1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2024, Arm Limited. 4 */ 5 #include <crypto/crypto.h> 6 #include <initcall.h> 7 #include <kernel/boot.h> 8 #include <kernel/embedded_ts.h> 9 #include <kernel/ldelf_loader.h> 10 #include <kernel/secure_partition.h> 11 #include <kernel/spinlock.h> 12 #include <kernel/spmc_sp_handler.h> 13 #include <kernel/thread_private.h> 14 #include <kernel/thread_spmc.h> 15 #include <kernel/tpm.h> 16 #include <kernel/ts_store.h> 17 #include <ldelf.h> 18 #include <libfdt.h> 19 #include <mm/core_mmu.h> 20 #include <mm/fobj.h> 21 #include <mm/mobj.h> 22 #include <mm/vm.h> 23 #include <optee_ffa.h> 24 #include <stdio.h> 25 #include <string.h> 26 #include <tee_api_types.h> 27 #include <tee/uuid.h> 28 #include <trace.h> 29 #include <types_ext.h> 30 #include <utee_defines.h> 31 #include <util.h> 32 #include <zlib.h> 33 34 #define BOUNCE_BUFFER_SIZE 4096 35 36 #define SP_MANIFEST_ATTR_READ BIT(0) 37 #define SP_MANIFEST_ATTR_WRITE BIT(1) 38 #define SP_MANIFEST_ATTR_EXEC BIT(2) 39 #define SP_MANIFEST_ATTR_NSEC BIT(3) 40 41 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 42 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 43 SP_MANIFEST_ATTR_WRITE) 44 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 45 SP_MANIFEST_ATTR_EXEC) 46 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 47 SP_MANIFEST_ATTR_WRITE | \ 48 SP_MANIFEST_ATTR_EXEC) 49 50 #define SP_MANIFEST_FLAG_NOBITS BIT(0) 51 52 #define SP_MANIFEST_NS_INT_QUEUED (0x0) 53 #define SP_MANIFEST_NS_INT_MANAGED_EXIT (0x1) 54 #define SP_MANIFEST_NS_INT_SIGNALED (0x2) 55 56 #define SP_PKG_HEADER_MAGIC (0x474b5053) 57 #define SP_PKG_HEADER_VERSION_V1 (0x1) 58 #define SP_PKG_HEADER_VERSION_V2 (0x2) 59 60 struct sp_pkg_header { 61 uint32_t magic; 62 uint32_t version; 63 uint32_t pm_offset; 64 uint32_t pm_size; 65 uint32_t img_offset; 66 uint32_t img_size; 67 }; 68 69 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 70 71 static const struct ts_ops sp_ops; 72 73 /* List that holds all of the loaded SP's */ 74 static struct sp_sessions_head open_sp_sessions = 75 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 76 77 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 78 { 79 const struct sp_image *sp = NULL; 80 const struct fip_sp *fip_sp = NULL; 81 82 for_each_secure_partition(sp) { 83 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 84 return &sp->image; 85 } 86 87 for_each_fip_sp(fip_sp) { 88 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 89 return &fip_sp->sp_img.image; 90 } 91 92 return NULL; 93 } 94 95 bool is_sp_ctx(struct ts_ctx *ctx) 96 { 97 return ctx && (ctx->ops == &sp_ops); 98 } 99 100 static void set_sp_ctx_ops(struct ts_ctx *ctx) 101 { 102 ctx->ops = &sp_ops; 103 } 104 105 struct sp_session *sp_get_session(uint32_t session_id) 106 { 107 struct sp_session *s = NULL; 108 109 TAILQ_FOREACH(s, &open_sp_sessions, link) { 110 if (s->endpoint_id == session_id) 111 return s; 112 } 113 114 return NULL; 115 } 116 117 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size, 118 const TEE_UUID *ffa_uuid, size_t *elem_count, 119 bool count_only) 120 { 121 TEE_Result res = TEE_SUCCESS; 122 uint32_t part_props = FFA_PART_PROP_DIRECT_REQ_RECV | 123 FFA_PART_PROP_DIRECT_REQ_SEND; 124 struct sp_session *s = NULL; 125 126 TAILQ_FOREACH(s, &open_sp_sessions, link) { 127 if (ffa_uuid && 128 memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid))) 129 continue; 130 131 if (s->state == sp_dead) 132 continue; 133 if (!count_only && !res) { 134 uint32_t uuid_words[4] = { 0 }; 135 136 tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid); 137 res = spmc_fill_partition_entry(ffa_vers, buf, buf_size, 138 *elem_count, 139 s->endpoint_id, 1, 140 part_props, uuid_words); 141 } 142 *elem_count += 1; 143 } 144 145 return res; 146 } 147 148 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 149 struct user_mode_ctx *uctx) 150 { 151 /* 152 * Check that we have access to the region if it is supposed to be 153 * mapped to the current context. 154 */ 155 if (uctx) { 156 struct vm_region *region = NULL; 157 158 /* Make sure that each mobj belongs to the SP */ 159 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 160 if (region->mobj == mem->mobj) 161 break; 162 } 163 164 if (!region) 165 return false; 166 } 167 168 /* Check that it is not shared with another SP */ 169 return !sp_mem_is_shared(mem); 170 } 171 172 static bool endpoint_id_is_valid(uint32_t id) 173 { 174 /* 175 * These IDs are assigned at the SPMC init so already have valid values 176 * by the time this function gets first called 177 */ 178 return id != spmd_id && id != spmc_id && id != optee_endpoint_id && 179 id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX; 180 } 181 182 static TEE_Result new_session_id(uint16_t *endpoint_id) 183 { 184 uint32_t id = 0; 185 186 /* Find the first available endpoint id */ 187 for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) { 188 if (endpoint_id_is_valid(id) && !sp_get_session(id)) { 189 *endpoint_id = id; 190 return TEE_SUCCESS; 191 } 192 } 193 194 return TEE_ERROR_BAD_FORMAT; 195 } 196 197 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s) 198 { 199 TEE_Result res = TEE_SUCCESS; 200 struct sp_ctx *spc = NULL; 201 202 /* Register context */ 203 spc = calloc(1, sizeof(struct sp_ctx)); 204 if (!spc) 205 return TEE_ERROR_OUT_OF_MEMORY; 206 207 spc->open_session = s; 208 s->ts_sess.ctx = &spc->ts_ctx; 209 spc->ts_ctx.uuid = *bin_uuid; 210 211 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 212 if (res) 213 goto err; 214 215 set_sp_ctx_ops(&spc->ts_ctx); 216 217 return TEE_SUCCESS; 218 219 err: 220 free(spc); 221 return res; 222 } 223 224 /* 225 * Insert a new sp_session to the sessions list, so that it is ordered 226 * by boot_order. 