xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 0f7e723f527b21338a27a5e949db1db02e452b9f)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2024, Arm Limited.
4  */
5 #include <crypto/crypto.h>
6 #include <initcall.h>
7 #include <kernel/boot.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/phys_mem.h>
23 #include <mm/vm.h>
24 #include <optee_ffa.h>
25 #include <stdio.h>
26 #include <string.h>
27 #include <tee/uuid.h>
28 #include <tee_api_types.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 #include <zlib.h>
34 
35 #define BOUNCE_BUFFER_SIZE		4096
36 
37 #define UNDEFINED_BOOT_ORDER_VALUE	UINT32_MAX
38 
39 #define SP_MANIFEST_ATTR_READ		BIT(0)
40 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
41 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
42 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
43 #define SP_MANIFEST_ATTR_GP		BIT(4)
44 
45 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
46 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
47 					 SP_MANIFEST_ATTR_WRITE)
48 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
49 					 SP_MANIFEST_ATTR_EXEC)
50 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
51 					 SP_MANIFEST_ATTR_WRITE | \
52 					 SP_MANIFEST_ATTR_EXEC)
53 
54 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
55 
56 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
57 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
58 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
59 
60 #define SP_MANIFEST_EXEC_STATE_AARCH64	(0x0)
61 #define SP_MANIFEST_EXEC_STATE_AARCH32	(0x1)
62 
63 #define SP_MANIFEST_DIRECT_REQ_RECEIVE	BIT(0)
64 #define SP_MANIFEST_DIRECT_REQ_SEND	BIT(1)
65 #define SP_MANIFEST_INDIRECT_REQ	BIT(2)
66 
67 #define SP_MANIFEST_VM_CREATED_MSG	BIT(0)
68 #define SP_MANIFEST_VM_DESTROYED_MSG	BIT(1)
69 
70 #define SP_PKG_HEADER_MAGIC (0x474b5053)
71 #define SP_PKG_HEADER_VERSION_V1 (0x1)
72 #define SP_PKG_HEADER_VERSION_V2 (0x2)
73 
74 struct sp_pkg_header {
75 	uint32_t magic;
76 	uint32_t version;
77 	uint32_t pm_offset;
78 	uint32_t pm_size;
79 	uint32_t img_offset;
80 	uint32_t img_size;
81 };
82 
83 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
84 
85 static const struct ts_ops sp_ops;
86 
87 /* List that holds all of the loaded SP's */
88 static struct sp_sessions_head open_sp_sessions =
89 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
90 
91 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
92 {
93 	const struct sp_image *sp = NULL;
94 	const struct fip_sp *fip_sp = NULL;
95 
96 	for_each_secure_partition(sp) {
97 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
98 			return &sp->image;
99 	}
100 
101 	for_each_fip_sp(fip_sp) {
102 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
103 			return &fip_sp->sp_img.image;
104 	}
105 
106 	return NULL;
107 }
108 
109 bool is_sp_ctx(struct ts_ctx *ctx)
110 {
111 	return ctx && (ctx->ops == &sp_ops);
112 }
113 
114 static void set_sp_ctx_ops(struct ts_ctx *ctx)
115 {
116 	ctx->ops = &sp_ops;
117 }
118 
119 struct sp_session *sp_get_session(uint32_t session_id)
120 {
121 	struct sp_session *s = NULL;
122 
123 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
124 		if (s->endpoint_id == session_id)
125 			return s;
126 	}
127 
128 	return NULL;
129 }
130 
131 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
132 				 const uint32_t ffa_uuid_words[4],
133 				 size_t *elem_count, bool count_only)
134 {
135 	TEE_Result res = TEE_SUCCESS;
136 	struct sp_session *s = NULL;
137 	TEE_UUID uuid = { };
138 	TEE_UUID *ffa_uuid = NULL;
139 	enum sp_status st = sp_idle;
140 
141 	if (ffa_uuid_words) {
142 		tee_uuid_from_octets(&uuid, (void *)ffa_uuid_words);
143 		ffa_uuid = &uuid;
144 	}
145 
146 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
147 		if (ffa_uuid &&
148 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
149 			continue;
150 
151 		cpu_spin_lock(&s->spinlock);
152 		st = s->state;
153 		cpu_spin_unlock(&s->spinlock);
154 		if (st == sp_dead)
155 			continue;
156 
157 		if (!count_only && !res) {
158 			uint32_t uuid_words[4] = { 0 };
159 
160 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
161 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
162 							*elem_count,
163 							s->endpoint_id, 1,
164 							s->props, uuid_words);
165 		}
166 		*elem_count += 1;
167 	}
168 
169 	return res;
170 }
171 
172 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
173 			     struct user_mode_ctx *uctx)
174 {
175 	/*
176 	 * Check that we have access to the region if it is supposed to be
177 	 * mapped to the current context.
178 	 */
179 	if (uctx) {
180 		struct vm_region *region = NULL;
181 
182 		/* Make sure that each mobj belongs to the SP */
183 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
184 			if (region->mobj == mem->mobj)
185 				break;
186 		}
187 
188 		if (!region)
189 			return false;
190 	}
191 
192 	/* Check that it is not shared with another SP */
193 	return !sp_mem_is_shared(mem);
194 }
195 
196 static bool endpoint_id_is_valid(uint32_t id)
197 {
198 	/*
199 	 * These IDs are assigned at the SPMC init so already have valid values
200 	 * by the time this function gets first called
201 	 */
202 	return !spmc_is_reserved_id(id) && !spmc_find_lsp_by_sp_id(id) &&
203 	       id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX;
204 }
205 
206 static TEE_Result new_session_id(uint16_t *endpoint_id)
207 {
208 	uint32_t id = 0;
209 
210 	/* Find the first available endpoint id */
211 	for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) {
212 		if (endpoint_id_is_valid(id) && !sp_get_session(id)) {
213 			*endpoint_id = id;
214 			return TEE_SUCCESS;
215 		}
216 	}
217 
218 	return TEE_ERROR_BAD_FORMAT;
219 }
220 
221 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
222 {
223 	TEE_Result res = TEE_SUCCESS;
224 	struct sp_ctx *spc = NULL;
225 
226 	/* Register context */
227 	spc = calloc(1, sizeof(struct sp_ctx));
228 	if (!spc)
229 		return TEE_ERROR_OUT_OF_MEMORY;
230 
231 	spc->open_session = s;
232 	s->ts_sess.ctx = &spc->ts_ctx;
233 	spc->ts_ctx.uuid = *bin_uuid;
234 
235 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
236 	if (res)
237 		goto err;
238 
239 	set_sp_ctx_ops(&spc->ts_ctx);
240 
241 #ifdef CFG_TA_PAUTH
242 	crypto_rng_read(&spc->uctx.keys, sizeof(spc->uctx.keys));
243 #endif
244 
245 	return TEE_SUCCESS;
246 
247 err:
248 	free(spc);
249 	return res;
250 }
251 
252 /*
253  * Insert a new sp_session to the sessions list, so that it is ordered
254  * by boot_order.
