1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2020-2023, Arm Limited. 4 */ 5 #include <bench.h> 6 #include <crypto/crypto.h> 7 #include <initcall.h> 8 #include <kernel/boot.h> 9 #include <kernel/embedded_ts.h> 10 #include <kernel/ldelf_loader.h> 11 #include <kernel/secure_partition.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/spmc_sp_handler.h> 14 #include <kernel/thread_private.h> 15 #include <kernel/thread_spmc.h> 16 #include <kernel/tpm.h> 17 #include <kernel/ts_store.h> 18 #include <ldelf.h> 19 #include <libfdt.h> 20 #include <mm/core_mmu.h> 21 #include <mm/fobj.h> 22 #include <mm/mobj.h> 23 #include <mm/vm.h> 24 #include <optee_ffa.h> 25 #include <stdio.h> 26 #include <string.h> 27 #include <tee_api_types.h> 28 #include <tee/uuid.h> 29 #include <trace.h> 30 #include <types_ext.h> 31 #include <utee_defines.h> 32 #include <util.h> 33 #include <zlib.h> 34 35 #define SP_MANIFEST_ATTR_READ BIT(0) 36 #define SP_MANIFEST_ATTR_WRITE BIT(1) 37 #define SP_MANIFEST_ATTR_EXEC BIT(2) 38 #define SP_MANIFEST_ATTR_NSEC BIT(3) 39 40 #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) 41 #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ 42 SP_MANIFEST_ATTR_WRITE) 43 #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ 44 SP_MANIFEST_ATTR_EXEC) 45 #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ 46 SP_MANIFEST_ATTR_WRITE | \ 47 SP_MANIFEST_ATTR_EXEC) 48 49 #define SP_MANIFEST_FLAG_NOBITS BIT(0) 50 51 #define SP_PKG_HEADER_MAGIC (0x474b5053) 52 #define SP_PKG_HEADER_VERSION_V1 (0x1) 53 #define SP_PKG_HEADER_VERSION_V2 (0x2) 54 55 struct sp_pkg_header { 56 uint32_t magic; 57 uint32_t version; 58 uint32_t pm_offset; 59 uint32_t pm_size; 60 uint32_t img_offset; 61 uint32_t img_size; 62 }; 63 64 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); 65 66 static const struct ts_ops sp_ops; 67 68 /* List that holds all of the loaded SP's */ 69 static struct sp_sessions_head open_sp_sessions = 70 TAILQ_HEAD_INITIALIZER(open_sp_sessions); 71 72 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) 73 { 74 const struct sp_image *sp = NULL; 75 const struct fip_sp *fip_sp = NULL; 76 77 for_each_secure_partition(sp) { 78 if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) 79 return &sp->image; 80 } 81 82 for_each_fip_sp(fip_sp) { 83 if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) 84 return &fip_sp->sp_img.image; 85 } 86 87 return NULL; 88 } 89 90 bool is_sp_ctx(struct ts_ctx *ctx) 91 { 92 return ctx && (ctx->ops == &sp_ops); 93 } 94 95 static void set_sp_ctx_ops(struct ts_ctx *ctx) 96 { 97 ctx->ops = &sp_ops; 98 } 99 100 TEE_Result sp_find_session_id(const TEE_UUID *uuid, uint32_t *session_id) 101 { 102 struct sp_session *s = NULL; 103 104 TAILQ_FOREACH(s, &open_sp_sessions, link) { 105 if (!memcmp(&s->ts_sess.ctx->uuid, uuid, sizeof(*uuid))) { 106 if (s->state == sp_dead) 107 return TEE_ERROR_TARGET_DEAD; 108 109 *session_id = s->endpoint_id; 110 return TEE_SUCCESS; 111 } 112 } 113 114 return TEE_ERROR_ITEM_NOT_FOUND; 115 } 116 117 struct sp_session *sp_get_session(uint32_t session_id) 118 { 119 struct sp_session *s = NULL; 120 121 TAILQ_FOREACH(s, &open_sp_sessions, link) { 122 if (s->endpoint_id == session_id) 123 return s; 124 } 125 126 return NULL; 127 } 128 129 TEE_Result sp_partition_info_get_all(struct ffa_partition_info *fpi, 130 size_t *elem_count) 131 { 132 size_t in_count = *elem_count; 133 struct sp_session *s = NULL; 134 size_t count = 0; 135 136 TAILQ_FOREACH(s, &open_sp_sessions, link) { 137 if (s->state == sp_dead) 138 continue; 139 if (count < in_count) { 140 spmc_fill_partition_entry(fpi, s->endpoint_id, 1); 141 fpi++; 142 } 143 count++; 144 } 145 146 *elem_count = count; 147 if (count > in_count) 148 return TEE_ERROR_SHORT_BUFFER; 149 150 return TEE_SUCCESS; 151 } 152 153 bool sp_has_exclusive_access(struct sp_mem_map_region *mem, 154 struct user_mode_ctx *uctx) 155 { 156 /* 157 * Check that we have access to the region if it is supposed to be 158 * mapped to the current context. 159 */ 160 if (uctx) { 161 struct vm_region *region = NULL; 162 163 /* Make sure that each mobj belongs to the SP */ 164 TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { 165 if (region->mobj == mem->mobj) 166 break; 167 } 168 169 if (!region) 170 return false; 171 } 172 173 /* Check that it is not shared with another SP */ 174 return !sp_mem_is_shared(mem); 175 } 176 177 static uint16_t new_session_id(struct sp_sessions_head *open_sessions) 178 { 179 struct sp_session *last = NULL; 180 uint16_t id = SPMC_ENDPOINT_ID + 1; 181 182 last = TAILQ_LAST(open_sessions, sp_sessions_head); 183 if (last) 184 id = last->endpoint_id + 1; 185 186 assert(id > SPMC_ENDPOINT_ID); 187 return id; 188 } 189 190 static TEE_Result sp_create_ctx(const TEE_UUID *uuid, struct sp_session *s) 191 { 192 TEE_Result res = TEE_SUCCESS; 193 struct sp_ctx *spc = NULL; 194 195 /* Register context */ 196 spc = calloc(1, sizeof(struct sp_ctx)); 197 if (!spc) 198 return TEE_ERROR_OUT_OF_MEMORY; 199 200 spc->open_session = s; 201 s->ts_sess.ctx = &spc->ts_ctx; 202 spc->ts_ctx.uuid = *uuid; 203 204 res = vm_info_init(&spc->uctx, &spc->ts_ctx); 205 if (res) 206 goto err; 207 208 set_sp_ctx_ops(&spc->ts_ctx); 