227 */ 228 static void insert_session_ordered(struct sp_sessions_head *open_sessions, 229 struct sp_session *session) 230 { 231 struct sp_session *s = NULL; 232 233 if (!open_sessions || !session) 234 return; 235 236 TAILQ_FOREACH(s, &open_sp_sessions, link) { 237 if (s->boot_order > session->boot_order) 238 break; 239 } 240 241 if (!s) 242 TAILQ_INSERT_TAIL(open_sessions, session, link); 243 else 244 TAILQ_INSERT_BEFORE(s, session, link); 245 } 246 247 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 248 const TEE_UUID *bin_uuid, 249 const uint32_t boot_order, 250 struct sp_session **sess) 251 { 252 TEE_Result res = TEE_SUCCESS; 253 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 254 255 if (!s) 256 return TEE_ERROR_OUT_OF_MEMORY; 257 258 s->boot_order = boot_order; 259 260 res = new_session_id(&s->endpoint_id); 261 if (res) 262 goto err; 263 264 DMSG("Loading Secure Partition %pUl", (void *)bin_uuid); 265 res = sp_create_ctx(bin_uuid, s); 266 if (res) 267 goto err; 268 269 insert_session_ordered(open_sessions, s); 270 *sess = s; 271 return TEE_SUCCESS; 272 273 err: 274 free(s); 275 return res; 276 } 277 278 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 279 { 280 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 281 282 memset(sp_regs, 0, sizeof(*sp_regs)); 283 sp_regs->sp = ctx->uctx.stack_ptr; 284 sp_regs->pc = ctx->uctx.entry_func; 285 286 return TEE_SUCCESS; 287 } 288 289 TEE_Result sp_map_shared(struct sp_session *s, 290 struct sp_mem_receiver *receiver, 291 struct sp_mem *smem, 292 uint64_t *va) 293 { 294 TEE_Result res = TEE_SUCCESS; 295 struct sp_ctx *ctx = NULL; 296 uint32_t perm = TEE_MATTR_UR; 297 struct sp_mem_map_region *reg = NULL; 298 299 ctx = to_sp_ctx(s->ts_sess.ctx); 300 301 /* Get the permission */ 302 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 303 perm |= TEE_MATTR_UX; 304 305 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 306 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 307 return TEE_ERROR_ACCESS_CONFLICT; 308 309 perm |= TEE_MATTR_UW; 310 } 311 /* 312 * Currently we don't support passing a va. We can't guarantee that the 313 * full region will be mapped in a contiguous region. A smem->region can 314 * have multiple mobj for one share. Currently there doesn't seem to be 315 * an option to guarantee that these will be mapped in a contiguous va 316 * space. 317 */ 318 if (*va) 319 return TEE_ERROR_NOT_SUPPORTED; 320 321 SLIST_FOREACH(reg, &smem->regions, link) { 322 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 323 perm, 0, reg->mobj, reg->page_offset); 324 325 if (res != TEE_SUCCESS) { 326 EMSG("Failed to map memory region %#"PRIx32, res); 327 return res; 328 } 329 } 330 return TEE_SUCCESS; 331 } 332 333 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 334 { 335 TEE_Result res = TEE_SUCCESS; 336 vaddr_t vaddr = 0; 337 size_t len = 0; 338 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 339 struct sp_mem_map_region *reg = NULL; 340 341 SLIST_FOREACH(reg, &smem->regions, link) { 342 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 343 reg->mobj); 344 len = reg->page_count * SMALL_PAGE_SIZE; 345 346 res = vm_unmap(&ctx->uctx, vaddr, len); 347 if (res != TEE_SUCCESS) 348 return res; 349 } 350 351 return TEE_SUCCESS; 352 } 353 354 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 355 uint64_t *value) 356 { 357 const fdt64_t *p = NULL; 358 int len = 0; 359 360 p = fdt_getprop(fdt, node, property, &len); 361 if (!p) 362 return TEE_ERROR_ITEM_NOT_FOUND; 363 364 if (len != sizeof(*p)) 365 return TEE_ERROR_BAD_FORMAT; 366 367 *value = fdt64_ld(p); 368 369 return TEE_SUCCESS; 370 } 371 372 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 373 uint32_t *value) 374 { 375 const fdt32_t *p = NULL; 376 int len = 0; 377 378 p = fdt_getprop(fdt, node, property, &len); 379 if (!p) 380 return TEE_ERROR_ITEM_NOT_FOUND; 381 382 if (len != sizeof(*p)) 383 return TEE_ERROR_BAD_FORMAT; 384 385 *value = fdt32_to_cpu(*p); 386 387 return TEE_SUCCESS; 388 } 389 390 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property, 391 uint16_t *value) 392 { 393 const fdt16_t *p = NULL; 394 int len = 0; 395 396 p = fdt_getprop(fdt, node, property, &len); 397 if (!p) 398 return TEE_ERROR_ITEM_NOT_FOUND; 399 400 if (len != sizeof(*p)) 401 return TEE_ERROR_BAD_FORMAT; 402 403 *value = fdt16_to_cpu(*p); 404 405 return TEE_SUCCESS; 406 } 407 408 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 409 const char *property, TEE_UUID *uuid) 410 { 411 uint32_t uuid_array[4] = { 0 }; 412 const fdt32_t *p = NULL; 413 int len = 0; 414 int i = 0; 415 416 p = fdt_getprop(fdt, node, property, &len); 417 if (!p) 418 return TEE_ERROR_ITEM_NOT_FOUND; 419 420 if (len != sizeof(TEE_UUID)) 421 return TEE_ERROR_BAD_FORMAT; 422 423 for (i = 0; i < 4; i++) 424 uuid_array[i] = fdt32_to_cpu(p[i]); 425 426 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 427 428 return TEE_SUCCESS; 429 } 430 431 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node, 432 bool *is_elf_format) 433 { 434 TEE_Result res = TEE_SUCCESS; 435 uint32_t elf_format = 0; 436 437 res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format); 438 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) 439 return res; 440 441 *is_elf_format = (elf_format != 0); 442 443 return TEE_SUCCESS; 444 } 445 446 static TEE_Result sp_binary_open(const TEE_UUID *uuid, 447 const struct ts_store_ops **ops, 448 struct ts_store_handle **handle) 449 { 450 TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND; 451 452 SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) { 453 res = (*ops)->open(uuid, handle); 454 if (res != TEE_ERROR_ITEM_NOT_FOUND && 455 res != TEE_ERROR_STORAGE_NOT_AVAILABLE) 456 break; 457 } 458 459 return res; 460 } 461 462 static TEE_Result load_binary_sp(struct ts_session *s, 463 struct user_mode_ctx *uctx) 464 { 465 size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0; 466 size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE); 467 size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE; 468 const struct ts_store_ops *store_ops = NULL; 469 struct ts_store_handle *handle = NULL; 470 TEE_Result res = TEE_SUCCESS; 471 tee_mm_entry_t *mm = NULL; 472 struct fobj *fobj = NULL; 473 struct mobj *mobj = NULL; 474 uaddr_t base_addr = 0; 475 uint32_t vm_flags = 0; 476 unsigned int idx = 0; 477 vaddr_t va = 0; 478 479 if (!s || !uctx) 480 return TEE_ERROR_BAD_PARAMETERS; 481 482 DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid); 483 484 /* Initialize the bounce buffer */ 485 fobj = fobj_sec_mem_alloc(bb_num_pages); 486 mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 487 fobj_put(fobj); 488 if (!mobj) 489 return TEE_ERROR_OUT_OF_MEMORY; 490 491 res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0); 492 mobj_put(mobj); 493 if (res) 494 return res; 495 496 uctx->bbuf = (uint8_t *)va; 497 uctx->bbuf_size = BOUNCE_BUFFER_SIZE; 498 499 vm_set_ctx(uctx->ts_ctx); 500 501 /* Find TS store and open SP binary */ 502 res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle); 503 if (res != TEE_SUCCESS) { 504 EMSG("Failed to open SP binary"); 505 return res; 506 } 507 508 /* Query binary size and calculate page count */ 509 res = store_ops->get_size(handle, &bin_size); 510 if (res != TEE_SUCCESS) 511 goto err; 512 513 if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) { 514 res = TEE_ERROR_OVERFLOW; 515 goto err; 516 } 517 518 bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE; 519 520 /* Allocate memory */ 521 mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded); 522 if (!mm) { 523 res = TEE_ERROR_OUT_OF_MEMORY; 524 goto err; 525 } 526 527 base_addr = tee_mm_get_smem(mm); 528 529 /* Create mobj */ 530 mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true); 531 if (!mobj) { 532 res = TEE_ERROR_OUT_OF_MEMORY; 533 goto err_free_tee_mm; 534 } 535 536 res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count); 537 if (res) 538 goto err_free_mobj; 539 540 /* Map memory area for the SP binary */ 541 va = 0; 542 res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX, 543 vm_flags, mobj, 0); 544 if (res) 545 goto err_free_mobj; 546 547 /* Read SP binary into the previously mapped memory area */ 548 res = store_ops->read(handle, NULL, (void *)va, bin_size); 549 if (res) 550 goto err_unmap; 551 552 /* Set memory protection to allow execution */ 553 res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX); 554 if (res) 555 goto err_unmap; 556 557 mobj_put(mobj); 558 store_ops->close(handle); 559 560 /* The entry point must be at the beginning of the SP binary. */ 561 uctx->entry_func = va; 562 uctx->load_addr = va; 563 uctx->is_32bit = false; 564 565 s->handle_scall = s->ctx->ops->handle_scall; 566 567 return TEE_SUCCESS; 568 569 err_unmap: 570 vm_unmap(uctx, va, bin_size_rounded); 571 572 err_free_mobj: 573 mobj_put(mobj); 574 575 err_free_tee_mm: 576 tee_mm_free(mm); 577 578 err: 579 store_ops->close(handle); 580 581 return res; 582 } 583 584 static TEE_Result sp_open_session(struct sp_session **sess, 585 struct sp_sessions_head *open_sessions, 586 const TEE_UUID *ffa_uuid, 587 const TEE_UUID *bin_uuid, 588 const uint32_t boot_order, 589 const void *fdt) 590 { 591 TEE_Result res = TEE_SUCCESS; 592 struct sp_session *s = NULL; 593 struct sp_ctx *ctx = NULL; 594 bool is_elf_format = false; 595 596 if (!find_secure_partition(bin_uuid)) 597 return TEE_ERROR_ITEM_NOT_FOUND; 598 599 res = sp_create_session(open_sessions, bin_uuid, boot_order, &s); 600 if (res != TEE_SUCCESS) { 601 DMSG("sp_create_session failed %#"PRIx32, res); 602 return res; 603 } 604 605 ctx = to_sp_ctx(s->ts_sess.ctx); 606 assert(ctx); 607 if (!ctx) 608 return TEE_ERROR_TARGET_DEAD; 609 *sess = s; 610 611 ts_push_current_session(&s->ts_sess); 612 613 res = sp_is_elf_format(fdt, 0, &is_elf_format); 614 if (res == TEE_SUCCESS) { 615 if (is_elf_format) { 616 /* Load the SP using ldelf. */ 617 ldelf_load_ldelf(&ctx->uctx); 618 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 619 } else { 620 /* Raw binary format SP */ 621 res = load_binary_sp(&s->ts_sess, &ctx->uctx); 622 } 623 } else { 624 EMSG("Failed to detect SP format"); 625 } 626 627 if (res != TEE_SUCCESS) { 628 EMSG("Failed loading SP %#"PRIx32, res); 629 ts_pop_current_session(); 630 return TEE_ERROR_TARGET_DEAD; 631 } 632 633 /* 634 * Make the SP ready for its first run. 635 * Set state to busy to prevent other endpoints from sending messages to 636 * the SP before its boot phase is done. 637 */ 638 s->state = sp_busy; 639 s->caller_id = 0; 640 sp_init_set_registers(ctx); 641 memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)); 642 ts_pop_current_session(); 643 644 return TEE_SUCCESS; 645 } 646 647 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid) 648 { 649 const struct fdt_property *description = NULL; 650 int description_name_len = 0; 651 652 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 653 EMSG("Failed loading SP, manifest not found"); 654 return TEE_ERROR_BAD_PARAMETERS; 655 } 656 657 description = fdt_get_property(fdt, 0, "description", 658 &description_name_len); 659 if (description) 660 DMSG("Loading SP: %s", description->data); 661 662 if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) { 663 EMSG("Missing or invalid UUID in SP manifest"); 664 return TEE_ERROR_BAD_FORMAT; 665 } 666 667 return TEE_SUCCESS; 668 } 669 670 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt, 671 void **fdt_copy, size_t *mapped_size) 672 { 673 size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE); 674 size_t num_pages = total_size / SMALL_PAGE_SIZE; 675 uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; 676 TEE_Result res = TEE_SUCCESS; 677 struct mobj *m = NULL; 678 struct fobj *f = NULL; 679 vaddr_t va = 0; 680 681 f = fobj_sec_mem_alloc(num_pages); 682 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 683 fobj_put(f); 684 if (!m) 685 return TEE_ERROR_OUT_OF_MEMORY; 686 687 res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0); 688 mobj_put(m); 689 if (res) 690 return res; 691 692 if (fdt_open_into(fdt, (void *)va, total_size)) 693 return TEE_ERROR_GENERIC; 694 695 *fdt_copy = (void *)va; 696 *mapped_size = total_size; 697 698 return res; 699 } 700 701 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt) 702 { 703 struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf; 704 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 705 706 memcpy(&info->magic, "FF-A", 4); 707 info->count = 1; 708 709 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 710 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 711 info->nvp[0].value = (uintptr_t)fdt; 712 info->nvp[0].size = fdt_totalsize(fdt); 713 } 714 715 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt) 716 { 717 size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8); 718 struct ffa_boot_info_header_1_1 *header = 719 (struct ffa_boot_info_header_1_1 *)buf; 720 struct ffa_boot_info_1_1 *desc = 721 (struct ffa_boot_info_1_1 *)(buf + desc_offs); 722 723 header->signature = FFA_BOOT_INFO_SIGNATURE; 724 header->version = FFA_BOOT_INFO_VERSION; 725 header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1); 726 header->desc_size = sizeof(struct ffa_boot_info_1_1); 727 header->desc_count = 1; 728 header->desc_offset = desc_offs; 729 730 memset(&desc[0].name, 0, sizeof(desc[0].name)); 731 /* Type: Standard boot info (bit[7] == 0), FDT type */ 732 desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT; 733 /* Flags: Contents field contains an address */ 734 desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR << 735 FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT; 736 desc[0].size = fdt_totalsize(fdt); 737 desc[0].contents = (uintptr_t)fdt; 738 } 739 740 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt, 741 struct thread_smc_args *args, 742 vaddr_t *va, size_t *mapped_size, 743 uint32_t sp_ffa_version) 744 { 745 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 746 size_t num_pages = total_size / SMALL_PAGE_SIZE; 747 uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; 748 TEE_Result res = TEE_SUCCESS; 749 struct fobj *f = NULL; 750 struct mobj *m = NULL; 751 uint32_t info_reg = 0; 752 753 f = fobj_sec_mem_alloc(num_pages); 754 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 755 fobj_put(f); 756 if (!m) 757 return TEE_ERROR_OUT_OF_MEMORY; 758 759 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 760 mobj_put(m); 761 if (res) 762 return res; 763 764 *mapped_size = total_size; 