255  */
256 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
257 				   struct sp_session *session)
258 {
259 	struct sp_session *s = NULL;
260 
261 	if (!open_sessions || !session)
262 		return;
263 
264 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
265 		if (s->boot_order > session->boot_order)
266 			break;
267 	}
268 
269 	if (!s)
270 		TAILQ_INSERT_TAIL(open_sessions, session, link);
271 	else
272 		TAILQ_INSERT_BEFORE(s, session, link);
273 }
274 
275 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
276 				    const TEE_UUID *bin_uuid,
277 				    const uint32_t boot_order,
278 				    struct sp_session **sess)
279 {
280 	TEE_Result res = TEE_SUCCESS;
281 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
282 
283 	if (!s)
284 		return TEE_ERROR_OUT_OF_MEMORY;
285 
286 	s->boot_order = boot_order;
287 
288 	/* Other properties are filled later, based on the SP's manifest */
289 	s->props = FFA_PART_PROP_IS_PE_ID;
290 
291 	res = new_session_id(&s->endpoint_id);
292 	if (res)
293 		goto err;
294 
295 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
296 	res = sp_create_ctx(bin_uuid, s);
297 	if (res)
298 		goto err;
299 
300 	insert_session_ordered(open_sessions, s);
301 	*sess = s;
302 	return TEE_SUCCESS;
303 
304 err:
305 	free(s);
306 	return res;
307 }
308 
309 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
310 {
311 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
312 
313 	memset(sp_regs, 0, sizeof(*sp_regs));
314 	sp_regs->sp = ctx->uctx.stack_ptr;
315 	sp_regs->pc = ctx->uctx.entry_func;
316 
317 	return TEE_SUCCESS;
318 }
319 
320 TEE_Result sp_map_shared(struct sp_session *s,
321 			 struct sp_mem_receiver *receiver,
322 			 struct sp_mem *smem,
323 			 uint64_t *va)
324 {
325 	TEE_Result res = TEE_SUCCESS;
326 	struct sp_ctx *ctx = NULL;
327 	uint32_t perm = TEE_MATTR_UR;
328 	struct sp_mem_map_region *reg = NULL;
329 
330 	ctx = to_sp_ctx(s->ts_sess.ctx);
331 
332 	/* Get the permission */
333 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
334 		perm |= TEE_MATTR_UX;
335 
336 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
337 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
338 			return TEE_ERROR_ACCESS_CONFLICT;
339 
340 		perm |= TEE_MATTR_UW;
341 	}
342 	/*
343 	 * Currently we don't support passing a va. We can't guarantee that the
344 	 * full region will be mapped in a contiguous region. A smem->region can
345 	 * have multiple mobj for one share. Currently there doesn't seem to be
346 	 * an option to guarantee that these will be mapped in a contiguous va
347 	 * space.
348 	 */
349 	if (*va)
350 		return TEE_ERROR_NOT_SUPPORTED;
351 
352 	SLIST_FOREACH(reg, &smem->regions, link) {
353 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
354 			     perm, 0, reg->mobj, reg->page_offset);
355 
356 		if (res != TEE_SUCCESS) {
357 			EMSG("Failed to map memory region %#"PRIx32, res);
358 			return res;
359 		}
360 	}
361 	return TEE_SUCCESS;
362 }
363 
364 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
365 {
366 	TEE_Result res = TEE_SUCCESS;
367 	vaddr_t vaddr = 0;
368 	size_t len = 0;
369 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
370 	struct sp_mem_map_region *reg = NULL;
371 
372 	SLIST_FOREACH(reg, &smem->regions, link) {
373 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
374 					       reg->mobj);
375 		len = reg->page_count * SMALL_PAGE_SIZE;
376 
377 		res = vm_unmap(&ctx->uctx, vaddr, len);
378 		if (res != TEE_SUCCESS)
379 			return res;
380 	}
381 
382 	return TEE_SUCCESS;
383 }
384 
385 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
386 				uint64_t *value)
387 {
388 	const fdt64_t *p = NULL;
389 	int len = 0;
390 
391 	p = fdt_getprop(fdt, node, property, &len);
392 	if (!p)
393 		return TEE_ERROR_ITEM_NOT_FOUND;
394 
395 	if (len != sizeof(*p))
396 		return TEE_ERROR_BAD_FORMAT;
397 
398 	*value = fdt64_ld(p);
399 
400 	return TEE_SUCCESS;
401 }
402 
403 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
404 				uint32_t *value)
405 {
406 	const fdt32_t *p = NULL;
407 	int len = 0;
408 
409 	p = fdt_getprop(fdt, node, property, &len);
410 	if (!p)
411 		return TEE_ERROR_ITEM_NOT_FOUND;
412 
413 	if (len != sizeof(*p))
414 		return TEE_ERROR_BAD_FORMAT;
415 
416 	*value = fdt32_to_cpu(*p);
417 
418 	return TEE_SUCCESS;
419 }
420 
421 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
422 				uint16_t *value)
423 {
424 	const fdt16_t *p = NULL;
425 	int len = 0;
426 
427 	p = fdt_getprop(fdt, node, property, &len);
428 	if (!p)
429 		return TEE_ERROR_ITEM_NOT_FOUND;
430 
431 	if (len != sizeof(*p))
432 		return TEE_ERROR_BAD_FORMAT;
433 
434 	*value = fdt16_to_cpu(*p);
435 
436 	return TEE_SUCCESS;
437 }
438 
439 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
440 				 const char *property, TEE_UUID *uuid)
441 {
442 	uint32_t uuid_array[4] = { 0 };
443 	const fdt32_t *p = NULL;
444 	int len = 0;
445 	int i = 0;
446 
447 	p = fdt_getprop(fdt, node, property, &len);
448 	if (!p)
449 		return TEE_ERROR_ITEM_NOT_FOUND;
450 
451 	if (len != sizeof(TEE_UUID))
452 		return TEE_ERROR_BAD_FORMAT;
453 
454 	for (i = 0; i < 4; i++)
455 		uuid_array[i] = fdt32_to_cpu(p[i]);
456 
457 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
458 
459 	return TEE_SUCCESS;
460 }
461 
462 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
463 				   bool *is_elf_format)
464 {
465 	TEE_Result res = TEE_SUCCESS;
466 	uint32_t elf_format = 0;
467 
468 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
469 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
470 		return res;
471 
472 	*is_elf_format = (elf_format != 0);
473 
474 	return TEE_SUCCESS;
475 }
476 
477 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
478 				 const struct ts_store_ops **ops,
479 				 struct ts_store_handle **handle)
480 {
481 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
482 
483 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
484 		res = (*ops)->open(uuid, handle);
485 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
486 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
487 			break;
488 	}
489 
490 	return res;
491 }
492 
493 static TEE_Result load_binary_sp(struct ts_session *s,
494 				 struct user_mode_ctx *uctx)
495 {
496 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
497 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
498 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
499 	const struct ts_store_ops *store_ops = NULL;
500 	struct ts_store_handle *handle = NULL;
501 	TEE_Result res = TEE_SUCCESS;
502 	tee_mm_entry_t *mm = NULL;
503 	struct fobj *fobj = NULL;
504 	struct mobj *mobj = NULL;
505 	uaddr_t base_addr = 0;
506 	uint32_t vm_flags = 0;
507 	unsigned int idx = 0;
508 	vaddr_t va = 0;
509 
510 	if (!s || !uctx)
511 		return TEE_ERROR_BAD_PARAMETERS;
512 
513 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
514 
515 	/* Initialize the bounce buffer */
516 	fobj = fobj_sec_mem_alloc(bb_num_pages);
517 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
518 	fobj_put(fobj);
519 	if (!mobj)
520 		return TEE_ERROR_OUT_OF_MEMORY;
521 
522 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
523 	mobj_put(mobj);
524 	if (res)
525 		return res;
526 
527 	uctx->bbuf = (uint8_t *)va;
528 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
529 
530 	vm_set_ctx(uctx->ts_ctx);
531 
532 	/* Find TS store and open SP binary */
533 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
534 	if (res != TEE_SUCCESS) {
535 		EMSG("Failed to open SP binary");
536 		return res;
537 	}
538 
539 	/* Query binary size and calculate page count */
540 	res = store_ops->get_size(handle, &bin_size);
541 	if (res != TEE_SUCCESS)
542 		goto err;
543 
544 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
545 		res = TEE_ERROR_OVERFLOW;
546 		goto err;
547 	}
548 
549 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
550 
551 	/* Allocate memory */
552 	mm = phys_mem_ta_alloc(bin_size_rounded);
553 	if (!mm) {
554 		res = TEE_ERROR_OUT_OF_MEMORY;
555 		goto err;
556 	}
557 
558 	base_addr = tee_mm_get_smem(mm);
559 
560 	/* Create mobj */
561 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
562 	if (!mobj) {
563 		res = TEE_ERROR_OUT_OF_MEMORY;
