xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 12fc37711783247b0d05fdc271ef007f4930767b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2023, Arm Limited.
4  */
5 #include <bench.h>
6 #include <crypto/crypto.h>
7 #include <initcall.h>
8 #include <kernel/boot.h>
9 #include <kernel/embedded_ts.h>
10 #include <kernel/ldelf_loader.h>
11 #include <kernel/secure_partition.h>
12 #include <kernel/spinlock.h>
13 #include <kernel/spmc_sp_handler.h>
14 #include <kernel/thread_private.h>
15 #include <kernel/thread_spmc.h>
16 #include <kernel/tpm.h>
17 #include <kernel/ts_store.h>
18 #include <ldelf.h>
19 #include <libfdt.h>
20 #include <mm/core_mmu.h>
21 #include <mm/fobj.h>
22 #include <mm/mobj.h>
23 #include <mm/vm.h>
24 #include <optee_ffa.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <tee_api_types.h>
28 #include <tee/uuid.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 #include <zlib.h>
34 
35 #define SP_MANIFEST_ATTR_READ		BIT(0)
36 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
37 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
38 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
39 
40 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
41 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
42 					 SP_MANIFEST_ATTR_WRITE)
43 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
44 					 SP_MANIFEST_ATTR_EXEC)
45 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
46 					 SP_MANIFEST_ATTR_WRITE | \
47 					 SP_MANIFEST_ATTR_EXEC)
48 
49 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
50 
51 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
52 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
53 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
54 
55 #define SP_PKG_HEADER_MAGIC (0x474b5053)
56 #define SP_PKG_HEADER_VERSION_V1 (0x1)
57 #define SP_PKG_HEADER_VERSION_V2 (0x2)
58 
59 struct sp_pkg_header {
60 	uint32_t magic;
61 	uint32_t version;
62 	uint32_t pm_offset;
63 	uint32_t pm_size;
64 	uint32_t img_offset;
65 	uint32_t img_size;
66 };
67 
68 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
69 
70 static const struct ts_ops sp_ops;
71 
72 /* List that holds all of the loaded SP's */
73 static struct sp_sessions_head open_sp_sessions =
74 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
75 
76 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
77 {
78 	const struct sp_image *sp = NULL;
79 	const struct fip_sp *fip_sp = NULL;
80 
81 	for_each_secure_partition(sp) {
82 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
83 			return &sp->image;
84 	}
85 
86 	for_each_fip_sp(fip_sp) {
87 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
88 			return &fip_sp->sp_img.image;
89 	}
90 
91 	return NULL;
92 }
93 
94 bool is_sp_ctx(struct ts_ctx *ctx)
95 {
96 	return ctx && (ctx->ops == &sp_ops);
97 }
98 
99 static void set_sp_ctx_ops(struct ts_ctx *ctx)
100 {
101 	ctx->ops = &sp_ops;
102 }
103 
104 struct sp_session *sp_get_session(uint32_t session_id)
105 {
106 	struct sp_session *s = NULL;
107 
108 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
109 		if (s->endpoint_id == session_id)
110 			return s;
111 	}
112 
113 	return NULL;
114 }
115 
116 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
117 				 const TEE_UUID *ffa_uuid, size_t *elem_count,
118 				 bool count_only)
119 {
120 	TEE_Result res = TEE_SUCCESS;
121 	uint32_t part_props = FFA_PART_PROP_DIRECT_REQ_RECV |
122 			      FFA_PART_PROP_DIRECT_REQ_SEND;
123 	struct sp_session *s = NULL;
124 
125 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
126 		if (ffa_uuid &&
127 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
128 			continue;
129 
130 		if (s->state == sp_dead)
131 			continue;
132 		if (!count_only && !res) {
133 			uint32_t uuid_words[4] = { 0 };
134 
135 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
136 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
137 							*elem_count,
138 							s->endpoint_id, 1,
139 							part_props, uuid_words);
140 		}
141 		*elem_count += 1;
142 	}
143 
144 	return res;
145 }
146 
147 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
148 			     struct user_mode_ctx *uctx)
149 {
150 	/*
151 	 * Check that we have access to the region if it is supposed to be
152 	 * mapped to the current context.
153 	 */
154 	if (uctx) {
155 		struct vm_region *region = NULL;
156 
157 		/* Make sure that each mobj belongs to the SP */
158 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
159 			if (region->mobj == mem->mobj)
160 				break;
161 		}
162 
163 		if (!region)
164 			return false;
165 	}
166 
167 	/* Check that it is not shared with another SP */
168 	return !sp_mem_is_shared(mem);
169 }
170 
171 static uint16_t new_session_id(struct sp_sessions_head *open_sessions)
172 {
173 	struct sp_session *last = NULL;
174 	uint16_t id = SPMC_ENDPOINT_ID + 1;
175 
176 	last = TAILQ_LAST(open_sessions, sp_sessions_head);
177 	if (last)
178 		id = last->endpoint_id + 1;
179 
180 	assert(id > SPMC_ENDPOINT_ID);
181 	return id;
182 }
183 
184 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
185 {
186 	TEE_Result res = TEE_SUCCESS;
187 	struct sp_ctx *spc = NULL;
188 
189 	/* Register context */
190 	spc = calloc(1, sizeof(struct sp_ctx));
191 	if (!spc)
192 		return TEE_ERROR_OUT_OF_MEMORY;
193 
194 	spc->open_session = s;
195 	s->ts_sess.ctx = &spc->ts_ctx;
196 	spc->ts_ctx.uuid = *bin_uuid;
197 
198 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
199 	if (res)
200 		goto err;
201 
202 	set_sp_ctx_ops(&spc->ts_ctx);
203 
204 	return TEE_SUCCESS;
205 
206 err:
207 	free(spc);
208 	return res;
209 }
210 
211 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
212 				    const TEE_UUID *bin_uuid,
213 				    struct sp_session **sess)
214 {
215 	TEE_Result res = TEE_SUCCESS;
216 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
217 
218 	if (!s)
219 		return TEE_ERROR_OUT_OF_MEMORY;
220 
221 	s->endpoint_id = new_session_id(open_sessions);
222 	if (!s->endpoint_id) {
223 		res = TEE_ERROR_OVERFLOW;
224 		goto err;
225 	}
226 
227 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
228 	res = sp_create_ctx(bin_uuid, s);
229 	if (res)
230 		goto err;
231 
232 	TAILQ_INSERT_TAIL(open_sessions, s, link);
233 	*sess = s;
234 	return TEE_SUCCESS;
235 
236 err:
237 	free(s);
238 	return res;
239 }
240 
241 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
242 {
243 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
244 
245 	memset(sp_regs, 0, sizeof(*sp_regs));
246 	sp_regs->sp = ctx->uctx.stack_ptr;
247 	sp_regs->pc = ctx->uctx.entry_func;
248 
249 	return TEE_SUCCESS;
250 }
251 
252 TEE_Result sp_map_shared(struct sp_session *s,
253 			 struct sp_mem_receiver *receiver,
254 			 struct sp_mem *smem,
255 			 uint64_t *va)
256 {
257 	TEE_Result res = TEE_SUCCESS;
258 	struct sp_ctx *ctx = NULL;
259 	uint32_t perm = TEE_MATTR_UR;
260 	struct sp_mem_map_region *reg = NULL;
261 
262 	ctx = to_sp_ctx(s->ts_sess.ctx);
263 
264 	/* Get the permission */
265 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
266 		perm |= TEE_MATTR_UX;
267 
268 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
269 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
270 			return TEE_ERROR_ACCESS_CONFLICT;
271 
272 		perm |= TEE_MATTR_UW;
273 	}
274 	/*
275 	 * Currently we don't support passing a va. We can't guarantee that the
276 	 * full region will be mapped in a contiguous region. A smem->region can
277 	 * have multiple mobj for one share. Currently there doesn't seem to be
278 	 * an option to guarantee that these will be mapped in a contiguous va
279 	 * space.