765 766 switch (sp_ffa_version) { 767 case MAKE_FFA_VERSION(1, 0): 768 fill_boot_info_1_0(*va, fdt); 769 break; 770 case MAKE_FFA_VERSION(1, 1): 771 fill_boot_info_1_1(*va, fdt); 772 break; 773 default: 774 EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version); 775 return TEE_ERROR_NOT_SUPPORTED; 776 } 777 778 res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg); 779 if (res) { 780 if (res == TEE_ERROR_ITEM_NOT_FOUND) { 781 /* If the property is not present, set default to x0 */ 782 info_reg = 0; 783 } else { 784 return TEE_ERROR_BAD_FORMAT; 785 } 786 } 787 788 switch (info_reg) { 789 case 0: 790 args->a0 = *va; 791 break; 792 case 1: 793 args->a1 = *va; 794 break; 795 case 2: 796 args->a2 = *va; 797 break; 798 case 3: 799 args->a3 = *va; 800 break; 801 default: 802 EMSG("Invalid register selected for passing boot info"); 803 return TEE_ERROR_BAD_FORMAT; 804 } 805 806 return TEE_SUCCESS; 807 } 808 809 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx, 810 const void *fdt) 811 { 812 int node = 0; 813 int subnode = 0; 814 tee_mm_entry_t *mm = NULL; 815 TEE_Result res = TEE_SUCCESS; 816 817 /* 818 * Memory regions are optional in the SP manifest, it's not an error if 819 * we don't find any. 820 */ 821 node = fdt_node_offset_by_compatible(fdt, 0, 822 "arm,ffa-manifest-memory-regions"); 823 if (node < 0) 824 return TEE_SUCCESS; 825 826 fdt_for_each_subnode(subnode, fdt, node) { 827 uint64_t load_rel_offset = 0; 828 uint32_t attributes = 0; 829 uint64_t base_addr = 0; 830 uint32_t pages_cnt = 0; 831 uint32_t flags = 0; 832 uint32_t perm = 0; 833 size_t size = 0; 834 vaddr_t va = 0; 835 836 mm = NULL; 837 838 /* Load address relative offset of a memory region */ 839 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 840 &load_rel_offset)) { 841 va = ctx->uctx.load_addr + load_rel_offset; 842 } else { 843 /* Skip non load address relative memory regions */ 844 continue; 845 } 846 847 if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 848 EMSG("Both base-address and load-address-relative-offset fields are set"); 849 return TEE_ERROR_BAD_FORMAT; 850 } 851 852 /* Size of memory region as count of 4K pages */ 853 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 854 EMSG("Mandatory field is missing: pages-count"); 855 return TEE_ERROR_BAD_FORMAT; 856 } 857 858 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 859 return TEE_ERROR_OVERFLOW; 860 861 /* Memory region attributes */ 862 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 863 EMSG("Mandatory field is missing: attributes"); 864 return TEE_ERROR_BAD_FORMAT; 865 } 866 867 /* Check instruction and data access permissions */ 868 switch (attributes & SP_MANIFEST_ATTR_RWX) { 869 case SP_MANIFEST_ATTR_RO: 870 perm = TEE_MATTR_UR; 871 break; 872 case SP_MANIFEST_ATTR_RW: 873 perm = TEE_MATTR_URW; 874 break; 875 case SP_MANIFEST_ATTR_RX: 876 perm = TEE_MATTR_URX; 877 break; 878 default: 879 EMSG("Invalid memory access permissions"); 880 return TEE_ERROR_BAD_FORMAT; 881 } 882 883 res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags); 884 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) { 885 EMSG("Optional field with invalid value: flags"); 886 return TEE_ERROR_BAD_FORMAT; 887 } 888 889 /* Load relative regions must be secure */ 890 if (attributes & SP_MANIFEST_ATTR_NSEC) { 891 EMSG("Invalid memory security attribute"); 892 return TEE_ERROR_BAD_FORMAT; 893 } 894 895 if (flags & SP_MANIFEST_FLAG_NOBITS) { 896 /* 897 * NOBITS flag is set, which means that loaded binary 898 * doesn't contain this area, so it's need to be 899 * allocated. 900 */ 901 struct mobj *m = NULL; 902 unsigned int idx = 0; 903 904 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 905 if (!mm) 906 return TEE_ERROR_OUT_OF_MEMORY; 907 908 base_addr = tee_mm_get_smem(mm); 909 910 m = sp_mem_new_mobj(pages_cnt, 911 TEE_MATTR_MEM_TYPE_CACHED, true); 912 if (!m) { 913 res = TEE_ERROR_OUT_OF_MEMORY; 914 goto err_mm_free; 915 } 916 917 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 918 if (res) { 919 mobj_put(m); 920 goto err_mm_free; 921 } 922 923 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 924 mobj_put(m); 925 if (res) 926 goto err_mm_free; 927 } else { 928 /* 929 * If NOBITS is not present the memory area is already 930 * mapped and only need to set the correct permissions. 931 */ 932 res = vm_set_prot(&ctx->uctx, va, size, perm); 933 if (res) 934 return res; 935 } 936 } 937 938 return TEE_SUCCESS; 939 940 err_mm_free: 941 tee_mm_free(mm); 942 return res; 943 } 944 945 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 946 { 947 int node = 0; 948 int subnode = 0; 949 TEE_Result res = TEE_SUCCESS; 950 const char *dt_device_match_table = { 951 "arm,ffa-manifest-device-regions", 952 }; 953 954 /* 955 * Device regions are optional in the SP manifest, it's not an error if 956 * we don't find any 957 */ 958 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 959 if (node < 0) 960 return TEE_SUCCESS; 961 962 fdt_for_each_subnode(subnode, fdt, node) { 963 uint64_t base_addr = 0; 964 uint32_t pages_cnt = 0; 965 uint32_t attributes = 0; 966 struct mobj *m = NULL; 967 bool is_secure = true; 968 uint32_t perm = 0; 969 vaddr_t va = 0; 970 unsigned int idx = 0; 971 972 /* 973 * Physical base address of a device MMIO region. 974 * Currently only physically contiguous region is supported. 975 */ 976 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 977 EMSG("Mandatory field is missing: base-address"); 978 return TEE_ERROR_BAD_FORMAT; 979 } 980 981 /* Total size of MMIO region as count of 4K pages */ 982 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 983 EMSG("Mandatory field is missing: pages-count"); 984 return TEE_ERROR_BAD_FORMAT; 985 } 986 987 /* Data access, instruction access and security attributes */ 988 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 989 EMSG("Mandatory field is missing: attributes"); 990 return TEE_ERROR_BAD_FORMAT; 991 } 992 993 /* Check instruction and data access permissions */ 994 switch (attributes & SP_MANIFEST_ATTR_RWX) { 995 case SP_MANIFEST_ATTR_RO: 996 perm = TEE_MATTR_UR; 997 break; 998 case SP_MANIFEST_ATTR_RW: 999 perm = TEE_MATTR_URW; 1000 break; 1001 default: 1002 EMSG("Invalid memory access permissions"); 1003 return TEE_ERROR_BAD_FORMAT; 1004 } 1005 1006 /* 1007 * The SP is a secure endpoint, security attribute can be 1008 * secure or non-secure 1009 */ 1010 if (attributes & SP_MANIFEST_ATTR_NSEC) 1011 is_secure = false; 1012 1013 /* Memory attributes must be Device-nGnRnE */ 1014 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 1015 is_secure); 1016 if (!m) 1017 return TEE_ERROR_OUT_OF_MEMORY; 1018 1019 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 1020 if (res) { 1021 mobj_put(m); 1022 