564 		goto err_free_tee_mm;
565 	}
566 
567 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
568 	if (res)
569 		goto err_free_mobj;
570 
571 	/* Map memory area for the SP binary */
572 	va = 0;
573 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
574 		     vm_flags, mobj, 0);
575 	if (res)
576 		goto err_free_mobj;
577 
578 	/* Read SP binary into the previously mapped memory area */
579 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
580 	if (res)
581 		goto err_unmap;
582 
583 	/* Set memory protection to allow execution */
584 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
585 	if (res)
586 		goto err_unmap;
587 
588 	mobj_put(mobj);
589 	store_ops->close(handle);
590 
591 	/* The entry point must be at the beginning of the SP binary. */
592 	uctx->entry_func = va;
593 	uctx->load_addr = va;
594 	uctx->is_32bit = false;
595 
596 	s->handle_scall = s->ctx->ops->handle_scall;
597 
598 	return TEE_SUCCESS;
599 
600 err_unmap:
601 	vm_unmap(uctx, va, bin_size_rounded);
602 
603 err_free_mobj:
604 	mobj_put(mobj);
605 
606 err_free_tee_mm:
607 	tee_mm_free(mm);
608 
609 err:
610 	store_ops->close(handle);
611 
612 	return res;
613 }
614 
615 static TEE_Result sp_open_session(struct sp_session **sess,
616 				  struct sp_sessions_head *open_sessions,
617 				  const TEE_UUID *ffa_uuid,
618 				  const TEE_UUID *bin_uuid,
619 				  const uint32_t boot_order,
620 				  const void *fdt)
621 {
622 	TEE_Result res = TEE_SUCCESS;
623 	struct sp_session *s = NULL;
624 	struct sp_ctx *ctx = NULL;
625 	bool is_elf_format = false;
626 
627 	if (!find_secure_partition(bin_uuid))
628 		return TEE_ERROR_ITEM_NOT_FOUND;
629 
630 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
631 	if (res != TEE_SUCCESS) {
632 		DMSG("sp_create_session failed %#"PRIx32, res);
633 		return res;
634 	}
635 
636 	ctx = to_sp_ctx(s->ts_sess.ctx);
637 	assert(ctx);
638 	if (!ctx)
639 		return TEE_ERROR_TARGET_DEAD;
640 	*sess = s;
641 
642 	ts_push_current_session(&s->ts_sess);
643 
644 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
645 	if (res == TEE_SUCCESS) {
646 		if (is_elf_format) {
647 			/* Load the SP using ldelf. */
648 			ldelf_load_ldelf(&ctx->uctx);
649 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
650 		} else {
651 			/* Raw binary format SP */
652 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
653 		}
654 	} else {
655 		EMSG("Failed to detect SP format");
656 	}
657 
658 	if (res != TEE_SUCCESS) {
659 		EMSG("Failed loading SP  %#"PRIx32, res);
660 		ts_pop_current_session();
661 		return TEE_ERROR_TARGET_DEAD;
662 	}
663 
664 	/*
665 	 * Make the SP ready for its first run.
666 	 * Set state to busy to prevent other endpoints from sending messages to
667 	 * the SP before its boot phase is done.
668 	 */
669 	s->state = sp_busy;
670 	s->caller_id = 0;
671 	sp_init_set_registers(ctx);
672 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
673 	ts_pop_current_session();
674 
675 	return TEE_SUCCESS;
676 }
677 
678 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
679 {
680 	const struct fdt_property *description = NULL;
681 	int description_name_len = 0;
682 
683 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
684 		EMSG("Failed loading SP, manifest not found");
685 		return TEE_ERROR_BAD_PARAMETERS;
686 	}
687 
688 	description = fdt_get_property(fdt, 0, "description",
689 				       &description_name_len);
690 	if (description)
691 		DMSG("Loading SP: %s", description->data);
692 
693 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
694 		EMSG("Missing or invalid UUID in SP manifest");
695 		return TEE_ERROR_BAD_FORMAT;
696 	}
697 
698 	return TEE_SUCCESS;
699 }
700 
701 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
702 				   void **fdt_copy, size_t *mapped_size)
703 {
704 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
705 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
706 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
707 	TEE_Result res = TEE_SUCCESS;
708 	struct mobj *m = NULL;
709 	struct fobj *f = NULL;
710 	vaddr_t va = 0;
711 
712 	f = fobj_sec_mem_alloc(num_pages);
713 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
714 	fobj_put(f);
715 	if (!m)
716 		return TEE_ERROR_OUT_OF_MEMORY;
717 
718 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
719 	mobj_put(m);
720 	if (res)
721 		return res;
722 
723 	if (fdt_open_into(fdt, (void *)va, total_size))
724 		return TEE_ERROR_GENERIC;
725 
726 	*fdt_copy = (void *)va;
727 	*mapped_size = total_size;
728 
729 	return res;
730 }
731 
732 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
733 {
734 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
735 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
736 
737 	memcpy(&info->magic, "FF-A", 4);
738 	info->count = 1;
739 
740 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
741 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
742 	info->nvp[0].value = (uintptr_t)fdt;
743 	info->nvp[0].size = fdt_totalsize(fdt);
744 }
745 
746 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt, uint32_t vers)
747 {
748 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
749 	struct ffa_boot_info_header_1_1 *header =
750 		(struct ffa_boot_info_header_1_1 *)buf;
751 	struct ffa_boot_info_1_1 *desc =
752 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
753 
754 	header->signature = FFA_BOOT_INFO_SIGNATURE;
755 	header->version = vers;
756 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
757 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
758 	header->desc_count = 1;
759 	header->desc_offset = desc_offs;
760 
761 	memset(&desc[0].name, 0, sizeof(desc[0].name));
762 	/* Type: Standard boot info (bit[7] == 0), FDT type */
763 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
764 	/* Flags: Contents field contains an address */
765 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
766 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
767 	desc[0].size = fdt_totalsize(fdt);
768 	desc[0].contents = (uintptr_t)fdt;
769 }
770 
771 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
772 					   struct thread_smc_1_2_regs *args,
773 					   vaddr_t *va, size_t *mapped_size,
774 					   uint32_t sp_ffa_version)
775 {
776 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
777 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
778 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
779 	TEE_Result res = TEE_SUCCESS;
780 	struct fobj *f = NULL;
781 	struct mobj *m = NULL;
782 	uint32_t info_reg = 0;
783 
784 	f = fobj_sec_mem_alloc(num_pages);
785 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
786 	fobj_put(f);
787 	if (!m)
788 		return TEE_ERROR_OUT_OF_MEMORY;
789 
790 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
791 	mobj_put(m);
792 	if (res)
793 		return res;
794 
795 	*mapped_size = total_size;
796 
797 	switch (sp_ffa_version) {
798 	case MAKE_FFA_VERSION(1, 0):
799 		fill_boot_info_1_0(*va, fdt);
800 		break;
801 	case MAKE_FFA_VERSION(1, 1):
802 	case MAKE_FFA_VERSION(1, 2):
803 		fill_boot_info_1_1(*va, fdt, sp_ffa_version);
804 		break;
805 	default:
806 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
807 		return TEE_ERROR_NOT_SUPPORTED;
808 	}
809 
810 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
811 	if (res) {
812 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
813 			/* If the property is not present, set default to x0 */
814 			info_reg = 0;
815 		} else {
816 			return TEE_ERROR_BAD_FORMAT;
817 		}
818 	}
819 
820 	switch (info_reg) {
821 	case 0:
822 		args->a0 = *va;
823 		break;
824 	case 1:
825 		args->a1 = *va;
826 		break;
827 	case 2:
828 		args->a2 = *va;
829 		break;
830 	case 3:
831 		args->a3 = *va;
832 		break;
833 	default:
834 		EMSG("Invalid register selected for passing boot info");
835 		return TEE_ERROR_BAD_FORMAT;
836 	}
837 
838 	return TEE_SUCCESS;
839 }
840 
841 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
842 						       const void *fdt)
843 {
844 	int node = 0;
845 	int subnode = 0;
846 	tee_mm_entry_t *mm = NULL;
847 	TEE_Result res = TEE_SUCCESS;
848 
849 	/*
850 	 * Memory regions are optional in the SP manifest, it's not an error if
851 	 * we don't find any.