209 210 return TEE_SUCCESS; 211 212 err: 213 free(spc); 214 return res; 215 } 216 217 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, 218 const TEE_UUID *uuid, 219 struct sp_session **sess) 220 { 221 TEE_Result res = TEE_SUCCESS; 222 struct sp_session *s = calloc(1, sizeof(struct sp_session)); 223 224 if (!s) 225 return TEE_ERROR_OUT_OF_MEMORY; 226 227 s->endpoint_id = new_session_id(open_sessions); 228 if (!s->endpoint_id) { 229 res = TEE_ERROR_OVERFLOW; 230 goto err; 231 } 232 233 DMSG("Loading Secure Partition %pUl", (void *)uuid); 234 res = sp_create_ctx(uuid, s); 235 if (res) 236 goto err; 237 238 TAILQ_INSERT_TAIL(open_sessions, s, link); 239 *sess = s; 240 return TEE_SUCCESS; 241 242 err: 243 free(s); 244 return res; 245 } 246 247 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) 248 { 249 struct thread_ctx_regs *sp_regs = &ctx->sp_regs; 250 251 memset(sp_regs, 0, sizeof(*sp_regs)); 252 sp_regs->sp = ctx->uctx.stack_ptr; 253 sp_regs->pc = ctx->uctx.entry_func; 254 255 return TEE_SUCCESS; 256 } 257 258 TEE_Result sp_map_shared(struct sp_session *s, 259 struct sp_mem_receiver *receiver, 260 struct sp_mem *smem, 261 uint64_t *va) 262 { 263 TEE_Result res = TEE_SUCCESS; 264 struct sp_ctx *ctx = NULL; 265 uint32_t perm = TEE_MATTR_UR; 266 struct sp_mem_map_region *reg = NULL; 267 268 ctx = to_sp_ctx(s->ts_sess.ctx); 269 270 /* Get the permission */ 271 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 272 perm |= TEE_MATTR_UX; 273 274 if (receiver->perm.perm & FFA_MEM_ACC_RW) { 275 if (receiver->perm.perm & FFA_MEM_ACC_EXE) 276 return TEE_ERROR_ACCESS_CONFLICT; 277 278 perm |= TEE_MATTR_UW; 279 } 280 /* 281 * Currently we don't support passing a va. We can't guarantee that the 282 * full region will be mapped in a contiguous region. A smem->region can 283 * have multiple mobj for one share. Currently there doesn't seem to be 284 * an option to guarantee that these will be mapped in a contiguous va 285 * space. 286 */ 287 if (*va) 288 return TEE_ERROR_NOT_SUPPORTED; 289 290 SLIST_FOREACH(reg, &smem->regions, link) { 291 res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, 292 perm, 0, reg->mobj, reg->page_offset); 293 294 if (res != TEE_SUCCESS) { 295 EMSG("Failed to map memory region %#"PRIx32, res); 296 return res; 297 } 298 } 299 return TEE_SUCCESS; 300 } 301 302 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) 303 { 304 TEE_Result res = TEE_SUCCESS; 305 vaddr_t vaddr = 0; 306 size_t len = 0; 307 struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); 308 struct sp_mem_map_region *reg = NULL; 309 310 SLIST_FOREACH(reg, &smem->regions, link) { 311 vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, 312 reg->mobj); 313 len = reg->page_count * SMALL_PAGE_SIZE; 314 315 res = vm_unmap(&ctx->uctx, vaddr, len); 316 if (res != TEE_SUCCESS) 317 return res; 318 } 319 320 return TEE_SUCCESS; 321 } 322 323 static TEE_Result sp_open_session(struct sp_session **sess, 324 struct sp_sessions_head *open_sessions, 325 const TEE_UUID *uuid) 326 { 327 TEE_Result res = TEE_SUCCESS; 328 struct sp_session *s = NULL; 329 struct sp_ctx *ctx = NULL; 330 331 if (!find_secure_partition(uuid)) 332 return TEE_ERROR_ITEM_NOT_FOUND; 333 334 res = sp_create_session(open_sessions, uuid, &s); 335 if (res != TEE_SUCCESS) { 336 DMSG("sp_create_session failed %#"PRIx32, res); 337 return res; 338 } 339 340 ctx = to_sp_ctx(s->ts_sess.ctx); 341 assert(ctx); 342 if (!ctx) 343 return TEE_ERROR_TARGET_DEAD; 344 *sess = s; 345 346 ts_push_current_session(&s->ts_sess); 347 /* Load the SP using ldelf. */ 348 ldelf_load_ldelf(&ctx->uctx); 349 res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); 350 351 if (res != TEE_SUCCESS) { 352 EMSG("Failed. loading SP using ldelf %#"PRIx32, res); 353 ts_pop_current_session(); 354 return TEE_ERROR_TARGET_DEAD; 355 } 356 357 /* Make the SP ready for its first run */ 358 s->state = sp_idle; 359 s->caller_id = 0; 360 sp_init_set_registers(ctx); 361 ts_pop_current_session(); 362 363 return TEE_SUCCESS; 364 } 365 366 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, 367 uint64_t *value) 368 { 369 const fdt64_t *p = NULL; 370 int len = 0; 371 372 p = fdt_getprop(fdt, node, property, &len); 373 if (!p) 374 return TEE_ERROR_ITEM_NOT_FOUND; 375 376 if (len != sizeof(*p)) 377 return TEE_ERROR_BAD_FORMAT; 378 379 *value = fdt64_ld(p); 380 381 return TEE_SUCCESS; 382 } 383 384 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, 385 uint32_t *value) 386 { 387 const fdt32_t *p = NULL; 388 int len = 0; 389 390 p = fdt_getprop(fdt, node, property, &len); 391 if (!p) 392 return TEE_ERROR_ITEM_NOT_FOUND; 393 394 if (len != sizeof(*p)) 395 return TEE_ERROR_BAD_FORMAT; 396 397 *value = fdt32_to_cpu(*p); 398 399 return TEE_SUCCESS; 400 } 401 402 static TEE_Result sp_dt_get_uuid(const void *fdt, int node, 403 const char *property, TEE_UUID *uuid) 404 { 405 uint32_t uuid_array[4] = { 0 }; 406 const fdt32_t *p = NULL; 407 int len = 0; 408 int i = 0; 409 410 p = fdt_getprop(fdt, node, property, &len); 411 if (!p) 412 return TEE_ERROR_ITEM_NOT_FOUND; 413 414 if (len != sizeof(TEE_UUID)) 415 return TEE_ERROR_BAD_FORMAT; 416 417 for (i = 0; i < 4; i++) 418 