return res; 1023 } 1024 1025 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 1026 perm, 0, m, 0); 1027 mobj_put(m); 1028 if (res) 1029 return res; 1030 1031 /* 1032 * Overwrite the device region's PA in the fdt with the VA. This 1033 * fdt will be passed to the SP. 1034 */ 1035 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1036 1037 /* 1038 * Unmap the region if the overwrite failed since the SP won't 1039 * be able to access it without knowing the VA. 1040 */ 1041 if (res) { 1042 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 1043 return res; 1044 } 1045 } 1046 1047 return TEE_SUCCESS; 1048 } 1049 1050 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, 1051 uint32_t new_endpoint_id) 1052 { 1053 struct sp_session *session = sp_get_session(endpoint_id); 1054 uint32_t manifest_endpoint_id = 0; 1055 1056 /* 1057 * We don't know in which order the SPs are loaded. The endpoint ID 1058 * defined in the manifest could already be generated by 1059 * new_session_id() and used by another SP. If this is the case, we swap 1060 * the ID's of the two SPs. We also have to make sure that the ID's are 1061 * not defined twice in the manifest. 1062 */ 1063 1064 /* The endpoint ID was not assigned yet */ 1065 if (!session) 1066 return TEE_SUCCESS; 1067 1068 /* 1069 * Read the manifest file from the SP who originally had the endpoint. 1070 * We can safely swap the endpoint ID's if the manifest file doesn't 1071 * have an endpoint ID defined. 1072 */ 1073 if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { 1074 assert(manifest_endpoint_id == endpoint_id); 1075 EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); 1076 return TEE_ERROR_ACCESS_CONFLICT; 1077 } 1078 1079 session->endpoint_id = new_endpoint_id; 1080 1081 return TEE_SUCCESS; 1082 } 1083 1084 static TEE_Result read_manifest_endpoint_id(struct sp_session *s) 1085 { 1086 uint32_t endpoint_id = 0; 1087 1088 /* 1089 * The endpoint ID can be optionally defined in the manifest file. We 1090 * have to map the ID inside the manifest to the SP if it's defined. 1091 * If not, the endpoint ID generated inside new_session_id() will be 1092 * used. 1093 */ 1094 if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { 1095 TEE_Result res = TEE_ERROR_GENERIC; 1096 1097 if (!endpoint_id_is_valid(endpoint_id)) { 1098 EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id); 1099 return TEE_ERROR_BAD_FORMAT; 1100 } 1101 1102 res = swap_sp_endpoints(endpoint_id, s->endpoint_id); 1103 if (res) 1104 return res; 1105 1106 DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", 1107 endpoint_id); 1108 /* Assign the endpoint ID to the current SP */ 1109 s->endpoint_id = endpoint_id; 1110 } 1111 return TEE_SUCCESS; 1112 } 1113 1114 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 1115 { 1116 int node = 0; 1117 int subnode = 0; 1118 tee_mm_entry_t *mm = NULL; 1119 TEE_Result res = TEE_SUCCESS; 1120 1121 /* 1122 * Memory regions are optional in the SP manifest, it's not an error if 1123 * we don't find any. 1124 */ 1125 node = fdt_node_offset_by_compatible(fdt, 0, 1126 "arm,ffa-manifest-memory-regions"); 1127 if (node < 0) 1128 return TEE_SUCCESS; 1129 1130 fdt_for_each_subnode(subnode, fdt, node) { 1131 uint64_t load_rel_offset = 0; 1132 bool alloc_needed = false; 1133 uint32_t attributes = 0; 1134 uint64_t base_addr = 0; 1135 uint32_t pages_cnt = 0; 1136 bool is_secure = true; 1137 struct mobj *m = NULL; 1138 unsigned int idx = 0; 1139 uint32_t perm = 0; 1140 size_t size = 0; 1141 vaddr_t va = 0; 1142 1143 mm = NULL; 1144 1145 /* Load address relative offset of a memory region */ 1146 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 1147 &load_rel_offset)) { 1148 /* 1149 * At this point the memory region is already mapped by 1150 * handle_fdt_load_relative_mem_regions. 1151 * Only need to set the base-address in the manifest and 1152 * then skip the rest of the mapping process. 1153 */ 1154 va = ctx->uctx.load_addr + load_rel_offset; 1155 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1156 if (res) 1157 return res; 1158 1159 continue; 1160 } 1161 1162 /* 1163 * Base address of a memory region. 1164 * If not present, we have to allocate the specified memory. 1165 * If present, this field could specify a PA or VA. Currently 1166 * only a PA is supported. 1167 */ 1168 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 1169 alloc_needed = true; 1170 1171 /* Size of memory region as count of 4K pages */ 1172 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 1173 EMSG("Mandatory field is missing: pages-count"); 1174 return TEE_ERROR_BAD_FORMAT; 1175 } 1176 1177 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 1178 return TEE_ERROR_OVERFLOW; 1179 1180 /* 1181 * Memory region attributes: 1182 * - Instruction/data access permissions 1183 * - Cacheability/shareability attributes 1184 * - Security attributes 1185 * 1186 * Cacheability/shareability attributes can be ignored for now. 1187 * OP-TEE only supports a single type for normal cached memory 1188 * and currently there is no use case that would require to 1189 * change this. 1190 */ 1191 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 1192 EMSG("Mandatory field is missing: attributes"); 1193 return TEE_ERROR_BAD_FORMAT; 1194 } 1195 1196 /* Check instruction and data access permissions */ 1197 switch (attributes & SP_MANIFEST_ATTR_RWX) { 1198 case SP_MANIFEST_ATTR_RO: 1199 perm = TEE_MATTR_UR; 1200 break; 1201 case SP_MANIFEST_ATTR_RW: 1202 perm = TEE_MATTR_URW; 1203 break; 1204 case SP_MANIFEST_ATTR_RX: 1205 perm = TEE_MATTR_URX; 1206 break; 1207 default: 1208 EMSG("Invalid memory access permissions"); 1209 return TEE_ERROR_BAD_FORMAT; 1210 } 1211 1212 /* 1213 * The SP is a secure endpoint, security attribute can be 1214 * secure or non-secure. 1215 * The SPMC cannot allocate non-secure memory, i.e. if the base 1216 * address is missing this attribute must be secure. 