280 	 */
281 	if (*va)
282 		return TEE_ERROR_NOT_SUPPORTED;
283 
284 	SLIST_FOREACH(reg, &smem->regions, link) {
285 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
286 			     perm, 0, reg->mobj, reg->page_offset);
287 
288 		if (res != TEE_SUCCESS) {
289 			EMSG("Failed to map memory region %#"PRIx32, res);
290 			return res;
291 		}
292 	}
293 	return TEE_SUCCESS;
294 }
295 
296 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
297 {
298 	TEE_Result res = TEE_SUCCESS;
299 	vaddr_t vaddr = 0;
300 	size_t len = 0;
301 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
302 	struct sp_mem_map_region *reg = NULL;
303 
304 	SLIST_FOREACH(reg, &smem->regions, link) {
305 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
306 					       reg->mobj);
307 		len = reg->page_count * SMALL_PAGE_SIZE;
308 
309 		res = vm_unmap(&ctx->uctx, vaddr, len);
310 		if (res != TEE_SUCCESS)
311 			return res;
312 	}
313 
314 	return TEE_SUCCESS;
315 }
316 
317 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
318 				uint64_t *value)
319 {
320 	const fdt64_t *p = NULL;
321 	int len = 0;
322 
323 	p = fdt_getprop(fdt, node, property, &len);
324 	if (!p)
325 		return TEE_ERROR_ITEM_NOT_FOUND;
326 
327 	if (len != sizeof(*p))
328 		return TEE_ERROR_BAD_FORMAT;
329 
330 	*value = fdt64_ld(p);
331 
332 	return TEE_SUCCESS;
333 }
334 
335 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
336 				uint32_t *value)
337 {
338 	const fdt32_t *p = NULL;
339 	int len = 0;
340 
341 	p = fdt_getprop(fdt, node, property, &len);
342 	if (!p)
343 		return TEE_ERROR_ITEM_NOT_FOUND;
344 
345 	if (len != sizeof(*p))
346 		return TEE_ERROR_BAD_FORMAT;
347 
348 	*value = fdt32_to_cpu(*p);
349 
350 	return TEE_SUCCESS;
351 }
352 
353 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
354 				 const char *property, TEE_UUID *uuid)
355 {
356 	uint32_t uuid_array[4] = { 0 };
357 	const fdt32_t *p = NULL;
358 	int len = 0;
359 	int i = 0;
360 
361 	p = fdt_getprop(fdt, node, property, &len);
362 	if (!p)
363 		return TEE_ERROR_ITEM_NOT_FOUND;
364 
365 	if (len != sizeof(TEE_UUID))
366 		return TEE_ERROR_BAD_FORMAT;
367 
368 	for (i = 0; i < 4; i++)
369 		uuid_array[i] = fdt32_to_cpu(p[i]);
370 
371 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
372 
373 	return TEE_SUCCESS;
374 }
375 
376 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
377 				   bool *is_elf_format)
378 {
379 	TEE_Result res = TEE_SUCCESS;
380 	uint32_t elf_format = 0;
381 
382 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
383 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
384 		return res;
385 
386 	*is_elf_format = (elf_format != 0);
387 
388 	return TEE_SUCCESS;
389 }
390 
391 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
392 				 const struct ts_store_ops **ops,
393 				 struct ts_store_handle **handle)
394 {
395 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
396 
397 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
398 		res = (*ops)->open(uuid, handle);
399 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
400 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
401 			break;
402 	}
403 
404 	return res;
405 }
406 
407 static TEE_Result load_binary_sp(struct ts_session *s,
408 				 struct user_mode_ctx *uctx)
409 {
410 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
411 	const struct ts_store_ops *store_ops = NULL;
412 	struct ts_store_handle *handle = NULL;
413 	TEE_Result res = TEE_SUCCESS;
414 	tee_mm_entry_t *mm = NULL;
415 	struct mobj *mobj = NULL;
416 	uaddr_t base_addr = 0;
417 	uint32_t vm_flags = 0;
418 	unsigned int idx = 0;
419 	vaddr_t va = 0;
420 
421 	if (!s || !uctx)
422 		return TEE_ERROR_BAD_PARAMETERS;
423 
424 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
425 
426 	vm_set_ctx(uctx->ts_ctx);
427 
428 	/* Find TS store and open SP binary */
429 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
430 	if (res != TEE_SUCCESS) {
431 		EMSG("Failed to open SP binary");
432 		return res;
433 	}
434 
435 	/* Query binary size and calculate page count */
436 	res = store_ops->get_size(handle, &bin_size);
437 	if (res != TEE_SUCCESS)
438 		goto err;
439 
440 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
441 		res = TEE_ERROR_OVERFLOW;
442 		goto err;
443 	}
444 
445 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
446 
447 	/* Allocate memory */
448 	mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded);
449 	if (!mm) {
450 		res = TEE_ERROR_OUT_OF_MEMORY;
451 		goto err;
452 	}
453 
454 	base_addr = tee_mm_get_smem(mm);
455 
456 	/* Create mobj */
457 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
458 	if (!mobj) {
459 		res = TEE_ERROR_OUT_OF_MEMORY;
460 		goto err_free_tee_mm;
461 	}
462 
463 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
464 	if (res)
465 		goto err_free_mobj;
466 
467 	/* Map memory area for the SP binary */
468 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
469 		     vm_flags, mobj, 0);
470 	if (res)
471 		goto err_free_mobj;
472 
473 	/* Read SP binary into the previously mapped memory area */
474 	res = store_ops->read(handle, (void *)va, bin_size);
475 	if (res)
476 		goto err_unmap;
477 
478 	/* Set memory protection to allow execution */
