct mobj *m = NULL;
1333 	vaddr_t log_addr = 0;
1334 	size_t log_size = 0;
1335 	int node = 0;
1336 
1337 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1338 	if (node < 0)
1339 		return TEE_SUCCESS;
1340 
1341 	/* Checking the existence and size of the event log properties */
1342 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1343 		EMSG("tpm_event_log_addr not found or has invalid size");
1344 		return TEE_ERROR_BAD_FORMAT;
1345 	}
1346 
1347 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1348 		EMSG("tpm_event_log_size not found or has invalid size");
1349 		return TEE_ERROR_BAD_FORMAT;
1350 	}
1351 
1352 	/* Validating event log */
1353 	res = tpm_get_event_log_size(&log_size);
1354 	if (res)
1355 		return res;
1356 
1357 	if (!log_size) {
1358 		EMSG("Empty TPM event log was provided");
1359 		return TEE_ERROR_ITEM_NOT_FOUND;
1360 	}
1361 
1362 	/* Allocating memory area for the event log to share with the SP */
1363 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1364 
1365 	f = fobj_sec_mem_alloc(page_count);
1366 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1367 	fobj_put(f);
1368 	if (!m)
1369 		return TEE_ERROR_OUT_OF_MEMORY;
1370 
1371 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1372 	mobj_put(m);
1373 	if (res)
1374 		return res;
1375 
1376 	/* Copy event log */
1377 	res = tpm_get_event_log((void *)log_addr, &log_size);
1378 	if (res)
1379 		goto err_unmap;
1380 
1381 	/* Setting event log details in the manifest */
1382 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1383 	if (res)
1384 		goto err_unmap;
1385 
1386 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1387 	if (res)
1388 		goto err_unmap;
1389 
1390 	return TEE_SUCCESS;
1391 
1392 err_unmap:
1393 	vm_unmap(&ctx->uctx, log_addr, log_size);
1394 
1395 	return res;
1396 }
1397 
1398 /*
1399  * Note: this function is called only on the primary CPU. It assumes that the
1400  * features present on the primary CPU are available on all of the secondary
1401  * CPUs as well.
1402  */
1403 static TEE_Result handle_hw_features(void *fdt)
1404 {
1405 	uint32_t val __maybe_unused = 0;
1406 	TEE_Result res = TEE_SUCCESS;
1407 	int node = 0;
1408 
1409 	/*
1410 	 * HW feature descriptions are optional in the SP manifest, it's not an
1411 	 * error if we don't find any.
1412 	 */
1413 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1414 	if (node < 0)
1415 		return TEE_SUCCESS;
1416 
1417 	/* Modify the crc32 property only if it's already present */
1418 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1419 		res = fdt_setprop_u32(fdt, node, "crc32",
1420 				      feat_crc32_implemented());
1421 		if (res)
1422 			return res;
1423 	}
1424 
1425 	/* Modify the property only if it's already present */
1426 	if (!sp_dt_get_u32(fdt, node, "bti", &val)) {
1427 		res = fdt_setprop_u32(fdt, node, "bti",
1428 				      feat_bti_is_implemented());
1429 		if (res)
1430 			return res;
1431 	}
1432 
1433 	/* Modify the property only if it's already present */
1434 	if (!sp_dt_get_u32(fdt, node, "pauth", &val)) {
1435 		res = fdt_setprop_u32(fdt, node, "pauth",
1436 				      feat_pauth_is_implemented());
1437 		if (res)
1438 			return res;
1439 	}
1440 
1441 	return TEE_SUCCESS;
1442 }
1443 
1444 static TEE_Result read_ns_interrupts_action(const void *fdt,
1445 					    struct sp_session *s)
1446 {
1447 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1448 
1449 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1450 
1451 	if (res) {
1452 		EMSG("Mandatory property is missing: ns-interrupts-action");
1453 		return res;
1454 	}
1455 
1456 	switch (s->ns_int_mode) {
1457 	case SP_MANIFEST_NS_INT_QUEUED:
1458 	case SP_MANIFEST_NS_INT_SIGNALED:
1459 		/* OK */
1460 		break;
1461 
1462 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1463 		EMSG("Managed exit is not implemented");
1464 		return TEE_ERROR_NOT_IMPLEMENTED;
1465 
1466 	default:
1467 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1468 		     s->ns_int_mode);