1217 */ 1218 if (attributes & SP_MANIFEST_ATTR_NSEC) { 1219 if (alloc_needed) { 1220 EMSG("Invalid memory security attribute"); 1221 return TEE_ERROR_BAD_FORMAT; 1222 } 1223 is_secure = false; 1224 } 1225 1226 if (alloc_needed) { 1227 /* Base address is missing, we have to allocate */ 1228 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 1229 if (!mm) 1230 return TEE_ERROR_OUT_OF_MEMORY; 1231 1232 base_addr = tee_mm_get_smem(mm); 1233 } 1234 1235 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 1236 is_secure); 1237 if (!m) { 1238 res = TEE_ERROR_OUT_OF_MEMORY; 1239 goto err_mm_free; 1240 } 1241 1242 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 1243 if (res) { 1244 mobj_put(m); 1245 goto err_mm_free; 1246 } 1247 1248 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 1249 mobj_put(m); 1250 if (res) 1251 goto err_mm_free; 1252 1253 /* 1254 * Overwrite the memory region's base address in the fdt with 1255 * the VA. This fdt will be passed to the SP. 1256 * If the base-address field was not present in the original 1257 * fdt, this function will create it. This doesn't cause issues 1258 * since the necessary extra space has been allocated when 1259 * opening the fdt. 1260 */ 1261 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 1262 1263 /* 1264 * Unmap the region if the overwrite failed since the SP won't 1265 * be able to access it without knowing the VA. 1266 */ 1267 if (res) { 1268 vm_unmap(&ctx->uctx, va, size); 1269 goto err_mm_free; 1270 } 1271 } 1272 1273 return TEE_SUCCESS; 1274 1275 err_mm_free: 1276 tee_mm_free(mm); 1277 return res; 1278 } 1279 1280 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 1281 { 1282 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 1283 uint32_t dummy_size __maybe_unused = 0; 1284 TEE_Result res = TEE_SUCCESS; 1285 size_t page_count = 0; 1286 struct fobj *f = NULL; 1287 struct mobj *m = NULL; 1288 vaddr_t log_addr = 0; 1289 size_t log_size = 0; 1290 int node = 0; 1291 1292 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 1293 if (node < 0) 1294 return TEE_SUCCESS; 1295 1296 /* Checking the existence and size of the event log properties */ 1297 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 1298 EMSG("tpm_event_log_addr not found or has invalid size"); 1299 return TEE_ERROR_BAD_FORMAT; 1300 } 1301 1302 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 1303 EMSG("tpm_event_log_size not found or has invalid size"); 1304 return TEE_ERROR_BAD_FORMAT; 1305 } 1306 1307 /* Validating event log */ 1308 res = tpm_get_event_log_size(&log_size); 1309 if (res) 1310 return res; 1311 1312 if (!log_size) { 1313 EMSG("Empty TPM event log was provided"); 1314 return TEE_ERROR_ITEM_NOT_FOUND; 1315 } 1316 1317 /* Allocating memory area for the event log to share with the SP */ 1318 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 1319 1320 f = fobj_sec_mem_alloc(page_count); 1321 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 1322 fobj_put(f); 1323 if (!m) 1324 return TEE_ERROR_OUT_OF_MEMORY; 1325 1326 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 1327 mobj_put(m); 1328 if (res) 1329 return res; 1330 1331 /* Copy event log */ 1332 res = tpm_get_event_log((void *)log_addr, &log_size); 1333 if (res) 1334 goto err_unmap; 1335 1336 /* Setting event log details in the manifest */ 1337 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 1338 if (res) 1339 goto err_unmap; 1340 1341 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 1342 if (res) 1343 goto err_unmap; 1344 1345 return TEE_SUCCESS; 1346 1347 err_unmap: 1348 vm_unmap(&ctx->uctx, log_addr, log_size); 1349 1350 return res; 1351 } 1352 1353 /* 1354 * Note: this function is called only on the primary CPU. It assumes that the 1355 * features present on the primary CPU are available on all of the secondary 1356 * CPUs as well. 1357 */ 1358 static TEE_Result handle_hw_features(void *fdt) 1359 { 1360 uint32_t val __maybe_unused = 0; 1361 TEE_Result res = TEE_SUCCESS; 1362 int node = 0; 1363 1364 /* 1365 * HW feature descriptions are optional in the SP manifest, it's not an 1366 * error if we don't find any. 1367 */ 1368 node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features"); 1369 if (node < 0) 1370 return TEE_SUCCESS; 1371 1372 /* Modify the crc32 property only if it's already present */ 1373 if (!sp_dt_get_u32(fdt, node, "crc32", &val)) { 1374 res = fdt_setprop_u32(fdt, node, "crc32", 1375 feat_crc32_implemented()); 1376 if (res) 1377 return res; 1378 } 1379 1380 return TEE_SUCCESS; 1381 } 1382 1383 static TEE_Result read_ns_interrupts_action(const void *fdt, 1384 struct sp_session *s) 1385 { 1386 TEE_Result res = TEE_ERROR_BAD_PARAMETERS; 1387 1388 res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode); 1389 1390 if (res) { 1391 EMSG("Mandatory property is missing: ns-interrupts-action"); 1392 return res; 1393 } 1394 1395 switch (s->ns_int_mode) { 1396 case SP_MANIFEST_NS_INT_QUEUED: 1397 case SP_MANIFEST_NS_INT_SIGNALED: 1398 /* OK */ 1399 break; 1400 1401 case SP_MANIFEST_NS_INT_MANAGED_EXIT: 1402 EMSG("Managed exit is not implemented"); 1403 return TEE_ERROR_NOT_IMPLEMENTED; 1404 1405 default: 1406 EMSG("Invalid ns-interrupts-action value: %"PRIu32, 1407 s->ns_int_mode); 1408 return TEE_ERROR_BAD_PARAMETERS; 1409 } 1410 1411 return TEE_SUCCESS; 1412 } 1413 1414 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s) 1415 { 1416 TEE_Result res = TEE_ERROR_BAD_PARAMETERS; 1417 uint32_t ffa_version = 0; 1418 1419 res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version); 1420 if (res) { 1421 EMSG("Mandatory property is missing: ffa-version"); 1422 return res; 1423 } 1424 1425 if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) { 1426 EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version); 1427 return TEE_ERROR_BAD_PARAMETERS; 1428 } 1429 1430 s->rxtx.ffa_vers = ffa_version; 1431 1432 return TEE_SUCCESS; 1433 } 1434 1435 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt) 1436 { 1437 TEE_Result res = TEE_SUCCESS; 1438 struct sp_session *sess = NULL; 1439 TEE_UUID ffa_uuid = {}; 1440 uint16_t boot_order = 0; 1441 uint32_t boot_order_arg = 0; 1442 1443 res = fdt_get_uuid(fdt, &ffa_uuid); 1444 if (res) 1445 return res; 1446 1447 res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order); 1448 if (res == TEE_SUCCESS) { 1449 boot_order_arg = boot_order; 1450 } else if (res == TEE_ERROR_ITEM_NOT_FOUND) { 1451 boot_order_arg = UINT32_MAX; 1452 } else { 1453 EMSG("Failed reading boot-order property err:%#"PRIx32, res); 1454 return res; 1455 } 1456 1457 res = sp_open_session(&sess, 1458 &open_sp_sessions, 1459 &ffa_uuid, bin_uuid, boot_order_arg, fdt); 1460 if (res) 1461 return res; 1462 1463 sess->fdt = fdt; 1464 1465 res = read_manifest_endpoint_id(sess); 1466 if (res) 1467 return res; 1468 DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); 1469 1470 res = read_ns_interrupts_action(fdt, sess); 1471 if (res) 1472 return res; 1473 1474 res = read_ffa_version(fdt, sess); 1475 if (res) 1476 return res; 1477 1478 return TEE_SUCCESS; 1479 } 1480 1481 static TEE_Result sp_first_run(struct sp_session *sess) 1482 { 1483 TEE_Result res = TEE_SUCCESS; 1484 struct thread_smc_args args = { }; 1485 struct sp_ctx *ctx = NULL; 1486 vaddr_t boot_info_va = 0; 1487 size_t boot_info_size = 0; 1488 void *fdt_copy = NULL; 1489 size_t fdt_size = 0; 1490 1491 ctx = to_sp_ctx(sess->ts_sess.ctx); 1492 ts_push_current_session(&sess->ts_sess); 1493 sess->is_initialized = false; 1494 1495 /* 1496 * Load relative memory regions must be handled before doing any other 1497 * mapping to prevent conflicts in the VA space. 