uuid_array[i] = fdt32_to_cpu(p[i]); 419 420 tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); 421 422 return TEE_SUCCESS; 423 } 424 425 static TEE_Result check_fdt(const void * const fdt, const TEE_UUID *uuid) 426 { 427 const struct fdt_property *description = NULL; 428 int description_name_len = 0; 429 TEE_UUID fdt_uuid = { }; 430 431 if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { 432 EMSG("Failed loading SP, manifest not found"); 433 return TEE_ERROR_BAD_PARAMETERS; 434 } 435 436 description = fdt_get_property(fdt, 0, "description", 437 &description_name_len); 438 if (description) 439 DMSG("Loading SP: %s", description->data); 440 441 if (sp_dt_get_uuid(fdt, 0, "uuid", &fdt_uuid)) { 442 EMSG("Missing or invalid UUID in SP manifest"); 443 return TEE_ERROR_BAD_FORMAT; 444 } 445 446 if (memcmp(uuid, &fdt_uuid, sizeof(fdt_uuid))) { 447 EMSG("Failed loading SP, UUID mismatch"); 448 return TEE_ERROR_BAD_FORMAT; 449 } 450 451 return TEE_SUCCESS; 452 } 453 454 /* 455 * sp_init_info allocates and maps the sp_ffa_init_info for the SP. It will copy 456 * the fdt into the allocated page(s) and return a pointer to the new location 457 * of the fdt. This pointer can be used to update data inside the fdt. 458 */ 459 static TEE_Result sp_init_info(struct sp_ctx *ctx, struct thread_smc_args *args, 460 const void * const input_fdt, vaddr_t *va, 461 size_t *num_pgs, void **fdt_copy) 462 { 463 struct sp_ffa_init_info *info = NULL; 464 int nvp_count = 1; 465 size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); 466 size_t nvp_size = sizeof(struct sp_name_value_pair) * nvp_count; 467 size_t info_size = sizeof(*info) + nvp_size; 468 size_t fdt_size = total_size - info_size; 469 TEE_Result res = TEE_SUCCESS; 470 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 471 struct fobj *f = NULL; 472 struct mobj *m = NULL; 473 static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; 474 475 *num_pgs = total_size / SMALL_PAGE_SIZE; 476 477 f = fobj_sec_mem_alloc(*num_pgs); 478 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 479 480 fobj_put(f); 481 if (!m) 482 return TEE_ERROR_OUT_OF_MEMORY; 483 484 res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); 485 mobj_put(m); 486 if (res) 487 return res; 488 489 info = (struct sp_ffa_init_info *)*va; 490 491 /* magic field is 4 bytes, we don't copy /0 byte. */ 492 memcpy(&info->magic, "FF-A", 4); 493 info->count = nvp_count; 494 args->a0 = (vaddr_t)info; 495 496 /* 497 * Store the fdt after the boot_info and store the pointer in the 498 * first element. 499 */ 500 COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); 501 memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); 502 info->nvp[0].value = *va + info_size; 503 info->nvp[0].size = fdt_size; 504 *fdt_copy = (void *)info->nvp[0].value; 505 506 if (fdt_open_into(input_fdt, *fdt_copy, fdt_size)) 507 return TEE_ERROR_GENERIC; 508 509 return TEE_SUCCESS; 510 } 511 512 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx, 513 const void *fdt) 514 { 515 int node = 0; 516 int subnode = 0; 517 tee_mm_entry_t *mm = NULL; 518 TEE_Result res = TEE_SUCCESS; 519 520 /* 521 * Memory regions are optional in the SP manifest, it's not an error if 522 * we don't find any. 523 */ 524 node = fdt_node_offset_by_compatible(fdt, 0, 525 "arm,ffa-manifest-memory-regions"); 526 if (node < 0) 527 return TEE_SUCCESS; 528 529 fdt_for_each_subnode(subnode, fdt, node) { 530 uint64_t load_rel_offset = 0; 531 uint32_t attributes = 0; 532 uint64_t base_addr = 0; 533 uint32_t pages_cnt = 0; 534 uint32_t flags = 0; 535 uint32_t perm = 0; 536 size_t size = 0; 537 vaddr_t va = 0; 538 539 mm = NULL; 540 541 /* Load address relative offset of a memory region */ 542 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 543 &load_rel_offset)) { 544 va = ctx->uctx.load_addr + load_rel_offset; 545 } else { 546 /* Skip non load address relative memory regions */ 547 continue; 548 } 549 550 if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 551 EMSG("Both base-address and load-address-relative-offset fields are set"); 552 return TEE_ERROR_BAD_FORMAT; 553 } 554 555 /* Size of memory region as count of 4K pages */ 556 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 557 EMSG("Mandatory field is missing: pages-count"); 558 return TEE_ERROR_BAD_FORMAT; 559 } 560 561 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 562 return TEE_ERROR_OVERFLOW; 563 564 /* Memory region attributes */ 565 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 566 EMSG("Mandatory field is missing: attributes"); 567 return TEE_ERROR_BAD_FORMAT; 568 } 569 570 /* Check instruction and data access permissions */ 571 switch (attributes & SP_MANIFEST_ATTR_RWX) { 572 case SP_MANIFEST_ATTR_RO: 573 perm = TEE_MATTR_UR; 574 break; 575 case SP_MANIFEST_ATTR_RW: 576 perm = TEE_MATTR_URW; 577 break; 578 case SP_MANIFEST_ATTR_RX: 579 perm = TEE_MATTR_URX; 580 break; 581 default: 582 EMSG("Invalid memory access permissions"); 583 return TEE_ERROR_BAD_FORMAT; 584 } 585 586 res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags); 587 if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) { 588 EMSG("Optional field with invalid value: flags"); 589 return TEE_ERROR_BAD_FORMAT; 590 } 591 592 /* Load relative regions must be secure */ 593 if (attributes & SP_MANIFEST_ATTR_NSEC) { 594 EMSG("Invalid memory security attribute"); 595 return TEE_ERROR_BAD_FORMAT; 596 } 597 598 if (flags & SP_MANIFEST_FLAG_NOBITS) { 599 /* 600 * NOBITS flag is set, which means that loaded binary 601 * doesn't contain this area, so it's need to be 602 * allocated. 