852 	 */
853 	node = fdt_node_offset_by_compatible(fdt, 0,
854 					     "arm,ffa-manifest-memory-regions");
855 	if (node < 0)
856 		return TEE_SUCCESS;
857 
858 	fdt_for_each_subnode(subnode, fdt, node) {
859 		uint64_t load_rel_offset = 0;
860 		uint32_t attributes = 0;
861 		uint64_t base_addr = 0;
862 		uint32_t pages_cnt = 0;
863 		uint32_t flags = 0;
864 		uint32_t perm = 0;
865 		size_t size = 0;
866 		vaddr_t va = 0;
867 
868 		mm = NULL;
869 
870 		/* Load address relative offset of a memory region */
871 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
872 				   &load_rel_offset)) {
873 			va = ctx->uctx.load_addr + load_rel_offset;
874 		} else {
875 			/* Skip non load address relative memory regions */
876 			continue;
877 		}
878 
879 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
880 			EMSG("Both base-address and load-address-relative-offset fields are set");
881 			return TEE_ERROR_BAD_FORMAT;
882 		}
883 
884 		/* Size of memory region as count of 4K pages */
885 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
886 			EMSG("Mandatory field is missing: pages-count");
887 			return TEE_ERROR_BAD_FORMAT;
888 		}
889 
890 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
891 			return TEE_ERROR_OVERFLOW;
892 
893 		/* Memory region attributes  */
894 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
895 			EMSG("Mandatory field is missing: attributes");
896 			return TEE_ERROR_BAD_FORMAT;
897 		}
898 
899 		/* Check instruction and data access permissions */
900 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
901 		case SP_MANIFEST_ATTR_RO:
902 			perm = TEE_MATTR_UR;
903 			break;
904 		case SP_MANIFEST_ATTR_RW:
905 			perm = TEE_MATTR_URW;
906 			break;
907 		case SP_MANIFEST_ATTR_RX:
908 			perm = TEE_MATTR_URX;
909 			break;
910 		default:
911 			EMSG("Invalid memory access permissions");
912 			return TEE_ERROR_BAD_FORMAT;
913 		}
914 
915 		if (IS_ENABLED(CFG_TA_BTI) &&
916 		    attributes & SP_MANIFEST_ATTR_GP) {
917 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
918 				EMSG("Guard only executable region");
919 				return TEE_ERROR_BAD_FORMAT;
920 			}
921 			perm |= TEE_MATTR_GUARDED;
922 		}
923 
924 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
925 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
926 			EMSG("Optional field with invalid value: flags");
927 			return TEE_ERROR_BAD_FORMAT;
928 		}
929 
930 		/* Load relative regions must be secure */
931 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
932 			EMSG("Invalid memory security attribute");
933 			return TEE_ERROR_BAD_FORMAT;
934 		}
935 
936 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
937 			/*
938 			 * NOBITS flag is set, which means that loaded binary
939 			 * doesn't contain this area, so it's need to be
940 			 * allocated.
941 			 */
942 			struct mobj *m = NULL;
943 			unsigned int idx = 0;
944 
945 			mm = phys_mem_ta_alloc(size);
946 			if (!mm)
947 				return TEE_ERROR_OUT_OF_MEMORY;
948 
949 			base_addr = tee_mm_get_smem(mm);
950 
951 			m = sp_mem_new_mobj(pages_cnt,
952 					    TEE_MATTR_MEM_TYPE_CACHED, true);
953 			if (!m) {
954 				res = TEE_ERROR_OUT_OF_MEMORY;
955 				goto err_mm_free;
956 			}
957 
958 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
959 			if (res) {
960 				mobj_put(m);
961 				goto err_mm_free;
962 			}
963 
964 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
965 			mobj_put(m);
966 			if (res)
967 				goto err_mm_free;
968 		} else {
969 			/*
970 			 * If NOBITS is not present the memory area is already
971 			 * mapped and only need to set the correct permissions.
972 			 */
973 			res = vm_set_prot(&ctx->uctx, va, size, perm);
974 			if (res)
975 				return res;
976 		}
977 	}
978 
979 	return TEE_SUCCESS;
980 
981 err_mm_free:
982 	tee_mm_free(mm);
983 	return res;
984 }
985 
986 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
987 {
988 	int node = 0;
989 	int subnode = 0;
990 	TEE_Result res = TEE_SUCCESS;
991 	const char *dt_device_match_table = {
992 		"arm,ffa-manifest-device-regions",
993 	};
994 
995 	/*
996 	 * Device regions are optional in the SP manifest, it's not an error if
997 	 * we don't find any
998 	 */
999 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
1000 	if (node < 0)
1001 		return TEE_SUCCESS;
1002 
1003 	fdt_for_each_subnode(subnode, fdt, node) {
1004 		uint64_t base_addr = 0;
1005 		uint32_t pages_cnt = 0;
1006 		uint32_t attributes = 0;
1007 		struct mobj *m = NULL;
1008 		bool is_secure = true;
1009 		uint32_t perm = 0;
1010 		vaddr_t va = 0;
1011 		unsigned int idx = 0;
1012 
1013 		/*
1014 		 * Physical base address of a device MMIO region.
1015 		 * Currently only physically contiguous region is supported.
1016 		 */
1017 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
1018 			EMSG("Mandatory field is missing: base-address");
1019 			return TEE_ERROR_BAD_FORMAT;
1020 		}
1021 
1022 		/* Total size of MMIO region as count of 4K pages */
1023 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1024 			EMSG("Mandatory field is missing: pages-count");
1025 			return TEE_ERROR_BAD_FORMAT;
1026 		}
1027 
1028 		/* Data access, instruction access and security attributes */
1029 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1030 			EMSG("Mandatory field is missing: attributes");
1031 			return TEE_ERROR_BAD_FORMAT;
1032 		}
1033 
1034 		/* Check instruction and data access permissions */
1035 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1036 		case SP_MANIFEST_ATTR_RO:
1037 			perm = TEE_MATTR_UR;
1038 			break;
1039 		case SP_MANIFEST_ATTR_RW:
1040 			perm = TEE_MATTR_URW;
1041 			break;
1042 		default:
1043 			EMSG("Invalid memory access permissions");
1044 			return TEE_ERROR_BAD_FORMAT;
1045 		}
1046 
1047 		/*
1048 		 * The SP is a secure endpoint, security attribute can be
1049 		 * secure or non-secure
1050 		 */
1051 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1052 			is_secure = false;
1053 
1054 		/* Memory attributes must be Device-nGnRnE */
1055 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1056 				    is_secure);
1057 		if (!m)
1058 			return TEE_ERROR_OUT_OF_MEMORY;
1059 
1060 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1061 		if (res) {
1062 			mobj_put(m);
1063 			return res;
1064 		}
1065 
1066 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1067 			     perm, 0, m, 0);
1068 		mobj_put(m);
1069 		if (res)
1070 			return res;
1071 
1072 		/*
1073 		 * Overwrite the device region's PA in the fdt with the VA. This
1074 		 * fdt will be passed to the SP.
1075 		 */
1076 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1077 
1078 		/*
1079 		 * Unmap the region if the overwrite failed since the SP won't
1080 		 * be able to access it without knowing the VA.
1081 		 */
1082 		if (res) {
1083 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1084 			return res;
1085 		}
1086 	}
1087 
1088 	return TEE_SUCCESS;
1089 }
1090 
1091 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1092 				    uint32_t new_endpoint_id)
1093 {
1094 	struct sp_session *session = sp_get_session(endpoint_id);
1095 	uint32_t manifest_endpoint_id = 0;
1096 
1097 	/*
1098 	 * We don't know in which order the SPs are loaded. The endpoint ID
1099 	 * defined in the manifest could already be generated by
1100 	 * new_session_id() and used by another SP. If this is the case, we swap
1101 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1102 	 * not defined twice in the manifest.