1469 		return TEE_ERROR_BAD_PARAMETERS;
1470 	}
1471 
1472 	return TEE_SUCCESS;
1473 }
1474 
1475 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s)
1476 {
1477 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1478 	uint32_t ffa_version = 0;
1479 
1480 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version);
1481 	if (res) {
1482 		EMSG("Mandatory property is missing: ffa-version");
1483 		return res;
1484 	}
1485 
1486 	if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) {
1487 		EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version);
1488 		return TEE_ERROR_BAD_PARAMETERS;
1489 	}
1490 
1491 	s->rxtx.ffa_vers = ffa_version;
1492 
1493 	return TEE_SUCCESS;
1494 }
1495 
1496 static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s)
1497 {
1498 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1499 	uint32_t exec_state = 0;
1500 
1501 	res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state);
1502 	if (res) {
1503 		EMSG("Mandatory property is missing: execution-state");
1504 		return res;
1505 	}
1506 
1507 	/* Currently only AArch64 SPs are supported */
1508 	if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) {
1509 		s->props |= FFA_PART_PROP_AARCH64_STATE;
1510 	} else {
1511 		EMSG("Invalid execution-state value: %"PRIu32, exec_state);
1512 		return TEE_ERROR_BAD_PARAMETERS;
1513 	}
1514 
1515 	return TEE_SUCCESS;
1516 }
1517 
1518 static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s)
1519 {
1520 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1521 	uint32_t msg_method = 0;
1522 
1523 	res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method);
1524 	if (res) {
1525 		EMSG("Mandatory property is missing: messaging-method");
1526 		return res;
1527 	}
1528 
1529 	if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE)
1530 		s->props |= FFA_PART_PROP_DIRECT_REQ_RECV;
1531 
1532 	if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND)
1533 		s->props |= FFA_PART_PROP_DIRECT_REQ_SEND;
1534 
1535 	if (msg_method & SP_MANIFEST_INDIRECT_REQ)
1536 		IMSG("Indirect messaging is not supported");
1537 
1538 	return TEE_SUCCESS;
1539 }
1540 
1541 static TEE_Result read_vm_availability_msg(const void *fdt,
1542 					   struct sp_session *s)
1543 {
1544 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1545 	uint32_t v = 0;
1546 
1547 	res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v);
1548 
1549 	/* This field in the manifest is optional */
1550 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1551 		return TEE_SUCCESS;
1552 
1553 	if (res)
1554 		return res;
1555 
1556 	if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) {
1557 		EMSG("Invalid vm-availability-messages value: %"PRIu32, v);
1558 		return TEE_ERROR_BAD_PARAMETERS;
1559 	}
1560 
1561 	if (v & SP_MANIFEST_VM_CREATED_MSG)
1562 		s->props |= FFA_PART_PROP_NOTIF_CREATED;
1563 
1564 	if (v & SP_MANIFEST_VM_DESTROYED_MSG)
1565 		s->props |= FFA_PART_PROP_NOTIF_DESTROYED;
1566 
1567 	return TEE_SUCCESS;
1568 }
1569 
1570 static TEE_Result get_boot_order(const void *fdt, uint32_t *boot_order)
1571 {
1572 	TEE_Result res = TEE_SUCCESS;
1573 
1574 	res = sp_dt_get_u32(fdt, 0, "boot-order", boot_order);
1575 
1576 	if (res == TEE_SUCCESS) {
1577 		if (*boot_order > UINT16_MAX) {
1578 			EMSG("Value of boot-order property (%"PRIu32") is out of range",
1579 			     *boot_order);
1580 			res = TEE_ERROR_BAD_FORMAT;
1581 		}
1582 	} else if (res == TEE_ERROR_BAD_FORMAT) {
1583 		uint16_t boot_order_u16 = 0;
1584 
1585 		res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order_u16);
1586 		if (res == TEE_SUCCESS)
1587 			*boot_order = boot_order_u16;
1588 	}
1589 
1590 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1591 		*boot_order = UNDEFINED_BOOT_ORDER_VALUE;
1592 	else if (res != TEE_SUCCESS)
1593 		EMSG("Failed reading boot-order property err: %#"PRIx32, res);
1594 
1595 	return res;
1596 }
1597 
1598 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1599 {