479 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
480 	if (res)
481 		goto err_unmap;
482 
483 	mobj_put(mobj);
484 	store_ops->close(handle);
485 
486 	/* The entry point must be at the beginning of the SP binary. */
487 	uctx->entry_func = va;
488 	uctx->load_addr = va;
489 	uctx->is_32bit = false;
490 
491 	s->handle_scall = s->ctx->ops->handle_scall;
492 
493 	return TEE_SUCCESS;
494 
495 err_unmap:
496 	vm_unmap(uctx, va, bin_size_rounded);
497 
498 err_free_mobj:
499 	mobj_put(mobj);
500 
501 err_free_tee_mm:
502 	tee_mm_free(mm);
503 
504 err:
505 	store_ops->close(handle);
506 
507 	return res;
508 }
509 
510 static TEE_Result sp_open_session(struct sp_session **sess,
511 				  struct sp_sessions_head *open_sessions,
512 				  const TEE_UUID *ffa_uuid,
513 				  const TEE_UUID *bin_uuid,
514 				  const void *fdt)
515 {
516 	TEE_Result res = TEE_SUCCESS;
517 	struct sp_session *s = NULL;
518 	struct sp_ctx *ctx = NULL;
519 	bool is_elf_format = false;
520 
521 	if (!find_secure_partition(bin_uuid))
522 		return TEE_ERROR_ITEM_NOT_FOUND;
523 
524 	res = sp_create_session(open_sessions, bin_uuid, &s);
525 	if (res != TEE_SUCCESS) {
526 		DMSG("sp_create_session failed %#"PRIx32, res);
527 		return res;
528 	}
529 
530 	ctx = to_sp_ctx(s->ts_sess.ctx);
531 	assert(ctx);
532 	if (!ctx)
533 		return TEE_ERROR_TARGET_DEAD;
534 	*sess = s;
535 
536 	ts_push_current_session(&s->ts_sess);
537 
538 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
539 	if (res == TEE_SUCCESS) {
540 		if (is_elf_format) {
541 			/* Load the SP using ldelf. */
542 			ldelf_load_ldelf(&ctx->uctx);
543 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
544 		} else {
545 			/* Raw binary format SP */
546 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
547 		}
548 	} else {
549 		EMSG("Failed to detect SP format");
550 	}
551 
552 	if (res != TEE_SUCCESS) {
553 		EMSG("Failed loading SP  %#"PRIx32, res);
554 		ts_pop_current_session();
555 		return TEE_ERROR_TARGET_DEAD;
556 	}
557 
558 	/* Make the SP ready for its first run */
559 	s->state = sp_idle;
560 	s->caller_id = 0;
561 	sp_init_set_registers(ctx);
562 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
563 	ts_pop_current_session();
564 
565 	return TEE_SUCCESS;
566 }
567 
568 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
569 {
570 	const struct fdt_property *description = NULL;
571 	int description_name_len = 0;
572 
573 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
574 		EMSG("Failed loading SP, manifest not found");
575 		return TEE_ERROR_BAD_PARAMETERS;
576 	}
577 
578 	description = fdt_get_property(fdt, 0, "description",
579 				       &description_name_len);
580 	if (description)
581 		DMSG("Loading SP: %s", description->data);
582 
583 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
584 		EMSG("Missing or invalid UUID in SP manifest");
585 		return TEE_ERROR_BAD_FORMAT;
586 	}
587 
588 	return TEE_SUCCESS;
589 }
590 
591 /*
592  * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy
593  * the fdt into the allocated page(s) and return a pointer to the new location
594  * of the fdt. This pointer can be used to update data inside the fdt.
595  */
596 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args,
597 			       const void * const input_fdt, vaddr_t *va,
598 			       size_t *num_pgs, void **fdt_copy)
599 {
600 	struct sp_ffa_init_info *info = NULL;
601 	int nvp_count = 1;
602 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
603 	size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count;
604 	size_t info_size = sizeof(*info) + nvp_size;
605 	size_t fdt_size = total_size - info_size;
606 	TEE_Result res = TEE_SUCCESS;
607 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
608 	struct fobj *f = NULL;
609 	struct mobj *m = NULL;
610 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
611 
612 	*num_pgs = total_size / SMALL_PAGE_SIZE;
613 
614 	f = fobj_sec_mem_alloc(*num_pgs);
615 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
616 
617 	fobj_put(f);
618 	if (!m)
619 		return TEE_ERROR_OUT_OF_MEMORY;
620 
621 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
622 	mobj_put(m);
623 	if (res)
624 		return res;
625 
626 	info = (struct sp_ffa_init_info *)*va;
627 
628 	/* magic field is 4 bytes, we don't copy /0 byte. */
629 	memcpy(&info->magic, "FF-A", 4);
630 	info->count = nvp_count;
631 	args->a0 = (vaddr_t)info;
632 
633 	/*
634 	 * Store the fdt after the boot_info and store the pointer in the
635 	 * first element.
636 	 */
637 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
638 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
639 	info->nvp[0].value = *va + info_size;
640 	info->nvp[0].size = fdt_size;
641 	*fdt_copy = (void *)info->nvp[0].value;
642 
643 	if (fdt_open_into(input_fdt, *fdt_copy, fdt_size))
644 		return TEE_ERROR_GENERIC;
645 
646 	return TEE_SUCCESS;
647 }
648 
649 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
650 						       const void *fdt)
651 {
652 	int node = 0;
653 	int subnode = 0;
654 	tee_mm_entry_t *mm = NULL;
655 	TEE_Result res = TEE_SUCCESS;
656 
657 	/*
658 	 * Memory regions are optional in the SP manifest, it's not an error if
659 	 * we don't find any.