1103 	 */
1104 
1105 	/* The endpoint ID was not assigned yet */
1106 	if (!session)
1107 		return TEE_SUCCESS;
1108 
1109 	/*
1110 	 * Read the manifest file from the SP who originally had the endpoint.
1111 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1112 	 * have an endpoint ID defined.
1113 	 */
1114 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1115 		assert(manifest_endpoint_id == endpoint_id);
1116 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1117 		return TEE_ERROR_ACCESS_CONFLICT;
1118 	}
1119 
1120 	session->endpoint_id = new_endpoint_id;
1121 
1122 	return TEE_SUCCESS;
1123 }
1124 
1125 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1126 {
1127 	uint32_t endpoint_id = 0;
1128 
1129 	/*
1130 	 * The endpoint ID can be optionally defined in the manifest file. We
1131 	 * have to map the ID inside the manifest to the SP if it's defined.
1132 	 * If not, the endpoint ID generated inside new_session_id() will be
1133 	 * used.
1134 	 */
1135 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1136 		TEE_Result res = TEE_ERROR_GENERIC;
1137 
1138 		if (!endpoint_id_is_valid(endpoint_id)) {
1139 			EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id);
1140 			return TEE_ERROR_BAD_FORMAT;
1141 		}
1142 
1143 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1144 		if (res)
1145 			return res;
1146 
1147 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1148 		     endpoint_id);
1149 		/* Assign the endpoint ID to the current SP */
1150 		s->endpoint_id = endpoint_id;
1151 	}
1152 	return TEE_SUCCESS;
1153 }
1154 
1155 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1156 {
1157 	int node = 0;
1158 	int subnode = 0;
1159 	tee_mm_entry_t *mm = NULL;
1160 	TEE_Result res = TEE_SUCCESS;
1161 
1162 	/*
1163 	 * Memory regions are optional in the SP manifest, it's not an error if
1164 	 * we don't find any.
1165 	 */
1166 	node = fdt_node_offset_by_compatible(fdt, 0,
1167 					     "arm,ffa-manifest-memory-regions");
1168 	if (node < 0)
1169 		return TEE_SUCCESS;
1170 
1171 	fdt_for_each_subnode(subnode, fdt, node) {
1172 		uint64_t load_rel_offset = 0;
1173 		bool alloc_needed = false;
1174 		uint32_t attributes = 0;
1175 		uint64_t base_addr = 0;
1176 		uint32_t pages_cnt = 0;
1177 		bool is_secure = true;
1178 		struct mobj *m = NULL;
1179 		unsigned int idx = 0;
1180 		uint32_t perm = 0;
1181 		size_t size = 0;
1182 		vaddr_t va = 0;
1183 
1184 		mm = NULL;
1185 
1186 		/* Load address relative offset of a memory region */
1187 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1188 				   &load_rel_offset)) {
1189 			/*
1190 			 * At this point the memory region is already mapped by
1191 			 * handle_fdt_load_relative_mem_regions.
1192 			 * Only need to set the base-address in the manifest and
1193 			 * then skip the rest of the mapping process.
1194 			 */
1195 			va = ctx->uctx.load_addr + load_rel_offset;
1196 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1197 			if (res)
1198 				return res;
1199 
1200 			continue;
1201 		}
1202 
1203 		/*
1204 		 * Base address of a memory region.
1205 		 * If not present, we have to allocate the specified memory.
1206 		 * If present, this field could specify a PA or VA. Currently
1207 		 * only a PA is supported.
1208 		 */
1209 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1210 			alloc_needed = true;
1211 
1212 		/* Size of memory region as count of 4K pages */
1213 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1214 			EMSG("Mandatory field is missing: pages-count");
1215 			return TEE_ERROR_BAD_FORMAT;
1216 		}
1217 
1218 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1219 			return TEE_ERROR_OVERFLOW;
1220 
1221 		/*
1222 		 * Memory region attributes:
1223 		 * - Instruction/data access permissions
1224 		 * - Cacheability/shareability attributes
1225 		 * - Security attributes
1226 		 *
1227 		 * Cacheability/shareability attributes can be ignored for now.
1228 		 * OP-TEE only supports a single type for normal cached memory
1229 		 * and currently there is no use case that would require to
1230 		 * change this.
1231 		 */
1232 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1233 			EMSG("Mandatory field is missing: attributes");
1234 			return TEE_ERROR_BAD_FORMAT;
1235 		}
1236 
1237 		/* Check instruction and data access permissions */
1238 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1239 		case SP_MANIFEST_ATTR_RO:
1240 			perm = TEE_MATTR_UR;
1241 			break;
1242 		case SP_MANIFEST_ATTR_RW:
1243 			perm = TEE_MATTR_URW;
1244 			break;
1245 		case SP_MANIFEST_ATTR_RX:
1246 			perm = TEE_MATTR_URX;
1247 			break;
1248 		default:
1249 			EMSG("Invalid memory access permissions");
1250 			return TEE_ERROR_BAD_FORMAT;
1251 		}
1252 
1253 		if (IS_ENABLED(CFG_TA_BTI) &&
1254 		    attributes & SP_MANIFEST_ATTR_GP) {
1255 			if (!(attributes & SP_MANIFEST_ATTR_RX)) {
1256 				EMSG("Guard only executable region");
1257 				return TEE_ERROR_BAD_FORMAT;
1258 			}
1259 			perm |= TEE_MATTR_GUARDED;
1260 		}
1261 
1262 		/*
1263 		 * The SP is a secure endpoint, security attribute can be
1264 		 * secure or non-secure.
1265 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1266 		 * address is missing this attribute must be secure.
1267 		 */
1268 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1269 			if (alloc_needed) {
1270 				EMSG("Invalid memory security attribute");
1271 				return TEE_ERROR_BAD_FORMAT;
1272 			}
1273 			is_secure = false;
1274 		}
1275 
1276 		if (alloc_needed) {
1277 			/* Base address is missing, we have to allocate */
1278 			mm = phys_mem_ta_alloc(size);
1279 			if (!mm)
1280 				return TEE_ERROR_OUT_OF_MEMORY;
1281 
1282 			base_addr = tee_mm_get_smem(mm);
1283 		}
1284 
1285 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1286 				    is_secure);
1287 		if (!m) {
1288 			res = TEE_ERROR_OUT_OF_MEMORY;
1289 			goto err_mm_free;
1290 		}
1291 
1292 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1293 		if (res) {
1294 			mobj_put(m);
1295 			goto err_mm_free;
1296 		}
1297 
1298 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1299 		mobj_put(m);
1300 		if (res)
1301 			goto err_mm_free;
1302 
1303 		/*
1304 		 * Overwrite the memory region's base address in the fdt with
1305 		 * the VA. This fdt will be passed to the SP.
1306 		 * If the base-address field was not present in the original
1307 		 * fdt, this function will create it. This doesn't cause issues
1308 		 * since the necessary extra space has been allocated when
1309 		 * opening the fdt.
1310 		 */
1311 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1312 
1313 		/*
1314 		 * Unmap the region if the overwrite failed since the SP won't
1315 		 * be able to access it without knowing the VA.