603 */ 604 struct mobj *m = NULL; 605 unsigned int idx = 0; 606 607 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 608 if (!mm) 609 return TEE_ERROR_OUT_OF_MEMORY; 610 611 base_addr = tee_mm_get_smem(mm); 612 613 m = sp_mem_new_mobj(pages_cnt, 614 TEE_MATTR_MEM_TYPE_CACHED, true); 615 if (!m) { 616 res = TEE_ERROR_OUT_OF_MEMORY; 617 goto err_mm_free; 618 } 619 620 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 621 if (res) { 622 mobj_put(m); 623 goto err_mm_free; 624 } 625 626 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 627 mobj_put(m); 628 if (res) 629 goto err_mm_free; 630 } else { 631 /* 632 * If NOBITS is not present the memory area is already 633 * mapped and only need to set the correct permissions. 634 */ 635 res = vm_set_prot(&ctx->uctx, va, size, perm); 636 if (res) 637 return res; 638 } 639 } 640 641 return TEE_SUCCESS; 642 643 err_mm_free: 644 tee_mm_free(mm); 645 return res; 646 } 647 648 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) 649 { 650 int node = 0; 651 int subnode = 0; 652 TEE_Result res = TEE_SUCCESS; 653 const char *dt_device_match_table = { 654 "arm,ffa-manifest-device-regions", 655 }; 656 657 /* 658 * Device regions are optional in the SP manifest, it's not an error if 659 * we don't find any 660 */ 661 node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); 662 if (node < 0) 663 return TEE_SUCCESS; 664 665 fdt_for_each_subnode(subnode, fdt, node) { 666 uint64_t base_addr = 0; 667 uint32_t pages_cnt = 0; 668 uint32_t attributes = 0; 669 struct mobj *m = NULL; 670 bool is_secure = true; 671 uint32_t perm = 0; 672 vaddr_t va = 0; 673 unsigned int idx = 0; 674 675 /* 676 * Physical base address of a device MMIO region. 677 * Currently only physically contiguous region is supported. 678 */ 679 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { 680 EMSG("Mandatory field is missing: base-address"); 681 return TEE_ERROR_BAD_FORMAT; 682 } 683 684 /* Total size of MMIO region as count of 4K pages */ 685 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 686 EMSG("Mandatory field is missing: pages-count"); 687 return TEE_ERROR_BAD_FORMAT; 688 } 689 690 /* Data access, instruction access and security attributes */ 691 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 692 EMSG("Mandatory field is missing: attributes"); 693 return TEE_ERROR_BAD_FORMAT; 694 } 695 696 /* Check instruction and data access permissions */ 697 switch (attributes & SP_MANIFEST_ATTR_RWX) { 698 case SP_MANIFEST_ATTR_RO: 699 perm = TEE_MATTR_UR; 700 break; 701 case SP_MANIFEST_ATTR_RW: 702 perm = TEE_MATTR_URW; 703 break; 704 default: 705 EMSG("Invalid memory access permissions"); 706 return TEE_ERROR_BAD_FORMAT; 707 } 708 709 /* 710 * The SP is a secure endpoint, security attribute can be 711 * secure or non-secure 712 */ 713 if (attributes & SP_MANIFEST_ATTR_NSEC) 714 is_secure = false; 715 716 /* Memory attributes must be Device-nGnRnE */ 717 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, 718 is_secure); 719 if (!m) 720 return TEE_ERROR_OUT_OF_MEMORY; 721 722 res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); 723 if (res) { 724 mobj_put(m); 725 return res; 726 } 727 728 res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, 729 perm, 0, m, 0); 730 mobj_put(m); 731 if (res) 732 return res; 733 734 /* 735 * Overwrite the device region's PA in the fdt with the VA. This 736 * fdt will be passed to the SP. 737 */ 738 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 739 740 /* 741 * Unmap the region if the overwrite failed since the SP won't 742 * be able to access it without knowing the VA. 743 */ 744 if (res) { 745 vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); 746 return res; 747 } 748 } 749 750 return TEE_SUCCESS; 751 } 752 753 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, 754 uint32_t new_endpoint_id) 755 { 756 struct sp_session *session = sp_get_session(endpoint_id); 757 uint32_t manifest_endpoint_id = 0; 758 759 /* 760 * We don't know in which order the SPs are loaded. The endpoint ID 761 * defined in the manifest could already be generated by 762 * new_session_id() and used by another SP. If this is the case, we swap 763 * the ID's of the two SPs. We also have to make sure that the ID's are 764 * not defined twice in the manifest. 765 */ 766 767 /* The endpoint ID was not assigned yet */ 768 if (!session) 769 return TEE_SUCCESS; 770 771 /* 772 * Read the manifest file from the SP who originally had the endpoint. 773 * We can safely swap the endpoint ID's if the manifest file doesn't 774 * have an endpoint ID defined. 