660 	 */
661 	node = fdt_node_offset_by_compatible(fdt, 0,
662 					     "arm,ffa-manifest-memory-regions");
663 	if (node < 0)
664 		return TEE_SUCCESS;
665 
666 	fdt_for_each_subnode(subnode, fdt, node) {
667 		uint64_t load_rel_offset = 0;
668 		uint32_t attributes = 0;
669 		uint64_t base_addr = 0;
670 		uint32_t pages_cnt = 0;
671 		uint32_t flags = 0;
672 		uint32_t perm = 0;
673 		size_t size = 0;
674 		vaddr_t va = 0;
675 
676 		mm = NULL;
677 
678 		/* Load address relative offset of a memory region */
679 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
680 				   &load_rel_offset)) {
681 			va = ctx->uctx.load_addr + load_rel_offset;
682 		} else {
683 			/* Skip non load address relative memory regions */
684 			continue;
685 		}
686 
687 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
688 			EMSG("Both base-address and load-address-relative-offset fields are set");
689 			return TEE_ERROR_BAD_FORMAT;
690 		}
691 
692 		/* Size of memory region as count of 4K pages */
693 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
694 			EMSG("Mandatory field is missing: pages-count");
695 			return TEE_ERROR_BAD_FORMAT;
696 		}
697 
698 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
699 			return TEE_ERROR_OVERFLOW;
700 
701 		/* Memory region attributes  */
702 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
703 			EMSG("Mandatory field is missing: attributes");
704 			return TEE_ERROR_BAD_FORMAT;
705 		}
706 
707 		/* Check instruction and data access permissions */
708 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
709 		case SP_MANIFEST_ATTR_RO:
710 			perm = TEE_MATTR_UR;
711 			break;
712 		case SP_MANIFEST_ATTR_RW:
713 			perm = TEE_MATTR_URW;
714 			break;
715 		case SP_MANIFEST_ATTR_RX:
716 			perm = TEE_MATTR_URX;
717 			break;
718 		default:
719 			EMSG("Invalid memory access permissions");
720 			return TEE_ERROR_BAD_FORMAT;
721 		}
722 
723 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
724 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
725 			EMSG("Optional field with invalid value: flags");
726 			return TEE_ERROR_BAD_FORMAT;
727 		}
728 
729 		/* Load relative regions must be secure */
730 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
731 			EMSG("Invalid memory security attribute");
732 			return TEE_ERROR_BAD_FORMAT;
733 		}
734 
735 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
736 			/*
737 			 * NOBITS flag is set, which means that loaded binary
738 			 * doesn't contain this area, so it's need to be
739 			 * allocated.
740 			 */
741 			struct mobj *m = NULL;
742 			unsigned int idx = 0;
743 
744 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
745 			if (!mm)
746 				return TEE_ERROR_OUT_OF_MEMORY;
747 
748 			base_addr = tee_mm_get_smem(mm);
749 
750 			m = sp_mem_new_mobj(pages_cnt,
751 					    TEE_MATTR_MEM_TYPE_CACHED, true);
752 			if (!m) {
753 				res = TEE_ERROR_OUT_OF_MEMORY;
754 				goto err_mm_free;
755 			}
756 
757 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
758 			if (res) {
759 				mobj_put(m);
760 				goto err_mm_free;
761 			}
762 
763 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
764 			mobj_put(m);
765 			if (res)
766 				goto err_mm_free;
767 		} else {
768 			/*
769 			 * If NOBITS is not present the memory area is already
770 			 * mapped and only need to set the correct permissions.
771 			 */
772 			res = vm_set_prot(&ctx->uctx, va, size, perm);
773 			if (res)
774 				return res;
775 		}
776 	}
777 
778 	return TEE_SUCCESS;
779 
780 err_mm_free:
781 	tee_mm_free(mm);
782 	return res;
783 }
784 
785 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
786 {
787 	int node = 0;
788 	int subnode = 0;
789 	TEE_Result res = TEE_SUCCESS;
790 	const char *dt_device_match_table = {
791 		"arm,ffa-manifest-device-regions",
792 	};
793 
794 	/*
795 	 * Device regions are optional in the SP manifest, it's not an error if
796 	 * we don't find any
797 	 */
798 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
799 	if (node < 0)
800 		return TEE_SUCCESS;
801 
802 	fdt_for_each_subnode(subnode, fdt, node) {
803 		uint64_t base_addr = 0;
804 		uint32_t pages_cnt = 0;
805 		uint32_t attributes = 0;
806 		struct mobj *m = NULL;
807 		bool is_secure = true;
808 		uint32_t perm = 0;
809 		vaddr_t va = 0;
810 		unsigned int idx = 0;
811 
812 		/*
813 		 * Physical base address of a device MMIO region.
814 		 * Currently only physically contiguous region is supported.
815 		 */
816 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
817 			EMSG("Mandatory field is missing: base-address");
818 			return TEE_ERROR_BAD_FORMAT;
819 		}
820 
821 		/* Total size of MMIO region as count of 4K pages */
822 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
823 			EMSG("Mandatory field is missing: pages-count");
824 			return TEE_ERROR_BAD_FORMAT;
825 		}
826 
827 		/* Data access, instruction access and security attributes */
828 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
829 			EMSG("Mandatory field is missing: attributes");
830 			return TEE_ERROR_BAD_FORMAT;
831 		}
832 
833 		/* Check instruction and data access permissions */
834 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
835 		case SP_MANIFEST_ATTR_RO:
836 			perm = TEE_MATTR_UR;
837 			break;
838 		case SP_MANIFEST_ATTR_RW:
839 			perm = TEE_MATTR_URW;
840 			break;
841 		default:
842 			EMSG("Invalid memory access permissions");
843 			return TEE_ERROR_BAD_FORMAT;
844 		}
845 
846 		/*
847 		 * The SP is a secure endpoint, security attribute can be
848 		 * secure or non-secure
849 		 */
850 		if (attributes & SP_MANIFEST_ATTR_NSEC)
851 			is_secure = false;
852 
853 		/* Memory attributes must be Device-nGnRnE */
854 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
855 				    is_secure);
856 		if (!m)
857 			return TEE_ERROR_OUT_OF_MEMORY;
858 
859 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
860 		if (res) {
861 			mobj_put(m);
862 			return res;
863 		}
864 
865 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
866 			     perm, 0, m, 0);
867 		mobj_put(m);
868 		if (res)
869 			return res;
870 
871 		/*
872 		 * Overwrite the device region's PA in the fdt with the VA. This
873 		 * fdt will be passed to the SP.
874 		 */
875 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
876 
877 		/*
878 		 * Unmap the region if the overwrite failed since the SP won't
879 		 * be able to access it without knowing the VA.