1600 	TEE_Result res = TEE_SUCCESS;
1601 	struct sp_session *sess = NULL;
1602 	TEE_UUID ffa_uuid = {};
1603 	uint32_t boot_order = 0;
1604 
1605 	res = fdt_get_uuid(fdt, &ffa_uuid);
1606 	if (res)
1607 		return res;
1608 
1609 	res = get_boot_order(fdt, &boot_order);
1610 	if (res)
1611 		return res;
1612 
1613 	res = sp_open_session(&sess,
1614 			      &open_sp_sessions,
1615 			      &ffa_uuid, bin_uuid, boot_order, fdt);
1616 	if (res)
1617 		return res;
1618 
1619 	sess->fdt = fdt;
1620 
1621 	res = read_manifest_endpoint_id(sess);
1622 	if (res)
1623 		return res;
1624 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1625 
1626 	res = read_ns_interrupts_action(fdt, sess);
1627 	if (res)
1628 		return res;
1629 
1630 	res = read_ffa_version(fdt, sess);
1631 	if (res)
1632 		return res;
1633 
1634 	res = read_sp_exec_state(fdt, sess);
1635 	if (res)
1636 		return res;
1637 
1638 	res = read_sp_msg_types(fdt, sess);
1639 	if (res)
1640 		return res;
1641 
1642 	res = read_vm_availability_msg(fdt, sess);
1643 	if (res)
1644 		return res;
1645 
1646 	return TEE_SUCCESS;
1647 }
1648 
1649 static TEE_Result sp_first_run(struct sp_session *sess)
1650 {
1651 	TEE_Result res = TEE_SUCCESS;
1652 	struct thread_smc_1_2_regs args = { };
1653 	struct sp_ctx *ctx = NULL;
1654 	vaddr_t boot_info_va = 0;
1655 	size_t boot_info_size = 0;
1656 	void *fdt_copy = NULL;
1657 	size_t fdt_size = 0;
1658 
1659 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1660 	ts_push_current_session(&sess->ts_sess);
1661 	sess->is_initialized = false;
1662 
1663 	/*
1664 	 * Load relative memory regions must be handled before doing any other
1665 	 * mapping to prevent conflicts in the VA space.
1666 	 */
1667 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1668 	if (res) {
1669 		ts_pop_current_session();
1670 		return res;
1671 	}
1672 
1673 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1674 	if (res)
1675 		goto out;
1676 
1677 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1678 	if (res)
1679 		goto out;
1680 
1681 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1682 	if (res)
1683 		goto out;
1684 
1685 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1686 		res = handle_tpm_event_log(ctx, fdt_copy);
1687 		if (res)
1688 			goto out;
1689 	}
1690 
1691 	res = handle_hw_features(fdt_copy);
1692 	if (res)
1693 		goto out;
1694 
1695 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1696 				       &boot_info_size, sess->rxtx.ffa_vers);
1697 	if (res)
1698 		goto out;
1699 
1700 	ts_pop_current_session();
1701 
1702 	res = sp_enter(&args, sess);
1703 	if (res) {
1704 		ts_push_current_session(&sess->ts_sess);
1705 		goto out;
1706 	}
1707 
1708 	spmc_sp_msg_handler(&args, sess);
1709 
1710 	ts_push_current_session(&sess->ts_sess);
1711 	sess->is_initialized = true;
1712 
1713 out:
1714 	/* Free the boot info page from the SP memory */
1715 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1716 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1717 	ts_pop_current_session();
1718 
1719 	return res;
1720 }
1721 
1722 TEE_Result sp_enter(struct thread_smc_1_2_regs *args, struct sp_session *sp)
1723 {
1724 	TEE_Result res = TEE_SUCCESS;
1725 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1726 
1727 	ctx->sp_regs.x[0] = args->a0;
1728 	ctx->sp_regs.x[1] = args->a1;
1729 	ctx->sp_regs.x[2] = args->a2;
1730 	ctx->sp_regs.x[3] = args->a3;
1731 	ctx->sp_regs.x[4] = args->a4;
1732 	ctx->sp_regs.x[5] = args->a5;
1733 	ctx->sp_regs.x[6] = args->a6;
1734 	ctx->sp_regs.x[7] = args->a7;
1735 #ifdef CFG_TA_PAUTH
1736 	ctx->sp_regs.apiakey_hi = ctx->uctx.keys.apia_hi;
1737 	ctx->sp_regs.apiakey_lo = ctx->uctx.keys.apia_lo;
1738 #endif
1739 
1740 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1741 
1742 	args->a0 = ctx->sp_regs.x[0];
1743 	args->a1 = ctx->sp_regs.x[1];
1744 	args->a2 = ctx->sp_regs.x[2];
1745 	args->a3 = ctx->sp_regs.x[3];
1746 	args->a4 = ctx->sp_regs.x[4];