1498 */ 1499 res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt); 1500 if (res) { 1501 ts_pop_current_session(); 1502 return res; 1503 } 1504 1505 res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size); 1506 if (res) 1507 goto out; 1508 1509 res = handle_fdt_dev_regions(ctx, fdt_copy); 1510 if (res) 1511 goto out; 1512 1513 res = handle_fdt_mem_regions(ctx, fdt_copy); 1514 if (res) 1515 goto out; 1516 1517 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 1518 res = handle_tpm_event_log(ctx, fdt_copy); 1519 if (res) 1520 goto out; 1521 } 1522 1523 res = handle_hw_features(fdt_copy); 1524 if (res) 1525 goto out; 1526 1527 res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va, 1528 &boot_info_size, sess->rxtx.ffa_vers); 1529 if (res) 1530 goto out; 1531 1532 ts_pop_current_session(); 1533 1534 res = sp_enter(&args, sess); 1535 if (res) { 1536 ts_push_current_session(&sess->ts_sess); 1537 goto out; 1538 } 1539 1540 spmc_sp_msg_handler(&args, sess); 1541 1542 ts_push_current_session(&sess->ts_sess); 1543 sess->is_initialized = true; 1544 1545 out: 1546 /* Free the boot info page from the SP memory */ 1547 vm_unmap(&ctx->uctx, boot_info_va, boot_info_size); 1548 vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size); 1549 ts_pop_current_session(); 1550 1551 return res; 1552 } 1553 1554 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 1555 { 1556 TEE_Result res = TEE_SUCCESS; 1557 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 1558 1559 ctx->sp_regs.x[0] = args->a0; 1560 ctx->sp_regs.x[1] = args->a1; 1561 ctx->sp_regs.x[2] = args->a2; 1562 ctx->sp_regs.x[3] = args->a3; 1563 ctx->sp_regs.x[4] = args->a4; 1564 ctx->sp_regs.x[5] = args->a5; 1565 ctx->sp_regs.x[6] = args->a6; 1566 ctx->sp_regs.x[7] = args->a7; 1567 1568 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 1569 1570 args->a0 = ctx->sp_regs.x[0]; 1571 args->a1 = ctx->sp_regs.x[1]; 1572 args->a2 = ctx->sp_regs.x[2]; 1573 args->a3 = ctx->sp_regs.x[3]; 1574 args->a4 = ctx->sp_regs.x[4]; 1575 args->a5 = ctx->sp_regs.x[5]; 1576 args->a6 = ctx->sp_regs.x[6]; 1577 args->a7 = ctx->sp_regs.x[7]; 1578 1579 return res; 1580 } 1581 1582 /* 1583 * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive 1584 * active on NS interrupt than the callee, the callee must inherit the caller's 1585 * configuration. 1586 * Each SP's own NS action setting is stored in ns_int_mode. The effective 1587 * action will be MIN([self action], [caller's action]) which is stored in the 1588 * ns_int_mode_inherited field. 1589 */ 1590 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s, 1591 struct ts_session *caller, 1592 uint64_t *cpsr) 1593 { 1594 if (caller) { 1595 struct sp_session *caller_sp = to_sp_session(caller); 1596 1597 s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited, 1598 s->ns_int_mode); 1599 } else { 1600 s->ns_int_mode_inherited = s->ns_int_mode; 1601 } 1602 1603 if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED) 1604 *cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, 1605 ARM32_CPSR_F_SHIFT); 1606 else 1607 *cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, 1608 ARM32_CPSR_F_SHIFT); 1609 } 1610 1611 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 1612 uint32_t cmd __unused) 1613 { 1614 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 1615 TEE_Result res = TEE_SUCCESS; 1616 uint32_t exceptions = 0; 1617 struct sp_session *sp_s = to_sp_session(s); 1618 struct ts_session *sess = NULL; 1619 struct thread_ctx_regs *sp_regs = NULL; 1620 uint32_t thread_id = THREAD_ID_INVALID; 1621 struct ts_session *caller = NULL; 1622 uint32_t rpc_target_info = 0; 1623 uint32_t panicked = false; 1624 uint32_t panic_code = 0; 1625 1626 sp_regs = &ctx->sp_regs; 1627 ts_push_current_session(s); 1628 1629 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 1630 1631 /* Enable/disable foreign interrupts in CPSR/SPSR */ 1632 caller = ts_get_calling_session(); 1633 sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr); 1634 1635 /* 1636 * Store endpoint ID and thread ID in rpc_target_info. This will be used 1637 * as w1 in FFA_INTERRUPT in case of a foreign interrupt. 1638 */ 1639 rpc_target_info = thread_get_tsd()->rpc_target_info; 1640 thread_id = thread_get_id(); 1641 assert(thread_id <= UINT16_MAX); 1642 thread_get_tsd()->rpc_target_info = 1643 FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id); 1644 1645 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 1646 1647 /* Restore rpc_target_info */ 1648 thread_get_tsd()->rpc_target_info = rpc_target_info; 1649 1650 thread_unmask_exceptions(exceptions); 1651 1652 thread_user_clear_vfp(&ctx->uctx); 1653 1654 if (panicked) { 1655 DMSG("SP panicked with code %#"PRIx32, panic_code); 1656 abort_print_current_ts(); 1657 1658 sess = ts_pop_current_session(); 1659 cpu_spin_lock(&sp_s->spinlock); 1660 sp_s->state = sp_dead; 1661 cpu_spin_unlock(&sp_s->spinlock); 1662 1663 return TEE_ERROR_TARGET_DEAD; 1664 } 1665 1666 sess = ts_pop_current_session(); 1667 assert(sess == s); 1668 1669 return res; 1670 } 1671 1672 /* We currently don't support 32 bits */ 1673 #ifdef ARM64 1674 static void sp_svc_store_registers(struct thread_scall_regs *regs, 1675 struct thread_ctx_regs *sp_regs) 1676 { 1677 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 1678 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 1679 sp_regs->pc = regs->elr; 1680 sp_regs->sp = regs->sp_el0; 1681 } 1682 #endif 1683 1684 static bool sp_handle_scall(struct thread_scall_regs *regs) 1685 { 1686 struct ts_session *ts = ts_get_current_session(); 1687 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 1688 struct sp_session *s = uctx->open_session; 1689 1690 assert(s); 1691 1692 sp_svc_store_registers(regs, &uctx->sp_regs); 1693 1694 regs->x0 = 0; 1695 regs->x1 = 0; /* panic */ 1696 regs->x2 = 0; /* panic code */ 1697 1698 /* 1699 * All the registers of the SP are saved in the SP session by the SVC 1700 * handler. 