880 		 */
881 		if (res) {
882 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
883 			return res;
884 		}
885 	}
886 
887 	return TEE_SUCCESS;
888 }
889 
890 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
891 				    uint32_t new_endpoint_id)
892 {
893 	struct sp_session *session = sp_get_session(endpoint_id);
894 	uint32_t manifest_endpoint_id = 0;
895 
896 	/*
897 	 * We don't know in which order the SPs are loaded. The endpoint ID
898 	 * defined in the manifest could already be generated by
899 	 * new_session_id() and used by another SP. If this is the case, we swap
900 	 * the ID's of the two SPs. We also have to make sure that the ID's are
901 	 * not defined twice in the manifest.
902 	 */
903 
904 	/* The endpoint ID was not assigned yet */
905 	if (!session)
906 		return TEE_SUCCESS;
907 
908 	/*
909 	 * Read the manifest file from the SP who originally had the endpoint.
910 	 * We can safely swap the endpoint ID's if the manifest file doesn't
911 	 * have an endpoint ID defined.
912 	 */
913 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
914 		assert(manifest_endpoint_id == endpoint_id);
915 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
916 		return TEE_ERROR_ACCESS_CONFLICT;
917 	}
918 
919 	session->endpoint_id = new_endpoint_id;
920 
921 	return TEE_SUCCESS;
922 }
923 
924 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
925 {
926 	uint32_t endpoint_id = 0;
927 
928 	/*
929 	 * The endpoint ID can be optionally defined in the manifest file. We
930 	 * have to map the ID inside the manifest to the SP if it's defined.
931 	 * If not, the endpoint ID generated inside new_session_id() will be
932 	 * used.
933 	 */
934 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
935 		TEE_Result res = TEE_ERROR_GENERIC;
936 
937 		if (endpoint_id <= SPMC_ENDPOINT_ID)
938 			return TEE_ERROR_BAD_FORMAT;
939 
940 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
941 		if (res)
942 			return res;
943 
944 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
945 		     endpoint_id);
946 		/* Assign the endpoint ID to the current SP */
947 		s->endpoint_id = endpoint_id;
948 	}
949 	return TEE_SUCCESS;
950 }
951 
952 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
953 {
954 	int node = 0;
955 	int subnode = 0;
956 	tee_mm_entry_t *mm = NULL;
957 	TEE_Result res = TEE_SUCCESS;
958 
959 	/*
960 	 * Memory regions are optional in the SP manifest, it's not an error if
961 	 * we don't find any.
962 	 */
963 	node = fdt_node_offset_by_compatible(fdt, 0,
964 					     "arm,ffa-manifest-memory-regions");
965 	if (node < 0)
966 		return TEE_SUCCESS;
967 
968 	fdt_for_each_subnode(subnode, fdt, node) {
969 		uint64_t load_rel_offset = 0;
970 		bool alloc_needed = false;
971 		uint32_t attributes = 0;
972 		uint64_t base_addr = 0;
973 		uint32_t pages_cnt = 0;
974 		bool is_secure = true;
975 		struct mobj *m = NULL;
976 		unsigned int idx = 0;
977 		uint32_t perm = 0;
978 		size_t size = 0;
979 		vaddr_t va = 0;
980 
981 		mm = NULL;
982 
983 		/* Load address relative offset of a memory region */
984 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
985 				   &load_rel_offset)) {
986 			/*
987 			 * At this point the memory region is already mapped by
988 			 * handle_fdt_load_relative_mem_regions.
989 			 * Only need to set the base-address in the manifest and
990 			 * then skip the rest of the mapping process.
991 			 */
992 			va = ctx->uctx.load_addr + load_rel_offset;
993 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
994 			if (res)
995 				return res;
996 
997 			continue;
998 		}
999 
1000 		/*
1001 		 * Base address of a memory region.
1002 		 * If not present, we have to allocate the specified memory.
1003 		 * If present, this field could specify a PA or VA. Currently
1004 		 * only a PA is supported.
1005 		 */
1006 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1007 			alloc_needed = true;
1008 
1009 		/* Size of memory region as count of 4K pages */
1010 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1011 			EMSG("Mandatory field is missing: pages-count");
1012 			return TEE_ERROR_BAD_FORMAT;
1013 		}
1014 
1015 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1016 			return TEE_ERROR_OVERFLOW;
1017 
1018 		/*
1019 		 * Memory region attributes:
1020 		 * - Instruction/data access permissions
1021 		 * - Cacheability/shareability attributes
1022 		 * - Security attributes
1023 		 *
1024 		 * Cacheability/shareability attributes can be ignored for now.
1025 		 * OP-TEE only supports a single type for normal cached memory
1026 		 * and currently there is no use case that would require to
1027 		 * change this.
1028 		 */
1029 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1030 			EMSG("Mandatory field is missing: attributes");
1031 			return TEE_ERROR_BAD_FORMAT;
1032 		}
1033 
1034 		/* Check instruction and data access permissions */
1035 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1036 		case SP_MANIFEST_ATTR_RO:
1037 			perm = TEE_MATTR_UR;
1038 			break;
1039 		case SP_MANIFEST_ATTR_RW:
1040 			perm = TEE_MATTR_URW;
1041 			break;
1042 		case SP_MANIFEST_ATTR_RX:
1043 			perm = TEE_MATTR_URX;
1044 			break;
1045 		default:
1046 			EMSG("Invalid memory access permissions");
1047 			return TEE_ERROR_BAD_FORMAT;
1048 		}
1049 
1050 		/*
1051 		 * The SP is a secure endpoint, security attribute can be
1052 		 * secure or non-secure.
1053 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1054 		 * address is missing this attribute must be secure.
1055 		 */
1056 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1057 			if (alloc_needed) {
1058 				EMSG("Invalid memory security attribute");
1059 				return TEE_ERROR_BAD_FORMAT;
1060 			}
1061 			is_secure = false;
1062 		}
1063 
1064 		if (alloc_needed) {
1065 			/* Base address is missing, we have to allocate */
1066 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
1067 			if (!mm)
1068 				return TEE_ERROR_OUT_OF_MEMORY;
1069 
1070 			base_addr = tee_mm_get_smem(mm);
1071 		}
1072 
1073 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1074 				    is_secure);
1075 		if (!m) {
1076 			res = TEE_ERROR_OUT_OF_MEMORY;
1077 			goto err_mm_free;
1078 		}
1079 
1080 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1081 		if (res) {
1082 			mobj_put(m);
1083 			goto err_mm_free;
1084 		}
1085 
1086 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1087 		mobj_put(m);
1088 		if (res)
1089 			goto err_mm_free;
1090 
1091 		/*
1092 		 * Overwrite the memory region's base address in the fdt with
1093 		 * the VA. This fdt will be passed to the SP.