1316 		 */
1317 		if (res) {
1318 			vm_unmap(&ctx->uctx, va, size);
1319 			goto err_mm_free;
1320 		}
1321 	}
1322 
1323 	return TEE_SUCCESS;
1324 
1325 err_mm_free:
1326 	tee_mm_free(mm);
1327 	return res;
1328 }
1329 
1330 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1331 {
1332 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1333 	uint32_t dummy_size __maybe_unused = 0;
1334 	TEE_Result res = TEE_SUCCESS;
1335 	size_t page_count = 0;
1336 	struct fobj *f = NULL;
1337 	struct mobj *m = NULL;
1338 	vaddr_t log_addr = 0;
1339 	size_t log_size = 0;
1340 	int node = 0;
1341 
1342 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1343 	if (node < 0)
1344 		return TEE_SUCCESS;
1345 
1346 	/* Checking the existence and size of the event log properties */
1347 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1348 		EMSG("tpm_event_log_addr not found or has invalid size");
1349 		return TEE_ERROR_BAD_FORMAT;
1350 	}
1351 
1352 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1353 		EMSG("tpm_event_log_size not found or has invalid size");
1354 		return TEE_ERROR_BAD_FORMAT;
1355 	}
1356 
1357 	/* Validating event log */
1358 	res = tpm_get_event_log_size(&log_size);
1359 	if (res)
1360 		return res;
1361 
1362 	if (!log_size) {
1363 		EMSG("Empty TPM event log was provided");
1364 		return TEE_ERROR_ITEM_NOT_FOUND;
1365 	}
1366 
1367 	/* Allocating memory area for the event log to share with the SP */
1368 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1369 
1370 	f = fobj_sec_mem_alloc(page_count);
1371 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1372 	fobj_put(f);
1373 	if (!m)
1374 		return TEE_ERROR_OUT_OF_MEMORY;
1375 
1376 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1377 	mobj_put(m);
1378 	if (res)
1379 		return res;
1380 
1381 	/* Copy event log */
1382 	res = tpm_get_event_log((void *)log_addr, &log_size);
1383 	if (res)
1384 		goto err_unmap;
1385 
1386 	/* Setting event log details in the manifest */
1387 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1388 	if (res)
1389 		goto err_unmap;
1390 
1391 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1392 	if (res)
1393 		goto err_unmap;
1394 
1395 	return TEE_SUCCESS;
1396 
1397 err_unmap:
1398 	vm_unmap(&ctx->uctx, log_addr, log_size);
1399 
1400 	return res;
1401 }
1402 
1403 /*
1404  * Note: this function is called only on the primary CPU. It assumes that the
1405  * features present on the primary CPU are available on all of the secondary
1406  * CPUs as well.
1407  */
1408 static TEE_Result handle_hw_features(void *fdt)
1409 {
1410 	uint32_t val __maybe_unused = 0;
1411 	TEE_Result res = TEE_SUCCESS;
1412 	int node = 0;
1413 
1414 	/*
1415 	 * HW feature descriptions are optional in the SP manifest, it's not an
1416 	 * error if we don't find any.
1417 	 */
1418 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1419 	if (node < 0)
1420 		return TEE_SUCCESS;
1421 
1422 	/* Modify the crc32 property only if it's already present */
1423 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1424 		res = fdt_setprop_u32(fdt, node, "crc32",
1425 				      feat_crc32_implemented());
1426 		if (res)
1427 			return res;
1428 	}
1429 
1430 	/* Modify the property only if it's already present */
1431 	if (!sp_dt_get_u32(fdt, node, "bti", &val)) {
1432 		res = fdt_setprop_u32(fdt, node, "bti",
1433 				      feat_bti_is_implemented());
1434 		if (res)
1435 			return res;
1436 	}
1437 
1438 	/* Modify the property only if it's already present */
1439 	if (!sp_dt_get_u32(fdt, node, "pauth", &val)) {
1440 		res = fdt_setprop_u32(fdt, node, "pauth",
1441 				      feat_pauth_is_implemented());
1442 		if (res)
1443 			return res;
1444 	}
1445 
1446 	return TEE_SUCCESS;
1447 }
1448 
1449 static TEE_Result read_ns_interrupts_action(const void *fdt,
1450 					    struct sp_session *s)
1451 {
1452 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1453 
1454 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1455 
1456 	if (res) {
1457 		EMSG("Mandatory property is missing: ns-interrupts-action");
1458 		return res;
1459 	}
1460 
1461 	switch (s->ns_int_mode) {
1462 	case SP_MANIFEST_NS_INT_QUEUED:
1463 	case SP_MANIFEST_NS_INT_SIGNALED:
1464 		/* OK */
1465 		break;
1466 
1467 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1468 		EMSG("Managed exit is not implemented");
1469 		return TEE_ERROR_NOT_IMPLEMENTED;
1470 
1471 	default:
1472 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1473 		     s->ns_int_mode);
1474 		return TEE_ERROR_BAD_PARAMETERS;
1475 	}
1476 
1477 	return TEE_SUCCESS;
1478 }
1479 
1480 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s)
1481 {
1482 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1483 	uint32_t ffa_version = 0;
1484 
1485 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version);
1486 	if (res) {
1487 		EMSG("Mandatory property is missing: ffa-version");
1488 		return res;
1489 	}
1490 
1491 	if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) {
1492 		EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version);
1493 		return TEE_ERROR_BAD_PARAMETERS;
1494 	}
1495 
1496 	s->rxtx.ffa_vers = ffa_version;
1497 
1498 	return TEE_SUCCESS;
1499 }
1500 
1501 static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s)
1502 {
1503 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1504 	uint32_t exec_state = 0;
1505 
1506 	res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state);
1507 	if (res) {
1508 		EMSG("Mandatory property is missing: execution-state");
1509 		return res;
1510 	}
1511 
1512 	/* Currently only AArch64 SPs are supported */
1513 	if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) {
1514 		s->props |= FFA_PART_PROP_AARCH64_STATE;
1515 	} else {
1516 		EMSG("Invalid execution-state value: %"PRIu32, exec_state);
1517 		return TEE_ERROR_BAD_PARAMETERS;
1518 	}
1519 
1520 	return TEE_SUCCESS;
1521 }
1522 
1523 static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s)
1524 {
1525 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1526 	uint32_t msg_method = 0;
1527 
1528 	res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method);
1529 	if (res) {
1530 		EMSG("Mandatory property is missing: messaging-method");
1531 		return res;
1532 	}
1533 
1534 	if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE)
1535 		s->props |= FFA_PART_PROP_DIRECT_REQ_RECV;
1536 
1537 	if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND)
1538 		s->props |= FFA_PART_PROP_DIRECT_REQ_SEND;
1539 
1540 	if (msg_method & SP_MANIFEST_INDIRECT_REQ)
1541 		IMSG("Indirect messaging is not supported");
1542 
1543 	return TEE_SUCCESS;
1544 }
1545 
1546 static TEE_Result read_vm_availability_msg(const void *fdt,
1547 					   struct sp_session *s)
1548 {
1549 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1550 	uint32_t v = 0;
1551 
1552 	res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v);
1553 
1554 	/* This field in the manifest is optional */
1555 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1556 		return TEE_SUCCESS;
1557 
1558 	if (res)
1559 		return res;
1560 
1561 	if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) {
1562 		EMSG("Invalid vm-availability-messages value: %"PRIu32, v);
1563 		return TEE_ERROR_BAD_PARAMETERS;
1564 	}
1565 
1566 	if (v & SP_MANIFEST_VM_CREATED_MSG)
1567 		s->props |= FFA_PART_PROP_NOTIF_CREATED;
1568 
1569 	if (v & SP_MANIFEST_VM_DESTROYED_MSG)
1570 		s->props |= FFA_PART_PROP_NOTIF_DESTROYED;
1571 
1572 	return TEE_SUCCESS;
1573 }
1574 
1575 static TEE_Result get_boot_order(const void *fdt, uint32_t *boot_order)
1576 {
1577 	TEE_Result res = TEE_SUCCESS;
1578 
1579 	res = sp_dt_get_u32(fdt, 0, "boot-order", boot_order);
1580 
1581 	if (res == TEE_SUCCESS) {
1582 		if (*boot_order > UINT16_MAX) {
1583 			EMSG("Value of boot-order property (%"PRIu32") is out of range",
1584 			     *boot_order);
1585 			res = TEE_ERROR_BAD_FORMAT;
1586 		}
1587 	} else if (res == TEE_ERROR_BAD_FORMAT) {
1588 		uint16_t boot_order_u16 = 0;
1589 
1590 		res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order_u16);
1591 		if (res == TEE_SUCCESS)
1592 			*boot_order = boot_order_u16;
1593 	}
1594 
1595 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1596 		*boot_order = UNDEFINED_BOOT_ORDER_VALUE;
1597 	else if (res != TEE_SUCCESS)
1598 		EMSG("Failed reading boot-order property err: %#"PRIx32, res);
1599 
1600 	return res;
1601 }
1602 
1603 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1604 {
1605 	TEE_Result res = TEE_SUCCESS;
1606 	struct sp_session *sess = NULL;
1607 	TEE_UUID ffa_uuid = {};
1608 	uint32_t boot_order = 0;
1609 
1610 	res = fdt_get_uuid(fdt, &ffa_uuid);
1611 	if (res)
1612 		return res;
1613 
1614 	res = get_boot_order(fdt, &boot_order);
1615 	if (res)
1616 		return res;
1617 
1618 	res = sp_open_session(&sess,
1619 			      &open_sp_sessions,
1620 			      &ffa_uuid, bin_uuid, boot_order, fdt);
1621 	if (res)
1622 		return res;
1623 
1624 	sess->fdt = fdt;
1625 
1626 	res = read_manifest_endpoint_id(sess);
1627 	if (res)
1628 		return res;
1629 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1630 
1631 	res = read_ns_interrupts_action(fdt, sess);
1632 	if (res)
1633 		return res;
1634 
1635 	res = read_ffa_version(fdt, sess);
1636 	if (res)
1637 		return res;
1638 
1639 	res = read_sp_exec_state(fdt, sess);
1640 	if (res)
1641 		return res;
1642 
1643 	res = read_sp_msg_types(fdt, sess);
1644 	if (res)
1645 		return res;
1646 
1647 	res = read_vm_availability_msg(fdt, sess);
1648 	if (res)
1649 		return res;
1650 
1651 	return TEE_SUCCESS;
1652 }
1653 
1654 static TEE_Result sp_first_run(struct sp_session *sess)
1655 {
1656 	TEE_Result res = TEE_SUCCESS;
1657 	struct thread_smc_1_2_regs args = { };
1658 	struct sp_ctx *ctx = NULL;
1659 	vaddr_t boot_info_va = 0;
1660 	size_t boot_info_size = 0;
1661 	void *fdt_copy = NULL;
1662 	size_t fdt_size = 0;
1663 
1664 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1665 	ts_push_current_session(&sess->ts_sess);
1666 	sess->is_initialized = false;
1667 
1668 	/*
1669 	 * Load relative memory regions must be handled before doing any other
1670 	 * mapping to prevent conflicts in the VA space.