775 */ 776 if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { 777 assert(manifest_endpoint_id == endpoint_id); 778 EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); 779 return TEE_ERROR_ACCESS_CONFLICT; 780 } 781 782 session->endpoint_id = new_endpoint_id; 783 784 return TEE_SUCCESS; 785 } 786 787 static TEE_Result read_manifest_endpoint_id(struct sp_session *s) 788 { 789 uint32_t endpoint_id = 0; 790 791 /* 792 * The endpoint ID can be optionally defined in the manifest file. We 793 * have to map the ID inside the manifest to the SP if it's defined. 794 * If not, the endpoint ID generated inside new_session_id() will be 795 * used. 796 */ 797 if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { 798 TEE_Result res = TEE_ERROR_GENERIC; 799 800 if (endpoint_id <= SPMC_ENDPOINT_ID) 801 return TEE_ERROR_BAD_FORMAT; 802 803 res = swap_sp_endpoints(endpoint_id, s->endpoint_id); 804 if (res) 805 return res; 806 807 DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", 808 endpoint_id); 809 /* Assign the endpoint ID to the current SP */ 810 s->endpoint_id = endpoint_id; 811 } 812 return TEE_SUCCESS; 813 } 814 815 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) 816 { 817 int node = 0; 818 int subnode = 0; 819 tee_mm_entry_t *mm = NULL; 820 TEE_Result res = TEE_SUCCESS; 821 822 /* 823 * Memory regions are optional in the SP manifest, it's not an error if 824 * we don't find any. 825 */ 826 node = fdt_node_offset_by_compatible(fdt, 0, 827 "arm,ffa-manifest-memory-regions"); 828 if (node < 0) 829 return TEE_SUCCESS; 830 831 fdt_for_each_subnode(subnode, fdt, node) { 832 uint64_t load_rel_offset = 0; 833 bool alloc_needed = false; 834 uint32_t attributes = 0; 835 uint64_t base_addr = 0; 836 uint32_t pages_cnt = 0; 837 bool is_secure = true; 838 struct mobj *m = NULL; 839 unsigned int idx = 0; 840 uint32_t perm = 0; 841 size_t size = 0; 842 vaddr_t va = 0; 843 844 mm = NULL; 845 846 /* Load address relative offset of a memory region */ 847 if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", 848 &load_rel_offset)) { 849 /* 850 * At this point the memory region is already mapped by 851 * handle_fdt_load_relative_mem_regions. 852 * Only need to set the base-address in the manifest and 853 * then skip the rest of the mapping process. 854 */ 855 va = ctx->uctx.load_addr + load_rel_offset; 856 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 857 if (res) 858 return res; 859 860 continue; 861 } 862 863 /* 864 * Base address of a memory region. 865 * If not present, we have to allocate the specified memory. 866 * If present, this field could specify a PA or VA. Currently 867 * only a PA is supported. 868 */ 869 if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) 870 alloc_needed = true; 871 872 /* Size of memory region as count of 4K pages */ 873 if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { 874 EMSG("Mandatory field is missing: pages-count"); 875 return TEE_ERROR_BAD_FORMAT; 876 } 877 878 if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) 879 return TEE_ERROR_OVERFLOW; 880 881 /* 882 * Memory region attributes: 883 * - Instruction/data access permissions 884 * - Cacheability/shareability attributes 885 * - Security attributes 886 * 887 * Cacheability/shareability attributes can be ignored for now. 888 * OP-TEE only supports a single type for normal cached memory 889 * and currently there is no use case that would require to 890 * change this. 891 */ 892 if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { 893 EMSG("Mandatory field is missing: attributes"); 894 return TEE_ERROR_BAD_FORMAT; 895 } 896 897 /* Check instruction and data access permissions */ 898 switch (attributes & SP_MANIFEST_ATTR_RWX) { 899 case SP_MANIFEST_ATTR_RO: 900 perm = TEE_MATTR_UR; 901 break; 902 case SP_MANIFEST_ATTR_RW: 903 perm = TEE_MATTR_URW; 904 break; 905 case SP_MANIFEST_ATTR_RX: 906 perm = TEE_MATTR_URX; 907 break; 908 default: 909 EMSG("Invalid memory access permissions"); 910 return TEE_ERROR_BAD_FORMAT; 911 } 912 913 /* 914 * The SP is a secure endpoint, security attribute can be 915 * secure or non-secure. 916 * The SPMC cannot allocate non-secure memory, i.e. if the base 917 * address is missing this attribute must be secure. 918 */ 919 if (attributes & SP_MANIFEST_ATTR_NSEC) { 920 if (alloc_needed) { 921 EMSG("Invalid memory security attribute"); 922 return TEE_ERROR_BAD_FORMAT; 923 } 924 is_secure = false; 925 } 926 927 if (alloc_needed) { 928 /* Base address is missing, we have to allocate */ 929 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 930 if (!mm) 931 return TEE_ERROR_OUT_OF_MEMORY; 932 933 base_addr = tee_mm_get_smem(mm); 934 } 935 936 m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, 937 is_secure); 938 if (!m) { 939 res = TEE_ERROR_OUT_OF_MEMORY; 940 goto err_mm_free; 941 } 942 943 res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); 944 if (res) { 945 mobj_put(m); 946 goto err_mm_free; 947 } 948 949 res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); 950 mobj_put(m); 951 if (res) 952 goto err_mm_free; 953 954 /* 955 * Overwrite the memory region's base address in the fdt with 956 * the VA. This fdt will be passed to the SP. 957 * If the base-address field was not present in the original 958 * fdt, this function will create it. This doesn't cause issues 959 * since the necessary extra space has been allocated