1747 	args->a5 = ctx->sp_regs.x[5];
1748 	args->a6 = ctx->sp_regs.x[6];
1749 	args->a7 = ctx->sp_regs.x[7];
1750 
1751 	return res;
1752 }
1753 
1754 /*
1755  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1756  * active on NS interrupt than the callee, the callee must inherit the caller's
1757  * configuration.
1758  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1759  * action will be MIN([self action], [caller's action]) which is stored in the
1760  * ns_int_mode_inherited field.
1761  */
1762 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1763 						 struct ts_session *caller,
1764 						 uint64_t *cpsr)
1765 {
1766 	if (caller) {
1767 		struct sp_session *caller_sp = to_sp_session(caller);
1768 
1769 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1770 					       s->ns_int_mode);
1771 	} else {
1772 		s->ns_int_mode_inherited = s->ns_int_mode;
1773 	}
1774 
1775 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1776 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1777 				   ARM32_CPSR_F_SHIFT);
1778 	else
1779 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1780 				    ARM32_CPSR_F_SHIFT);
1781 }
1782 
1783 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1784 				      uint32_t cmd __unused)
1785 {
1786 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1787 	TEE_Result res = TEE_SUCCESS;
1788 	uint32_t exceptions = 0;
1789 	struct sp_session *sp_s = to_sp_session(s);
1790 	struct ts_session *sess = NULL;
1791 	struct thread_ctx_regs *sp_regs = NULL;
1792 	uint32_t thread_id = THREAD_ID_INVALID;
1793 	struct ts_session *caller = NULL;
1794 	uint32_t rpc_target_info = 0;
1795 	uint32_t panicked = false;
1796 	uint32_t panic_code = 0;
1797 
1798 	sp_regs = &ctx->sp_regs;
1799 	ts_push_current_session(s);
1800 
1801 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1802 
1803 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1804 	caller = ts_get_calling_session();
1805 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1806 
1807 	/*
1808 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1809 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1810 	 */
1811 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1812 	thread_id = thread_get_id();
1813 	assert(thread_id <= UINT16_MAX);
1814 	thread_get_tsd()->rpc_target_info =
1815 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1816 
1817 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1818 
1819 	/* Restore rpc_target_info */
1820 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1821 
1822 	thread_unmask_exceptions(exceptions);
1823 
1824 	thread_user_clear_vfp(&ctx->uctx);
1825 
1826 	if (panicked) {
1827 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1828 		abort_print_current_ts();
1829 
1830 		sess = ts_pop_current_session();
1831 		cpu_spin_lock(&sp_s->spinlock);
1832 		sp_s->state = sp_dead;
1833 		cpu_spin_unlock(&sp_s->spinlock);
1834 
1835 		return TEE_ERROR_TARGET_DEAD;
1836 	}
1837 
1838 	sess = ts_pop_current_session();
1839 	assert(sess == s);
1840 
1841 	return res;
1842 }
1843 
1844 /* We currently don't support 32 bits */
1845 #ifdef ARM64
1846 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1847 				   struct thread_ctx_regs *sp_regs)
1848 {
1849 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1850 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1851 	sp_regs->pc = regs->elr;
1852 	sp_regs->sp = regs->sp_el0;
1853 }
1854 #endif
1855 
1856 static bool sp_handle_scall(struct thread_scall_regs *regs)
1857 {
1858 	struct ts_session *ts = ts_get_current_session();
1859 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1860 	struct sp_session *s = uctx->open_session;
1861 
1862 	assert(s);
1863 
1864 	sp_svc_store_registers(regs, &uctx->sp_regs);
1865 
1866 	regs->x0 = 0;
1867 	regs->x1 = 0; /* panic */
1868 	regs->x2 = 0; /* panic code */
1869 
1870 	/*
1871 	 * All the registers of the SP are saved in the SP session by the SVC
1872 	 * handler.