1671 	 */
1672 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1673 	if (res) {
1674 		ts_pop_current_session();
1675 		return res;
1676 	}
1677 
1678 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1679 	if (res)
1680 		goto out;
1681 
1682 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1683 	if (res)
1684 		goto out;
1685 
1686 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1687 	if (res)
1688 		goto out;
1689 
1690 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1691 		res = handle_tpm_event_log(ctx, fdt_copy);
1692 		if (res)
1693 			goto out;
1694 	}
1695 
1696 	res = handle_hw_features(fdt_copy);
1697 	if (res)
1698 		goto out;
1699 
1700 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1701 				       &boot_info_size, sess->rxtx.ffa_vers);
1702 	if (res)
1703 		goto out;
1704 
1705 	ts_pop_current_session();
1706 
1707 	res = sp_enter(&args, sess);
1708 	if (res) {
1709 		ts_push_current_session(&sess->ts_sess);
1710 		goto out;
1711 	}
1712 
1713 	spmc_sp_msg_handler(&args, sess);
1714 
1715 	ts_push_current_session(&sess->ts_sess);
1716 	sess->is_initialized = true;
1717 
1718 out:
1719 	/* Free the boot info page from the SP memory */
1720 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1721 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1722 	ts_pop_current_session();
1723 
1724 	return res;
1725 }
1726 
1727 TEE_Result sp_enter(struct thread_smc_1_2_regs *args, struct sp_session *sp)
1728 {
1729 	TEE_Result res = TEE_SUCCESS;
1730 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1731 
1732 	ctx->sp_regs.x[0] = args->a0;
1733 	ctx->sp_regs.x[1] = args->a1;
1734 	ctx->sp_regs.x[2] = args->a2;
1735 	ctx->sp_regs.x[3] = args->a3;
1736 	ctx->sp_regs.x[4] = args->a4;
1737 	ctx->sp_regs.x[5] = args->a5;
1738 	ctx->sp_regs.x[6] = args->a6;
1739 	ctx->sp_regs.x[7] = args->a7;
1740 #ifdef CFG_TA_PAUTH
1741 	ctx->sp_regs.apiakey_hi = ctx->uctx.keys.apia_hi;
1742 	ctx->sp_regs.apiakey_lo = ctx->uctx.keys.apia_lo;
1743 #endif
1744 
1745 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1746 
1747 	args->a0 = ctx->sp_regs.x[0];
1748 	args->a1 = ctx->sp_regs.x[1];
1749 	args->a2 = ctx->sp_regs.x[2];
1750 	args->a3 = ctx->sp_regs.x[3];
1751 	args->a4 = ctx->sp_regs.x[4];
1752 	args->a5 = ctx->sp_regs.x[5];
1753 	args->a6 = ctx->sp_regs.x[6];
1754 	args->a7 = ctx->sp_regs.x[7];
1755 
1756 	return res;
1757 }
1758 
1759 /*
1760  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1761  * active on NS interrupt than the callee, the callee must inherit the caller's
1762  * configuration.
1763  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1764  * action will be MIN([self action], [caller's action]) which is stored in the
1765  * ns_int_mode_inherited field.
1766  */
1767 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1768 						 struct ts_session *caller,
1769 						 uint64_t *cpsr)
1770 {
1771 	if (caller) {
1772 		struct sp_session *caller_sp = to_sp_session(caller);
1773 
1774 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1775 					       s->ns_int_mode);
1776 	} else {
1777 		s->ns_int_mode_inherited = s->ns_int_mode;
1778 	}
1779 
1780 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1781 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1782 				   ARM32_CPSR_F_SHIFT);
1783 	else
1784 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1785 				    ARM32_CPSR_F_SHIFT);
1786 }
1787 
1788 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1789 				      uint32_t cmd __unused)
1790 {
1791 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1792 	TEE_Result res = TEE_SUCCESS;
1793 	uint32_t exceptions = 0;
1794 	struct sp_session *sp_s = to_sp_session(s);
1795 	struct ts_session *sess = NULL;
1796 	struct thread_ctx_regs *sp_regs = NULL;
1797 	struct ts_session *caller = NULL;
1798 	uint32_t rpc_target_info = 0;
1799 	uint32_t panicked = false;
1800 	uint32_t panic_code = 0;
1801 
1802 	sp_regs = &ctx->sp_regs;
1803 	ts_push_current_session(s);
1804 
1805 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1806 
1807 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1808 	caller = ts_get_calling_session();
1809 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1810 
1811 	/*
1812 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1813 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1814 	 */
1815 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1816 	sp_s->thread_id = thread_get_id();
1817 	thread_get_tsd()->rpc_target_info =
1818 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, sp_s->thread_id);
1819 
1820 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1821 
1822 	sp_s->thread_id = THREAD_ID_INVALID;
1823 
1824 	/* Restore rpc_target_info */
1825 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1826 
1827 	thread_unmask_exceptions(exceptions);
1828 
1829 	thread_user_clear_vfp(&ctx->uctx);
1830 
1831 	if (panicked) {
1832 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1833 		abort_print_current_ts();
1834 
1835 		sess = ts_pop_current_session();
1836 		cpu_spin_lock(&sp_s->spinlock);
1837 		sp_s->state = sp_dead;
1838 		cpu_spin_unlock(&sp_s->spinlock);
1839 
1840 		return TEE_ERROR_TARGET_DEAD;
1841 	}
1842 
1843 	sess = ts_pop_current_session();
1844 	assert(sess == s);
1845 
1846 	return res;
1847 }
1848 
1849 /* We currently don't support 32 bits */
1850 #ifdef ARM64
1851 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1852 				   struct thread_ctx_regs *sp_regs)
1853 {
1854 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1855 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1856 	sp_regs->pc = regs->elr;
1857 	sp_regs->sp = regs->sp_el0;
1858 }
1859 #endif
1860 
1861 static bool sp_handle_scall(struct thread_scall_regs *regs)
1862 {
1863 	struct ts_session *ts = ts_get_current_session();
1864 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1865 	struct sp_session *s = uctx->open_session;
1866 
1867 	assert(s);
1868 
1869 	sp_svc_store_registers(regs, &uctx->sp_regs);
1870 
1871 	regs->x0 = 0;
1872 	regs->x1 = 0; /* panic */
1873 	regs->x2 = 0; /* panic code */
1874 
1875 	/*
1876 	 * All the registers of the SP are saved in the SP session by the SVC
1877 	 * handler.