when 960 * opening the fdt. 961 */ 962 res = fdt_setprop_u64(fdt, subnode, "base-address", va); 963 964 /* 965 * Unmap the region if the overwrite failed since the SP won't 966 * be able to access it without knowing the VA. 967 */ 968 if (res) { 969 vm_unmap(&ctx->uctx, va, size); 970 goto err_mm_free; 971 } 972 } 973 974 return TEE_SUCCESS; 975 976 err_mm_free: 977 tee_mm_free(mm); 978 return res; 979 } 980 981 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) 982 { 983 uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; 984 uint32_t dummy_size __maybe_unused = 0; 985 TEE_Result res = TEE_SUCCESS; 986 size_t page_count = 0; 987 struct fobj *f = NULL; 988 struct mobj *m = NULL; 989 vaddr_t log_addr = 0; 990 size_t log_size = 0; 991 int node = 0; 992 993 node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); 994 if (node < 0) 995 return TEE_SUCCESS; 996 997 /* Checking the existence and size of the event log properties */ 998 if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { 999 EMSG("tpm_event_log_addr not found or has invalid size"); 1000 return TEE_ERROR_BAD_FORMAT; 1001 } 1002 1003 if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { 1004 EMSG("tpm_event_log_size not found or has invalid size"); 1005 return TEE_ERROR_BAD_FORMAT; 1006 } 1007 1008 /* Validating event log */ 1009 res = tpm_get_event_log_size(&log_size); 1010 if (res) 1011 return res; 1012 1013 if (!log_size) { 1014 EMSG("Empty TPM event log was provided"); 1015 return TEE_ERROR_ITEM_NOT_FOUND; 1016 } 1017 1018 /* Allocating memory area for the event log to share with the SP */ 1019 page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); 1020 1021 f = fobj_sec_mem_alloc(page_count); 1022 m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); 1023 fobj_put(f); 1024 if (!m) 1025 return TEE_ERROR_OUT_OF_MEMORY; 1026 1027 res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); 1028 mobj_put(m); 1029 if (res) 1030 return res; 1031 1032 /* Copy event log */ 1033 res = tpm_get_event_log((void *)log_addr, &log_size); 1034 if (res) 1035 goto err_unmap; 1036 1037 /* Setting event log details in the manifest */ 1038 res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); 1039 if (res) 1040 goto err_unmap; 1041 1042 res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); 1043 if (res) 1044 goto err_unmap; 1045 1046 return TEE_SUCCESS; 1047 1048 err_unmap: 1049 vm_unmap(&ctx->uctx, log_addr, log_size); 1050 1051 return res; 1052 } 1053 1054 static TEE_Result sp_init_uuid(const TEE_UUID *uuid, const void * const fdt) 1055 { 1056 TEE_Result res = TEE_SUCCESS; 1057 struct sp_session *sess = NULL; 1058 1059 res = sp_open_session(&sess, 1060 &open_sp_sessions, 1061 uuid); 1062 if (res) 1063 return res; 1064 1065 res = check_fdt(fdt, uuid); 1066 if (res) 1067 return res; 1068 1069 sess->fdt = fdt; 1070 res = read_manifest_endpoint_id(sess); 1071 if (res) 1072 return res; 1073 DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); 1074 1075 return TEE_SUCCESS; 1076 } 1077 1078 static TEE_Result sp_first_run(struct sp_session *sess) 1079 { 1080 TEE_Result res = TEE_SUCCESS; 1081 struct thread_smc_args args = { }; 1082 vaddr_t va = 0; 1083 size_t num_pgs = 0; 1084 struct sp_ctx *ctx = NULL; 1085 void *fdt_copy = NULL; 1086 1087 ctx = to_sp_ctx(sess->ts_sess.ctx); 1088 ts_push_current_session(&sess->ts_sess); 1089 1090 /* 1091 * Load relative memory regions must be handled before doing any other 1092 * mapping to prevent conflicts in the VA space. 1093 */ 1094 res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt); 1095 if (res) { 1096 ts_pop_current_session(); 1097 return res; 1098 } 1099 1100 res = sp_init_info(ctx, &args, sess->fdt, &va, &num_pgs, &fdt_copy); 1101 if (res) 1102 goto out; 1103 1104 res = handle_fdt_dev_regions(ctx, fdt_copy); 1105 if (res) 1106 goto out; 1107 1108 res = handle_fdt_mem_regions(ctx, fdt_copy); 1109 if (res) 1110 goto out; 1111 1112 if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { 1113 res = handle_tpm_event_log(ctx, fdt_copy); 1114 if (res) 1115 goto out; 1116 } 1117 1118 ts_pop_current_session(); 1119 1120 sess->is_initialized = false; 1121 if (sp_enter(&args, sess)) { 1122 vm_unmap(&ctx->uctx, va, num_pgs); 1123 return FFA_ABORTED; 1124 } 1125 1126 spmc_sp_msg_handler(&args, sess); 1127 1128 sess->is_initialized = true; 1129 1130 ts_push_current_session(&sess->ts_sess); 1131 out: 1132 /* Free the boot info page from the SP memory */ 1133 vm_unmap(&ctx->uctx, va, num_pgs); 1134 ts_pop_current_session(); 1135 1136 return res; 1137 } 1138 1139 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) 1140 { 1141 TEE_Result res = FFA_OK; 1142 struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); 1143 1144 ctx->sp_regs.x[0] = args->a0; 1145 ctx->sp_regs.x[1] = args->a1; 1146 ctx->sp_regs.x[2] = args->a2; 1147 ctx->sp_regs.x[3] = args->a3; 1148 ctx->sp_regs.x[4] = args->a4; 1149 ctx->sp_regs.x[5] = args->a5; 1150 ctx->sp_regs.x[6] = args->a6; 1151 ctx->sp_regs.x[7] = args->a7; 1152 1153 res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); 1154 1155 args->a0 = ctx->sp_regs.x[0]; 1156 args->a1 = ctx->sp_regs.x[1]; 1157 args->a2 = ctx->sp_regs.x[2]; 1158 