1094 		 * If the base-address field was not present in the original
1095 		 * fdt, this function will create it. This doesn't cause issues
1096 		 * since the necessary extra space has been allocated when
1097 		 * opening the fdt.
1098 		 */
1099 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1100 
1101 		/*
1102 		 * Unmap the region if the overwrite failed since the SP won't
1103 		 * be able to access it without knowing the VA.
1104 		 */
1105 		if (res) {
1106 			vm_unmap(&ctx->uctx, va, size);
1107 			goto err_mm_free;
1108 		}
1109 	}
1110 
1111 	return TEE_SUCCESS;
1112 
1113 err_mm_free:
1114 	tee_mm_free(mm);
1115 	return res;
1116 }
1117 
1118 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1119 {
1120 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1121 	uint32_t dummy_size __maybe_unused = 0;
1122 	TEE_Result res = TEE_SUCCESS;
1123 	size_t page_count = 0;
1124 	struct fobj *f = NULL;
1125 	struct mobj *m = NULL;
1126 	vaddr_t log_addr = 0;
1127 	size_t log_size = 0;
1128 	int node = 0;
1129 
1130 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1131 	if (node < 0)
1132 		return TEE_SUCCESS;
1133 
1134 	/* Checking the existence and size of the event log properties */
1135 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1136 		EMSG("tpm_event_log_addr not found or has invalid size");
1137 		return TEE_ERROR_BAD_FORMAT;
1138 	}
1139 
1140 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1141 		EMSG("tpm_event_log_size not found or has invalid size");
1142 		return TEE_ERROR_BAD_FORMAT;
1143 	}
1144 
1145 	/* Validating event log */
1146 	res = tpm_get_event_log_size(&log_size);
1147 	if (res)
1148 		return res;
1149 
1150 	if (!log_size) {
1151 		EMSG("Empty TPM event log was provided");
1152 		return TEE_ERROR_ITEM_NOT_FOUND;
1153 	}
1154 
1155 	/* Allocating memory area for the event log to share with the SP */
1156 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1157 
1158 	f = fobj_sec_mem_alloc(page_count);
1159 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1160 	fobj_put(f);
1161 	if (!m)
1162 		return TEE_ERROR_OUT_OF_MEMORY;
1163 
1164 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1165 	mobj_put(m);
1166 	if (res)
1167 		return res;
1168 
1169 	/* Copy event log */
1170 	res = tpm_get_event_log((void *)log_addr, &log_size);
1171 	if (res)
1172 		goto err_unmap;
1173 
1174 	/* Setting event log details in the manifest */
1175 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1176 	if (res)
1177 		goto err_unmap;
1178 
1179 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1180 	if (res)
1181 		goto err_unmap;
1182 
1183 	return TEE_SUCCESS;
1184 
1185 err_unmap:
1186 	vm_unmap(&ctx->uctx, log_addr, log_size);
1187 
1188 	return res;
1189 }
1190 
1191 /*
1192  * Note: this function is called only on the primary CPU. It assumes that the
1193  * features present on the primary CPU are available on all of the secondary
1194  * CPUs as well.
1195  */
1196 static TEE_Result handle_hw_features(void *fdt)
1197 {
1198 	uint32_t val __maybe_unused = 0;
1199 	TEE_Result res = TEE_SUCCESS;
1200 	int node = 0;
1201 
1202 	/*
1203 	 * HW feature descriptions are optional in the SP manifest, it's not an
1204 	 * error if we don't find any.
1205 	 */
1206 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1207 	if (node < 0)
1208 		return TEE_SUCCESS;
1209 
1210 	/* Modify the crc32 property only if it's already present */
1211 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1212 		res = fdt_setprop_u32(fdt, node, "crc32",
1213 				      feat_crc32_implemented());
1214 		if (res)
1215 			return res;
1216 	}
1217 
1218 	return TEE_SUCCESS;
1219 }
1220 
1221 static TEE_Result read_ns_interrupts_action(const void *fdt,
1222 					    struct sp_session *s)
1223 {
1224 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1225 
1226 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1227 
1228 	if (res) {
1229 		EMSG("Mandatory property is missing: ns-interrupts-action");
1230 		return res;
1231 	}
1232 
1233 	switch (s->ns_int_mode) {
1234 	case SP_MANIFEST_NS_INT_QUEUED:
1235 	case SP_MANIFEST_NS_INT_SIGNALED:
1236 		/* OK */
1237 		break;
1238 
1239 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1240 		EMSG("Managed exit is not implemented");
1241 		return TEE_ERROR_NOT_IMPLEMENTED;
1242 
1243 	default:
1244 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1245 		     s->ns_int_mode);
1246 		return TEE_ERROR_BAD_PARAMETERS;
1247 	}
1248 
1249 	return TEE_SUCCESS;
1250 }
1251 
1252 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1253 {
1254 	TEE_Result res = TEE_SUCCESS;
1255 	struct sp_session *sess = NULL;
1256 	TEE_UUID ffa_uuid = {};
1257 
1258 	res = fdt_get_uuid(fdt, &ffa_uuid);
1259 	if (res)
1260 		return res;
1261 
1262 	res = sp_open_session(&sess,
1263 			      &open_sp_sessions,
1264 			      &ffa_uuid, bin_uuid, fdt);
1265 	if (res)
1266 		return res;
1267 
1268 	sess->fdt = fdt;
1269 	res = read_manifest_endpoint_id(sess);
1270 	if (res)
1271 		return res;
1272 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1273 
1274 	res = read_ns_interrupts_action(fdt, sess);
1275 	if (res)
1276 		return res;
1277 
1278 	return TEE_SUCCESS;
1279 }
1280 
1281 static TEE_Result sp_first_run(struct sp_session *sess)
1282 {
1283 	TEE_Result res = TEE_SUCCESS;
1284 	struct thread_smc_args args = { };
1285 	vaddr_t va = 0;
1286 	size_t num_pgs = 0;
1287 	struct sp_ctx *ctx = NULL;
1288 	void *fdt_copy = NULL;
1289 
1290 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1291 	ts_push_current_session(&sess->ts_sess);
1292 
1293 	/*
1294 	 * Load relative memory regions must be handled before doing any other
1295 	 * mapping to prevent conflicts in the VA space.