1878 	 * We always return to S-El1 after handling the SVC. We will continue
1879 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1880 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1881 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1882 	 * afterward used by the spmc_sp_msg_handler() to handle the
1883 	 * FF-A message send by the SP.
1884 	 */
1885 	return false;
1886 }
1887 
1888 static void sp_dump_state(struct ts_ctx *ctx)
1889 {
1890 	struct sp_ctx *utc = to_sp_ctx(ctx);
1891 
1892 	if (utc->uctx.dump_entry_func) {
1893 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1894 
1895 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1896 			return;
1897 	}
1898 
1899 	user_mode_ctx_print_mappings(&utc->uctx);
1900 }
1901 
1902 static const struct ts_ops sp_ops = {
1903 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1904 	.handle_scall = sp_handle_scall,
1905 	.dump_state = sp_dump_state,
1906 };
1907 
1908 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1909 {
1910 	enum teecore_memtypes mtype = MEM_AREA_SEC_RAM_OVERALL;
1911 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1912 	struct fip_sp *sp = NULL;
1913 	uint64_t sp_fdt_end = 0;
1914 	size_t sp_pkg_size = 0;
1915 	vaddr_t sp_pkg_va = 0;
1916 
1917 	/* Process the first page which contains the SP package header */
1918 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1919 	if (!sp_pkg_va) {
1920 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1921 		return TEE_ERROR_GENERIC;
1922 	}
1923 
1924 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1925 
1926 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1927 		EMSG("Invalid SP package magic");
1928 		return TEE_ERROR_BAD_FORMAT;
1929 	}
1930 
1931 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1932 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1933 		EMSG("Invalid SP header version");
1934 		return TEE_ERROR_BAD_FORMAT;
1935 	}
1936 
1937 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1938 			 &sp_pkg_size)) {
1939 		EMSG("Invalid SP package size");
1940 		return TEE_ERROR_BAD_FORMAT;
1941 	}
1942 
1943 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1944 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1945 		EMSG("Invalid SP manifest size");
1946 		return TEE_ERROR_BAD_FORMAT;
1947 	}
1948 
1949 	/* Process the whole SP package now that the size is known */
1950 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1951 	if (!sp_pkg_va) {
1952 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1953 		return TEE_ERROR_GENERIC;
1954 	}
1955 
1956 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1957 
1958 	sp = calloc(1, sizeof(struct fip_sp));
1959 	if (!sp)
1960 		return TEE_ERROR_OUT_OF_MEMORY;
1961 
1962 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1963 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1964 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1965 	sp->sp_img.image.flags = 0;
1966 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1967 
1968 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1969 
1970 	return TEE_SUCCESS;
1971 }
1972 
1973 static TEE_Result fip_sp_init_all(void)
1974 {
1975 	TEE_Result res = TEE_SUCCESS;
1976 	uint64_t sp_pkg_addr = 0;
1977 	const void *fdt = NULL;
1978 	TEE_UUID sp_uuid = { };
1979 	int sp_pkgs_node = 0;
1980 	int subnode = 0;
1981 	int root = 0;
1982 
1983 	fdt = get_manifest_dt();
1984 	if (!fdt) {
1985 		EMSG("No SPMC manifest found");
1986 		return TEE_ERROR_GENERIC;
1987 	}
1988 
1989 	root = fdt_path_offset(fdt, "/");
1990 	if (root < 0)
1991 		return TEE_ERROR_BAD_FORMAT;
1992 
1993 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1994 		return TEE_ERROR_BAD_FORMAT;
1995 
1996 	/* SP packages are optional, it's not an error if we don't find any */
1997 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1998 	if (sp_pkgs_node < 0)
1999 		return TEE_SUCCESS;
2000 
2001 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
2002 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
2003 		if (res) {
2004 			EMSG("Invalid FIP SP load address");
2005 			return res;
2006 		}
2007 
2008 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
2009 		if (res) {
2010 			EMSG("Invalid FIP SP uuid");
2011 			return res;
2012 		}
2013 
2014 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
2015 		if (res) {
2016 			EMSG("Invalid FIP SP package");
2017 			return res;
2018 		}
2019 	}
2020 
2021 	return TEE_SUCCESS;
2022 }
2023 
2024 static void fip_sp_deinit_all(void)
2025 {
2026 	while (!STAILQ_EMPTY(&fip_sp_list)) {
2027 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
2028 
2029 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
2030 		free(sp);
2031 	}
2032 }
2033 
2034 static TEE_Result sp_init_all(void)
2035 {
2036 	TEE_Result res = TEE_SUCCESS;
2037 	const struct sp_image *sp = NULL;
2038 	const struct fip_sp *fip_sp = NULL;
2039 	char __maybe_unused msg[60] = { '\0', };
2040 	struct sp_session *s = NULL;
2041 	struct sp_session *prev_sp = NULL;
2042 
2043 	for_each_secure_partition(sp) {
2044 		if (sp->image.uncompressed_size)
2045 			snprintf(msg, sizeof(msg),
2046 				 " (compressed, uncompressed %u)",
2047 				 sp->image.uncompressed_size);
2048 		else
2049 			msg[0] = '\0';
2050 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
2051 		     sp->image.size, msg);
2052 
2053 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2054 
2055 		if (res != TEE_SUCCESS) {
2056 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2057 			     &sp->image.uuid, res);
2058 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2059 				panic();
2060 		}
2061 	}
2062 
2063 	res = fip_sp_init_all();
2064 	if (res)
2065 		panic("Failed initializing FIP SPs");
2066 
2067 	for_each_fip_sp(fip_sp) {
2068 		sp = &fip_sp->sp_img;
2069 
2070 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
2071 		     sp->image.size);
2072 
2073 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
2074 
2075 		if (res != TEE_SUCCESS) {
2076 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
2077 			     &sp->image.uuid, res);
2078 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2079 				panic();
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
2085 	 * loader, so the original images (loaded by BL2) are not needed anymore
2086 	 */
2087 	fip_sp_deinit_all();
2088 
2089 	/*
2090 	 * Now that all SPs are loaded, check through the boot order values,
2091 	 * and warn in case there is a non-unique value.
2092 	 */
2093 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2094 		/* Avoid warnings if multiple SP have undefined boot-order. */
2095 		if (s->boot_order == UNDEFINED_BOOT_ORDER_VALUE)
2096 			break;
2097 
2098 		if (prev_sp && prev_sp->boot_order == s->boot_order)
2099 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
2100 			     &prev_sp->ts_sess.ctx->uuid,
2101 			     &s->ts_sess.ctx->uuid);
2102 
2103 		prev_sp = s;
2104 	}
2105 
2106 	/* Continue the initialization and run the SP */
2107 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2108 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
2109 
2110 		res = sp_first_run(s);
2111 		if (res != TEE_SUCCESS) {
2112 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
2113 			     s->endpoint_id, res);
2114 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2115 				panic();
2116 		}
2117 	}
2118 
2119 	return TEE_SUCCESS;
2120 }
2121 
2122 boot_final(sp_init_all);
2123 
2124 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
2125 					struct ts_store_handle **h)
2126 {
2127 	return emb_ts_open(uuid, h, find_secure_partition);
2128 }
2129 
2130 REGISTER_SP_STORE(2) = {
2131 	.description = "SP store",
2132 	.open = secure_partition_open,
2133 	.get_size = emb_ts_get_size,
2134 	.get_tag = emb_ts_get_tag,
2135 	.read = emb_ts_read,
2136 	.close = emb_ts_close,
2137 };
2138