args->a3 = ctx->sp_regs.x[3]; 1159 args->a4 = ctx->sp_regs.x[4]; 1160 args->a5 = ctx->sp_regs.x[5]; 1161 args->a6 = ctx->sp_regs.x[6]; 1162 args->a7 = ctx->sp_regs.x[7]; 1163 1164 return res; 1165 } 1166 1167 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, 1168 uint32_t cmd __unused) 1169 { 1170 struct sp_ctx *ctx = to_sp_ctx(s->ctx); 1171 TEE_Result res = TEE_SUCCESS; 1172 uint32_t exceptions = 0; 1173 uint64_t cpsr = 0; 1174 struct sp_session *sp_s = to_sp_session(s); 1175 struct ts_session *sess = NULL; 1176 struct thread_ctx_regs *sp_regs = NULL; 1177 uint32_t panicked = false; 1178 uint32_t panic_code = 0; 1179 1180 bm_timestamp(); 1181 1182 sp_regs = &ctx->sp_regs; 1183 ts_push_current_session(s); 1184 1185 cpsr = sp_regs->cpsr; 1186 sp_regs->cpsr = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT); 1187 1188 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); 1189 __thread_enter_user_mode(sp_regs, &panicked, &panic_code); 1190 sp_regs->cpsr = cpsr; 1191 thread_unmask_exceptions(exceptions); 1192 1193 thread_user_clear_vfp(&ctx->uctx); 1194 1195 if (panicked) { 1196 DMSG("SP panicked with code %#"PRIx32, panic_code); 1197 abort_print_current_ts(); 1198 1199 sess = ts_pop_current_session(); 1200 cpu_spin_lock(&sp_s->spinlock); 1201 sp_s->state = sp_dead; 1202 cpu_spin_unlock(&sp_s->spinlock); 1203 1204 return TEE_ERROR_TARGET_DEAD; 1205 } 1206 1207 sess = ts_pop_current_session(); 1208 assert(sess == s); 1209 1210 bm_timestamp(); 1211 1212 return res; 1213 } 1214 1215 /* We currently don't support 32 bits */ 1216 #ifdef ARM64 1217 static void sp_svc_store_registers(struct thread_scall_regs *regs, 1218 struct thread_ctx_regs *sp_regs) 1219 { 1220 COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); 1221 memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); 1222 sp_regs->pc = regs->elr; 1223 sp_regs->sp = regs->sp_el0; 1224 } 1225 #endif 1226 1227 static bool sp_handle_scall(struct thread_scall_regs *regs) 1228 { 1229 struct ts_session *ts = ts_get_current_session(); 1230 struct sp_ctx *uctx = to_sp_ctx(ts->ctx); 1231 struct sp_session *s = uctx->open_session; 1232 1233 assert(s); 1234 1235 sp_svc_store_registers(regs, &uctx->sp_regs); 1236 1237 regs->x0 = 0; 1238 regs->x1 = 0; /* panic */ 1239 regs->x2 = 0; /* panic code */ 1240 1241 /* 1242 * All the registers of the SP are saved in the SP session by the SVC 1243 * handler. 1244 * We always return to S-El1 after handling the SVC. We will continue 1245 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). 1246 * The sp_enter() function copies the FF-A parameters (a0-a7) from the 1247 * saved registers to the thread_smc_args. The thread_smc_args object is 1248 * afterward used by the spmc_sp_msg_handler() to handle the 1249 * FF-A message send by the SP. 1250 */ 1251 return false; 1252 } 1253 1254 static void sp_dump_state(struct ts_ctx *ctx) 1255 { 1256 struct sp_ctx *utc = to_sp_ctx(ctx); 1257 1258 if (utc->uctx.dump_entry_func) { 1259 TEE_Result res = ldelf_dump_state(&utc->uctx); 1260 1261 if (!res || res == TEE_ERROR_TARGET_DEAD) 1262 return; 1263 } 1264 1265 user_mode_ctx_print_mappings(&utc->uctx); 1266 } 1267 1268 static const struct ts_ops sp_ops = { 1269 .enter_invoke_cmd = sp_enter_invoke_cmd, 1270 .handle_scall = sp_handle_scall, 1271 .dump_state = sp_dump_state, 1272 }; 1273 1274 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) 1275 { 1276 enum teecore_memtypes mtype = MEM_AREA_RAM_SEC; 1277 struct sp_pkg_header *sp_pkg_hdr = NULL; 1278 TEE_Result res = TEE_SUCCESS; 1279 tee_mm_entry_t *mm = NULL; 1280 struct fip_sp *sp = NULL; 1281 uint64_t sp_fdt_end = 0; 1282 size_t sp_pkg_size = 0; 1283 vaddr_t sp_pkg_va = 0; 1284 size_t num_pages = 0; 1285 1286 /* Map only the first page of the SP package to parse the header */ 1287 if (!tee_pbuf_is_sec(sp_pkg_pa, SMALL_PAGE_SIZE)) 1288 return TEE_ERROR_GENERIC; 1289 1290 mm = tee_mm_alloc(&tee_mm_sec_ddr, SMALL_PAGE_SIZE); 1291 if (!mm) 1292 return TEE_ERROR_OUT_OF_MEMORY; 1293 1294 sp_pkg_va = tee_mm_get_smem(mm); 1295 1296 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, 1, mtype)) { 1297 res = TEE_ERROR_GENERIC; 1298 goto err; 1299 } 1300 1301 sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; 1302 1303 if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { 1304 EMSG("Invalid SP package magic"); 1305 res = TEE_ERROR_BAD_FORMAT; 1306 goto err_unmap; 1307 } 1308 1309 if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 && 1310 sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) { 1311 EMSG("Invalid SP header version"); 1312 res = TEE_ERROR_BAD_FORMAT; 1313 goto err_unmap; 1314 } 1315 1316 if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, 1317 &sp_pkg_size)) { 1318 EMSG("Invalid SP package size"); 1319 res = TEE_ERROR_BAD_FORMAT; 1320 goto err_unmap; 1321 } 1322 1323 if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, 1324 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { 1325 EMSG("Invalid SP manifest size"); 1326 res = TEE_ERROR_BAD_FORMAT; 1327 goto err_unmap; 1328 } 1329 1330 core_mmu_unmap_pages(sp_pkg_va, 1); 1331 tee_mm_free(mm); 1332 1333 /* Map the whole package */ 1334 if (!tee_pbuf_is_sec(sp_pkg_pa, sp_pkg_size)) 