1296 	 */
1297 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1298 	if (res) {
1299 		ts_pop_current_session();
1300 		return res;
1301 	}
1302 
1303 	res = sp_init_info(ctx, &args, sess->fdt, &va, &num_pgs, &fdt_copy);
1304 	if (res)
1305 		goto out;
1306 
1307 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1308 	if (res)
1309 		goto out;
1310 
1311 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1312 	if (res)
1313 		goto out;
1314 
1315 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1316 		res = handle_tpm_event_log(ctx, fdt_copy);
1317 		if (res)
1318 			goto out;
1319 	}
1320 
1321 	res = handle_hw_features(fdt_copy);
1322 	if (res)
1323 		goto out;
1324 
1325 	ts_pop_current_session();
1326 
1327 	sess->is_initialized = false;
1328 	if (sp_enter(&args, sess)) {
1329 		vm_unmap(&ctx->uctx, va, num_pgs);
1330 		return FFA_ABORTED;
1331 	}
1332 
1333 	spmc_sp_msg_handler(&args, sess);
1334 
1335 	sess->is_initialized = true;
1336 
1337 	ts_push_current_session(&sess->ts_sess);
1338 out:
1339 	/* Free the boot info page from the SP memory */
1340 	vm_unmap(&ctx->uctx, va, num_pgs);
1341 	ts_pop_current_session();
1342 
1343 	return res;
1344 }
1345 
1346 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
1347 {
1348 	TEE_Result res = FFA_OK;
1349 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1350 
1351 	ctx->sp_regs.x[0] = args->a0;
1352 	ctx->sp_regs.x[1] = args->a1;
1353 	ctx->sp_regs.x[2] = args->a2;
1354 	ctx->sp_regs.x[3] = args->a3;
1355 	ctx->sp_regs.x[4] = args->a4;
1356 	ctx->sp_regs.x[5] = args->a5;
1357 	ctx->sp_regs.x[6] = args->a6;
1358 	ctx->sp_regs.x[7] = args->a7;
1359 
1360 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1361 
1362 	args->a0 = ctx->sp_regs.x[0];
1363 	args->a1 = ctx->sp_regs.x[1];
1364 	args->a2 = ctx->sp_regs.x[2];
1365 	args->a3 = ctx->sp_regs.x[3];
1366 	args->a4 = ctx->sp_regs.x[4];
1367 	args->a5 = ctx->sp_regs.x[5];
1368 	args->a6 = ctx->sp_regs.x[6];
1369 	args->a7 = ctx->sp_regs.x[7];
1370 
1371 	return res;
1372 }
1373 
1374 /*
1375  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1376  * active on NS interrupt than the callee, the callee must inherit the caller's
1377  * configuration.
1378  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1379  * action will be MIN([self action], [caller's action]) which is stored in the
1380  * ns_int_mode_inherited field.
1381  */
1382 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1383 						 struct ts_session *caller,
1384 						 uint64_t *cpsr)
1385 {
1386 	if (caller) {
1387 		struct sp_session *caller_sp = to_sp_session(caller);
1388 
1389 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1390 					       s->ns_int_mode);
1391 	} else {
1392 		s->ns_int_mode_inherited = s->ns_int_mode;
1393 	}
1394 
1395 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1396 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1397 				   ARM32_CPSR_F_SHIFT);
1398 	else
1399 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1400 				    ARM32_CPSR_F_SHIFT);
1401 }
1402 
1403 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1404 				      uint32_t cmd __unused)
1405 {
1406 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1407 	TEE_Result res = TEE_SUCCESS;
1408 	uint32_t exceptions = 0;
1409 	struct sp_session *sp_s = to_sp_session(s);
1410 	struct ts_session *sess = NULL;
1411 	struct thread_ctx_regs *sp_regs = NULL;
1412 	uint32_t thread_id = THREAD_ID_INVALID;
1413 	struct ts_session *caller = NULL;
1414 	uint32_t rpc_target_info = 0;
1415 	uint32_t panicked = false;
1416 	uint32_t panic_code = 0;
1417 
1418 	bm_timestamp();
1419 
1420 	sp_regs = &ctx->sp_regs;
1421 	ts_push_current_session(s);
1422 
1423 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1424 
1425 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1426 	caller = ts_get_calling_session();
1427 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1428 
1429 	/*
1430 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1431 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1432 	 */
1433 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1434 	thread_id = thread_get_id();
1435 	assert(thread_id <= UINT16_MAX);
1436 	thread_get_tsd()->rpc_target_info =
1437 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1438 
1439 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1440 
1441 	/* Restore rpc_target_info */
1442 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1443 
1444 	thread_unmask_exceptions(exceptions);
1445 
1446 	thread_user_clear_vfp(&ctx->uctx);
1447 
1448 	if (panicked) {
1449 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1450 		abort_print_current_ts();
1451 
1452 		sess = ts_pop_current_session();
1453 		cpu_spin_lock(&sp_s->spinlock);
1454 		sp_s->state = sp_dead;
1455 		cpu_spin_unlock(&sp_s->spinlock);
1456 
1457 		return TEE_ERROR_TARGET_DEAD;
1458 	}
1459 
1460 	sess = ts_pop_current_session();
1461 	assert(sess == s);
1462 
1463 	bm_timestamp();
1464 
1465 	return res;
1466 }
1467 
1468 /* We currently don't support 32 bits */
1469 #ifdef ARM64
1470 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1471 				   struct thread_ctx_regs *sp_regs)
1472 {
1473 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1474 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1475 	sp_regs->pc = regs->elr;
1476 	sp_regs->sp = regs->sp_el0;
1477 }
1478 #endif
1479 
1480 static bool sp_handle_scall(struct thread_scall_regs *regs)
1481 {
1482 	struct ts_session *ts = ts_get_current_session();
1483 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1484 	struct sp_session *s = uctx->open_session;
1485 
1486 	assert(s);
1487 
1488 	sp_svc_store_registers(regs, &uctx->sp_regs);
1489 
1490 	regs->x0 = 0;
1491 	regs->x1 = 0; /* panic */
1492 	regs->x2 = 0; /* panic code */
1493 
1494 	/*
1495 	 * All the registers of the SP are saved in the SP session by the SVC
1496 	 * handler.
1497 	 * We always return to S-El1 after handling the SVC. We will continue
1498 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1499 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1500 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1501 	 * afterward used by the spmc_sp_msg_handler() to handle the
1502 	 * FF-A message send by the SP.