1701 * We always return to S-El1 after handling the SVC. We will continue 1702 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 1703 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 1704 * saved registers to the thread_smc_args. The thread_smc_args object is 1705 * afterward used by the spmc_sp_msg_handler() to handle the 1706 * FF-A message send by the SP. 1707 */ 1708 return false; 1709 } 1710 1711 static void sp_dump_state(struct ts_ctx *ctx) 1712 { 1713 struct sp_ctx *utc = to_sp_ctx(ctx); 1714 1715 if (utc->uctx.dump_entry_func) { 1716 TEE_Result res = ldelf_dump_state(&utc->uctx); 1717 1718 if (!res || res == TEE_ERROR_TARGET_DEAD) 1719 return; 1720 } 1721 1722 user_mode_ctx_print_mappings(&utc->uctx); 1723 } 1724 1725 static const struct ts_ops sp_ops = { 1726 .enter_invoke_cmd = sp_enter_invoke_cmd, 1727 .handle_scall = sp_handle_scall, 1728 .dump_state = sp_dump_state, 1729 }; 1730 1731 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1732 { 1733 enum teecore_memtypes mtype = MEM_AREA_TA_RAM; 1734 struct sp_pkg_header *sp_pkg_hdr = NULL; 1735 struct fip_sp *sp = NULL; 1736 uint64_t sp_fdt_end = 0; 1737 size_t sp_pkg_size = 0; 1738 vaddr_t sp_pkg_va = 0; 1739 1740 /* Process the first page which contains the SP package header */ 1741 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE); 1742 if (!sp_pkg_va) { 1743 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1744 return TEE_ERROR_GENERIC; 1745 } 1746 1747 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1748 1749 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1750 EMSG("Invalid SP package magic"); 1751 return TEE_ERROR_BAD_FORMAT; 1752 } 1753 1754 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 && 1755 sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) { 1756 EMSG("Invalid SP header version"); 1757 return TEE_ERROR_BAD_FORMAT; 1758 } 1759 1760 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1761 &sp_pkg_size)) { 1762 EMSG("Invalid SP package size"); 1763 return TEE_ERROR_BAD_FORMAT; 1764 } 1765 1766 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1767 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1768 EMSG("Invalid SP manifest size"); 1769 return TEE_ERROR_BAD_FORMAT; 1770 } 1771 1772 /* Process the whole SP package now that the size is known */ 1773 sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size); 1774 if (!sp_pkg_va) { 1775 EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); 1776 return TEE_ERROR_GENERIC; 1777 } 1778 1779 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1780 1781 sp = calloc(1, sizeof(struct fip_sp)); 1782 if (!sp) 1783 return TEE_ERROR_OUT_OF_MEMORY; 1784 1785 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1786 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1787 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1788 sp->sp_img.image.flags = 0; 1789 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1790 1791 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1792 1793 return TEE_SUCCESS; 1794 } 1795 1796 static TEE_Result fip_sp_init_all(void) 1797 { 1798 TEE_Result res = TEE_SUCCESS; 1799 uint64_t sp_pkg_addr = 0; 1800 const void *fdt = NULL; 1801 TEE_UUID sp_uuid = { }; 1802 int sp_pkgs_node = 0; 1803 int subnode = 0; 1804 int root = 0; 1805 1806 fdt = get_manifest_dt(); 1807 if (!fdt) { 1808 EMSG("No SPMC manifest found"); 1809 return TEE_ERROR_GENERIC; 1810 } 1811 1812 root = fdt_path_offset(fdt, "/"); 1813 if (root < 0) 1814 return TEE_ERROR_BAD_FORMAT; 1815 1816 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1817 return TEE_ERROR_BAD_FORMAT; 1818 1819 /* SP packages are optional, it's not an error if we don't find any */ 1820 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1821 if (sp_pkgs_node < 0) 1822 return TEE_SUCCESS; 1823 1824 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1825 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1826 if (res) { 1827 EMSG("Invalid FIP SP load address"); 1828 return res; 1829 } 1830 1831 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1832 if (res) { 1833 EMSG("Invalid FIP SP uuid"); 1834 return res; 1835 } 1836 1837 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1838 if (res) { 1839 EMSG("Invalid FIP SP package"); 1840 return res; 1841 } 1842 } 1843 1844 return TEE_SUCCESS; 1845 } 1846 1847 static void fip_sp_deinit_all(void) 1848 { 1849 while (!STAILQ_EMPTY(&fip_sp_list)) { 1850 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1851 1852 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1853 free(sp); 1854 } 1855 } 1856 1857 static TEE_Result sp_init_all(void) 1858 { 1859 TEE_Result res = TEE_SUCCESS; 1860 const struct sp_image *sp = NULL; 1861 const struct fip_sp *fip_sp = NULL; 1862 char __maybe_unused msg[60] = { '\0', }; 1863 struct sp_session *s = NULL; 1864 struct sp_session *prev_sp = NULL; 1865 1866 for_each_secure_partition(sp) { 1867 if (sp->image.uncompressed_size) 1868 snprintf(msg, sizeof(msg), 1869 " (compressed, uncompressed %u)", 1870 sp->image.uncompressed_size); 1871 else 1872 msg[0] = '\0'; 1873 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1874 sp->image.size, msg); 1875 1876 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1877 1878 if (res != TEE_SUCCESS) { 1879 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1880 &sp->image.uuid, res); 1881 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1882 panic(); 1883 } 1884 } 1885 1886 res = fip_sp_init_all(); 1887 if (res) 1888 panic("Failed initializing FIP SPs"); 1889 1890 for_each_fip_sp(fip_sp) { 1891 sp = &fip_sp->sp_img; 1892 1893 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1894 sp->image.size); 1895 1896 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1897 1898 if (res != TEE_SUCCESS) { 1899 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1900 &sp->image.uuid, res); 1901 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1902 panic(); 1903 } 1904 } 1905 1906 /* 1907 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP 1908 * loader, so the original images (loaded by BL2) are not needed anymore 1909 */ 1910 fip_sp_deinit_all(); 1911 1912 /* 1913 * Now that all SPs are loaded, check through the boot order values, 1914 * and warn in case there is a non-unique value. 1915 */ 1916 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1917 /* User specified boot-order values are uint16 */ 1918 if (s->boot_order > UINT16_MAX) 1919 break; 1920 1921 if (prev_sp && prev_sp->boot_order == s->boot_order) 1922 IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)", 1923 &prev_sp->ts_sess.ctx->uuid, 1924 &s->ts_sess.ctx->uuid); 1925 1926 prev_sp = s; 1927 } 1928 1929 /* Continue the initialization and run the SP */ 1930 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1931 DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id); 1932 1933 res = sp_first_run(s); 1934 if (res != TEE_SUCCESS) { 1935 EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, 1936 s->endpoint_id, res); 1937 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1938 panic(); 1939 } 1940 } 1941 1942 return TEE_SUCCESS; 1943 } 1944 1945 boot_final(sp_init_all); 1946 1947 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1948 struct ts_store_handle **h) 1949 { 1950 return emb_ts_open(uuid, h, find_secure_partition); 1951 } 1952 1953 REGISTER_SP_STORE(2) = { 1954 .description = "SP store", 1955 .open = secure_partition_open, 1956 .get_size = emb_ts_get_size, 1957 .get_tag = emb_ts_get_tag, 1958 .read = emb_ts_read, 1959 .close = emb_ts_close, 1960 }; 1961