1335 return TEE_ERROR_GENERIC; 1336 1337 num_pages = ROUNDUP_DIV(sp_pkg_size, SMALL_PAGE_SIZE); 1338 1339 mm = tee_mm_alloc(&tee_mm_sec_ddr, sp_pkg_size); 1340 if (!mm) 1341 return TEE_ERROR_OUT_OF_MEMORY; 1342 1343 sp_pkg_va = tee_mm_get_smem(mm); 1344 1345 if (core_mmu_map_contiguous_pages(sp_pkg_va, sp_pkg_pa, num_pages, 1346 mtype)) { 1347 res = TEE_ERROR_GENERIC; 1348 goto err; 1349 } 1350 1351 sp_pkg_hdr = (struct sp_pkg_header *)tee_mm_get_smem(mm); 1352 1353 sp = calloc(1, sizeof(struct fip_sp)); 1354 if (!sp) { 1355 res = TEE_ERROR_OUT_OF_MEMORY; 1356 goto err_unmap; 1357 } 1358 1359 memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); 1360 sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); 1361 sp->sp_img.image.size = sp_pkg_hdr->img_size; 1362 sp->sp_img.image.flags = 0; 1363 sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); 1364 sp->mm = mm; 1365 1366 STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); 1367 1368 return TEE_SUCCESS; 1369 1370 err_unmap: 1371 core_mmu_unmap_pages(tee_mm_get_smem(mm), 1372 ROUNDUP_DIV(tee_mm_get_bytes(mm), 1373 SMALL_PAGE_SIZE)); 1374 err: 1375 tee_mm_free(mm); 1376 1377 return res; 1378 } 1379 1380 static TEE_Result fip_sp_map_all(void) 1381 { 1382 TEE_Result res = TEE_SUCCESS; 1383 uint64_t sp_pkg_addr = 0; 1384 const void *fdt = NULL; 1385 TEE_UUID sp_uuid = { }; 1386 int sp_pkgs_node = 0; 1387 int subnode = 0; 1388 int root = 0; 1389 1390 fdt = get_external_dt(); 1391 if (!fdt) { 1392 EMSG("No SPMC manifest found"); 1393 return TEE_ERROR_GENERIC; 1394 } 1395 1396 root = fdt_path_offset(fdt, "/"); 1397 if (root < 0) 1398 return TEE_ERROR_BAD_FORMAT; 1399 1400 if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) 1401 return TEE_ERROR_BAD_FORMAT; 1402 1403 /* SP packages are optional, it's not an error if we don't find any */ 1404 sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); 1405 if (sp_pkgs_node < 0) 1406 return TEE_SUCCESS; 1407 1408 fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { 1409 res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); 1410 if (res) { 1411 EMSG("Invalid FIP SP load address"); 1412 return res; 1413 } 1414 1415 res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); 1416 if (res) { 1417 EMSG("Invalid FIP SP uuid"); 1418 return res; 1419 } 1420 1421 res = process_sp_pkg(sp_pkg_addr, &sp_uuid); 1422 if (res) { 1423 EMSG("Invalid FIP SP package"); 1424 return res; 1425 } 1426 } 1427 1428 return TEE_SUCCESS; 1429 } 1430 1431 static void fip_sp_unmap_all(void) 1432 { 1433 while (!STAILQ_EMPTY(&fip_sp_list)) { 1434 struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); 1435 1436 STAILQ_REMOVE_HEAD(&fip_sp_list, link); 1437 core_mmu_unmap_pages(tee_mm_get_smem(sp->mm), 1438 ROUNDUP_DIV(tee_mm_get_bytes(sp->mm), 1439 SMALL_PAGE_SIZE)); 1440 tee_mm_free(sp->mm); 1441 free(sp); 1442 } 1443 } 1444 1445 static TEE_Result sp_init_all(void) 1446 { 1447 TEE_Result res = TEE_SUCCESS; 1448 const struct sp_image *sp = NULL; 1449 const struct fip_sp *fip_sp = NULL; 1450 char __maybe_unused msg[60] = { '\0', }; 1451 struct sp_session *s = NULL; 1452 1453 for_each_secure_partition(sp) { 1454 if (sp->image.uncompressed_size) 1455 snprintf(msg, sizeof(msg), 1456 " (compressed, uncompressed %u)", 1457 sp->image.uncompressed_size); 1458 else 1459 msg[0] = '\0'; 1460 DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, 1461 sp->image.size, msg); 1462 1463 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1464 1465 if (res != TEE_SUCCESS) { 1466 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1467 &sp->image.uuid, res); 1468 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1469 panic(); 1470 } 1471 } 1472 1473 res = fip_sp_map_all(); 1474 if (res) 1475 panic("Failed mapping FIP SPs"); 1476 1477 for_each_fip_sp(fip_sp) { 1478 sp = &fip_sp->sp_img; 1479 1480 DMSG("SP %pUl size %u", (void *)&sp->image.uuid, 1481 sp->image.size); 1482 1483 res = sp_init_uuid(&sp->image.uuid, sp->fdt); 1484 1485 if (res != TEE_SUCCESS) { 1486 EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, 1487 &sp->image.uuid, res); 1488 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1489 panic(); 1490 } 1491 } 1492 1493 /* Continue the initialization and run the SP */ 1494 TAILQ_FOREACH(s, &open_sp_sessions, link) { 1495 res = sp_first_run(s); 1496 if (res != TEE_SUCCESS) { 1497 EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, 1498 s->endpoint_id, res); 1499 if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) 1500 panic(); 1501 } 1502 } 1503 /* 1504 * At this point all FIP SPs are loaded by ldelf so the original images 1505 * (loaded by BL2 earlier) can be unmapped 1506 */ 1507 fip_sp_unmap_all(); 1508 1509 return TEE_SUCCESS; 1510 } 1511 1512 boot_final(sp_init_all); 1513 1514 static TEE_Result secure_partition_open(const TEE_UUID *uuid, 1515 struct ts_store_handle **h) 1516 { 1517 return emb_ts_open(uuid, h, find_secure_partition); 1518 } 1519 1520 REGISTER_SP_STORE(2) = { 1521 .description = "SP store", 1522 .open = secure_partition_open, 1523 .get_size = emb_ts_get_size, 1524 .get_tag = emb_ts_get_tag, 1525 .read = emb_ts_read, 1526 .close = emb_ts_close, 1527 }; 1528