1503 	 */
1504 	return false;
1505 }
1506 
1507 static void sp_dump_state(struct ts_ctx *ctx)
1508 {
1509 	struct sp_ctx *utc = to_sp_ctx(ctx);
1510 
1511 	if (utc->uctx.dump_entry_func) {
1512 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1513 
1514 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1515 			return;
1516 	}
1517 
1518 	user_mode_ctx_print_mappings(&utc->uctx);
1519 }
1520 
1521 static const struct ts_ops sp_ops = {
1522 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1523 	.handle_scall = sp_handle_scall,
1524 	.dump_state = sp_dump_state,
1525 };
1526 
1527 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1528 {
1529 	enum teecore_memtypes mtype = MEM_AREA_TA_RAM;
1530 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1531 	struct fip_sp *sp = NULL;
1532 	uint64_t sp_fdt_end = 0;
1533 	size_t sp_pkg_size = 0;
1534 	vaddr_t sp_pkg_va = 0;
1535 
1536 	/* Process the first page which contains the SP package header */
1537 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1538 	if (!sp_pkg_va) {
1539 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1540 		return TEE_ERROR_GENERIC;
1541 	}
1542 
1543 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1544 
1545 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1546 		EMSG("Invalid SP package magic");
1547 		return TEE_ERROR_BAD_FORMAT;
1548 	}
1549 
1550 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1551 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1552 		EMSG("Invalid SP header version");
1553 		return TEE_ERROR_BAD_FORMAT;
1554 	}
1555 
1556 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1557 			 &sp_pkg_size)) {
1558 		EMSG("Invalid SP package size");
1559 		return TEE_ERROR_BAD_FORMAT;
1560 	}
1561 
1562 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1563 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1564 		EMSG("Invalid SP manifest size");
1565 		return TEE_ERROR_BAD_FORMAT;
1566 	}
1567 
1568 	/* Process the whole SP package now that the size is known */
1569 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1570 	if (!sp_pkg_va) {
1571 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1572 		return TEE_ERROR_GENERIC;
1573 	}
1574 
1575 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1576 
1577 	sp = calloc(1, sizeof(struct fip_sp));
1578 	if (!sp)
1579 		return TEE_ERROR_OUT_OF_MEMORY;
1580 
1581 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1582 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1583 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1584 	sp->sp_img.image.flags = 0;
1585 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1586 
1587 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1588 
1589 	return TEE_SUCCESS;
1590 }
1591 
1592 static TEE_Result fip_sp_init_all(void)
1593 {
1594 	TEE_Result res = TEE_SUCCESS;
1595 	uint64_t sp_pkg_addr = 0;
1596 	const void *fdt = NULL;
1597 	TEE_UUID sp_uuid = { };
1598 	int sp_pkgs_node = 0;
1599 	int subnode = 0;
1600 	int root = 0;
1601 
1602 	fdt = get_tos_fw_config_dt();
1603 	if (!fdt) {
1604 		EMSG("No SPMC manifest found");
1605 		return TEE_ERROR_GENERIC;
1606 	}
1607 
1608 	root = fdt_path_offset(fdt, "/");
1609 	if (root < 0)
1610 		return TEE_ERROR_BAD_FORMAT;
1611 
1612 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1613 		return TEE_ERROR_BAD_FORMAT;
1614 
1615 	/* SP packages are optional, it's not an error if we don't find any */
1616 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1617 	if (sp_pkgs_node < 0)
1618 		return TEE_SUCCESS;
1619 
1620 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1621 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1622 		if (res) {
1623 			EMSG("Invalid FIP SP load address");
1624 			return res;
1625 		}
1626 
1627 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1628 		if (res) {
1629 			EMSG("Invalid FIP SP uuid");
1630 			return res;
1631 		}
1632 
1633 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1634 		if (res) {
1635 			EMSG("Invalid FIP SP package");
1636 			return res;
1637 		}
1638 	}
1639 
1640 	return TEE_SUCCESS;
1641 }
1642 
1643 static void fip_sp_deinit_all(void)
1644 {
1645 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1646 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
1647 
1648 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
1649 		free(sp);
1650 	}
1651 }
1652 
1653 static TEE_Result sp_init_all(void)
1654 {
1655 	TEE_Result res = TEE_SUCCESS;
1656 	const struct sp_image *sp = NULL;
1657 	const struct fip_sp *fip_sp = NULL;
1658 	char __maybe_unused msg[60] = { '\0', };
1659 	struct sp_session *s = NULL;
1660 
1661 	for_each_secure_partition(sp) {
1662 		if (sp->image.uncompressed_size)
1663 			snprintf(msg, sizeof(msg),
1664 				 " (compressed, uncompressed %u)",
1665 				 sp->image.uncompressed_size);
1666 		else
1667 			msg[0] = '\0';
1668 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
1669 		     sp->image.size, msg);
1670 
1671 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1672 
1673 		if (res != TEE_SUCCESS) {
1674 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1675 			     &sp->image.uuid, res);
1676 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1677 				panic();
1678 		}
1679 	}
1680 
1681 	res = fip_sp_init_all();
1682 	if (res)
1683 		panic("Failed initializing FIP SPs");
1684 
1685 	for_each_fip_sp(fip_sp) {
1686 		sp = &fip_sp->sp_img;
1687 
1688 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
1689 		     sp->image.size);
1690 
1691 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1692 
1693 		if (res != TEE_SUCCESS) {
1694 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1695 			     &sp->image.uuid, res);
1696 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1697 				panic();
1698 		}
1699 	}
1700 
1701 	/*
1702 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
1703 	 * loader, so the original images (loaded by BL2) are not needed anymore
1704 	 */
1705 	fip_sp_deinit_all();
1706 
1707 	/* Continue the initialization and run the SP */
1708 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
1709 		res = sp_first_run(s);
1710 		if (res != TEE_SUCCESS) {
1711 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
1712 			     s->endpoint_id, res);
1713 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1714 				panic();
1715 		}
1716 	}
1717 
1718 	return TEE_SUCCESS;
1719 }
1720 
1721 boot_final(sp_init_all);
1722 
1723 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
1724 					struct ts_store_handle **h)
1725 {
1726 	return emb_ts_open(uuid, h, find_secure_partition);
1727 }
1728 
1729 REGISTER_SP_STORE(2) = {
1730 	.description = "SP store",
1731 	.open = secure_partition_open,
1732 	.get_size = emb_ts_get_size,
1733 	.get_tag = emb_ts_get_tag,
1734 	.read = emb_ts_read,
1735 	.close = emb_ts_close,
1736 };
1737