1873 	 * We always return to S-El1 after handling the SVC. We will continue
1874 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1875 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1876 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1877 	 * afterward used by the spmc_sp_msg_handler() to handle the
1878 	 * FF-A message send by the SP.
1879 	 */
1880 	return false;
1881 }
1882 
1883 static void sp_dump_state(struct ts_ctx *ctx)
1884 {
1885 	struct sp_ctx *utc = to_sp_ctx(ctx);
1886 
1887 	if (utc->uctx.dump_entry_func) {
1888 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1889 
1890 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1891 			return;
1892 	}
1893 
1894 	user_mode_ctx_print_mappings(&utc->uctx);
1895 }
1896 
1897 static const struct ts_ops sp_ops = {
1898 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1899 	.handle_scall = sp_handle_scall,
1900 	.dump_state = sp_dump_state,
1901 };
1902 
1903 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1904 {
1905 	enum teecore_memtypes mtype = MEM_AREA_SEC_RAM_OVERALL;
1906 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1907 	struct fip_sp *sp = NULL;
1908 	uint64_t sp_fdt_end = 0;
1909 	size_t sp_pkg_size = 0;
1910 	vaddr_t sp_pkg_va = 0;
1911 
1912 	/* Process the first page which contains the SP package header */
1913 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1914 	if (!sp_pkg_va) {
1915 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1916 		return TEE_ERROR_GENERIC;
1917 	}
1918 
1919 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1920 
1921 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1922 		EMSG("Invalid SP package magic");
1923 		return TEE_ERROR_BAD_FORMAT;
1924 	}
1925 
1926 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1927 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1928 		EMSG("Invalid SP header version");
1929 		return TEE_ERROR_BAD_FORMAT;
1930 	}
1931 
1932 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1933 			 &sp_pkg_size)) {
1934 		EMSG("Invalid SP package size");
1935 		return TEE_ERROR_BAD_FORMAT;
1936 	}
1937 
1938 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1939 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1940 		EMSG("Invalid SP manifest size");
1941 		return TEE_ERROR_BAD_FORMAT;
1942 	}
1943 
1944 	/* Process the whole SP package now that the size is known */
1945 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1946 	if (!sp_pkg_va) {
1947 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1948 		return TEE_ERROR_GENERIC;
1949 	}
1950 
1951 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1952 
1953 	sp = calloc(1, sizeof(struct fip_sp));
1954 	if (!sp)
1955 		return TEE_ERROR_OUT_OF_MEMORY;
1956 
1957 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1958 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1959 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1960 	sp->sp_img.image.flags = 0;
1961 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1962 
1963 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1964 
1965 	return TEE_SUCCESS;
1966 }
1967 
1968 static TEE_Result fip_sp_init_all(void)
1969 {
1970 	TEE_Result res = TEE_SUCCESS;
1971 	uint64_t sp_pkg_addr = 0;
1972 	const void *fdt = NULL;
1973 	TEE_UUID sp_uuid = { };
1974 	int sp_pkgs_node = 0;
1975 	int subnode = 0;
1976 	int root = 0;
1977 
1978 	fdt = get_manifest_dt();
1979 	if (!fdt) {
1980 		EMSG("No SPMC manifest found");
1981 		return TEE_ERROR_GENERIC;
1982 	}
1983 
1984 	root = fdt_path_offset(fdt, "/");
1985 	if (root < 0)
1986 		return TEE_ERROR_BAD_FORMAT;
1987 
1988 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1989 		return TEE_ERROR_BAD_FORMAT;
1990 
1991 	/* SP packages are optional, it's not an error if we don't find any */
1992 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1993 	if (sp_pkgs_node < 0)
1994 		return TEE_SUCCESS;
1995 
1996 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1997 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1998 		if (res) {
1999 			EMSG("Invalid FIP SP load address");
2000 			return res;
2001 		}
2002 
2003 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
2004 		if (res) {
2005 			EMSG("Invalid FIP SP uuid");
2006 			return res;
2007 		}
2008 
2009 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
2010 		if (res) {
2011 			EMSG("Invalid FIP SP package");
2012 			return res;
2013 		}
2014 	}
2015 
2016 	return TEE_SUCCESS;
2017 }
2018 
2019 static void fip_sp_deinit_all(void)
2020 {
2021 	while (!STAILQ_EMPTY(&fip_sp_list)) {
2022 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
2023 
2024 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
2025 		free(sp);
2026 	}
2027 }
2028 
2029 static TEE_Result sp_init_all(void)
2030 {
2031 	TEE_Result res = TEE_SUCCESS;
2032 	const struct sp_image *sp = NULL;
2033 	const struct fip_sp *fip_sp = NULL;
2034 	char __maybe_unused msg[60] = { '\0', };
2035 	struct sp_session *s = NULL;
2036 	struct sp_session *prev_sp = NULL;
2037 
2038 	for_each_secure_partition(sp) {
2039 		if (sp->image.uncompressed_size)
2040 			snprintf(msg, sizeof(msg),
2041 				 " (compressed, uncompressed %u)",
2042 				 sp->image.uncompressed_size);
2043 		else
2044 			msg[0] = '\0';
2045 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
2046 		     sp->image.size, msg);
2047 
2048 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2049 
2050 		if (res != TEE_SUCCESS) {
2051 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2052 			     &sp->image.uuid, res);
2053 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2054 				panic();
2055 		}
2056 	}
2057 
2058 	res = fip_sp_init_all();
2059 	if (res)
2060 		panic("Failed initializing FIP SPs");
2061 
2062 	for_each_fip_sp(fip_sp) {
2063 		sp = &fip_sp->sp_img;
2064 
2065 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
2066 		     sp->image.size);
2067 
2068 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2069 
2070 		if (res != TEE_SUCCESS) {
2071 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2072 			     &sp->image.uuid, res);
2073 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2074 				panic();
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
2080 	 * loader, so the original images (loaded by BL2) are not needed anymore
2081 	 */
2082 	fip_sp_deinit_all();
2083 
2084 	/*
2085 	 * Now that all SPs are loaded, check through the boot order values,
2086 	 * and warn in case there is a non-unique value.
2087 	 */
2088 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2089 		/* Avoid warnings if multiple SP have undefined boot-order. */
2090 		if (s->boot_order == UNDEFINED_BOOT_ORDER_VALUE)
2091 			break;
2092 
2093 		if (prev_sp && prev_sp->boot_order == s->boot_order)
2094 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
2095 			     &prev_sp->ts_sess.ctx->uuid,
2096 			     &s->ts_sess.ctx->uuid);
2097 
2098 		prev_sp = s;
2099 	}
2100 
2101 	/* Continue the initialization and run the SP */
2102 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2103 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
2104 
2105 		res = sp_first_run(s);
2106 		if (res != TEE_SUCCESS) {
2107 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
2108 			     s->endpoint_id, res);
2109 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2110 				panic();
2111 		}
2112 	}
2113 
2114 	return TEE_SUCCESS;
2115 }
2116 
2117 boot_final(sp_init_all);
2118 
2119 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
2120 					struct ts_store_handle **h)
2121 {
2122 	return emb_ts_open(uuid, h, find_secure_partition);
2123 }
2124 
2125 REGISTER_SP_STORE(2) = {
2126 	.description = "SP store",
2127 	.open = secure_partition_open,
2128 	.get_size = emb_ts_get_size,
2129 	.get_tag = emb_ts_get_tag,
2130 	.read = emb_ts_read,
2131 	.close = emb_ts_close,
2132 };
2133