xref: /optee_os/core/arch/arm/kernel/secure_partition.c (revision 021fee0affe5db6f1f713fea1119350a7433baea)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2020-2024, Arm Limited.
4  */
5 #include <crypto/crypto.h>
6 #include <initcall.h>
7 #include <kernel/boot.h>
8 #include <kernel/embedded_ts.h>
9 #include <kernel/ldelf_loader.h>
10 #include <kernel/secure_partition.h>
11 #include <kernel/spinlock.h>
12 #include <kernel/spmc_sp_handler.h>
13 #include <kernel/thread_private.h>
14 #include <kernel/thread_spmc.h>
15 #include <kernel/tpm.h>
16 #include <kernel/ts_store.h>
17 #include <ldelf.h>
18 #include <libfdt.h>
19 #include <mm/core_mmu.h>
20 #include <mm/fobj.h>
21 #include <mm/mobj.h>
22 #include <mm/vm.h>
23 #include <optee_ffa.h>
24 #include <stdio.h>
25 #include <string.h>
26 #include <tee_api_types.h>
27 #include <tee/uuid.h>
28 #include <trace.h>
29 #include <types_ext.h>
30 #include <utee_defines.h>
31 #include <util.h>
32 #include <zlib.h>
33 
34 #define BOUNCE_BUFFER_SIZE		4096
35 
36 #define SP_MANIFEST_ATTR_READ		BIT(0)
37 #define SP_MANIFEST_ATTR_WRITE		BIT(1)
38 #define SP_MANIFEST_ATTR_EXEC		BIT(2)
39 #define SP_MANIFEST_ATTR_NSEC		BIT(3)
40 
41 #define SP_MANIFEST_ATTR_RO		(SP_MANIFEST_ATTR_READ)
42 #define SP_MANIFEST_ATTR_RW		(SP_MANIFEST_ATTR_READ | \
43 					 SP_MANIFEST_ATTR_WRITE)
44 #define SP_MANIFEST_ATTR_RX		(SP_MANIFEST_ATTR_READ | \
45 					 SP_MANIFEST_ATTR_EXEC)
46 #define SP_MANIFEST_ATTR_RWX		(SP_MANIFEST_ATTR_READ  | \
47 					 SP_MANIFEST_ATTR_WRITE | \
48 					 SP_MANIFEST_ATTR_EXEC)
49 
50 #define SP_MANIFEST_FLAG_NOBITS	BIT(0)
51 
52 #define SP_MANIFEST_NS_INT_QUEUED	(0x0)
53 #define SP_MANIFEST_NS_INT_MANAGED_EXIT	(0x1)
54 #define SP_MANIFEST_NS_INT_SIGNALED	(0x2)
55 
56 #define SP_MANIFEST_EXEC_STATE_AARCH64	(0x0)
57 #define SP_MANIFEST_EXEC_STATE_AARCH32	(0x1)
58 
59 #define SP_MANIFEST_DIRECT_REQ_RECEIVE	BIT(0)
60 #define SP_MANIFEST_DIRECT_REQ_SEND	BIT(1)
61 #define SP_MANIFEST_INDIRECT_REQ	BIT(2)
62 
63 #define SP_MANIFEST_VM_CREATED_MSG	BIT(0)
64 #define SP_MANIFEST_VM_DESTROYED_MSG	BIT(1)
65 
66 #define SP_PKG_HEADER_MAGIC (0x474b5053)
67 #define SP_PKG_HEADER_VERSION_V1 (0x1)
68 #define SP_PKG_HEADER_VERSION_V2 (0x2)
69 
70 struct sp_pkg_header {
71 	uint32_t magic;
72 	uint32_t version;
73 	uint32_t pm_offset;
74 	uint32_t pm_size;
75 	uint32_t img_offset;
76 	uint32_t img_size;
77 };
78 
79 struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list);
80 
81 static const struct ts_ops sp_ops;
82 
83 /* List that holds all of the loaded SP's */
84 static struct sp_sessions_head open_sp_sessions =
85 	TAILQ_HEAD_INITIALIZER(open_sp_sessions);
86 
87 static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid)
88 {
89 	const struct sp_image *sp = NULL;
90 	const struct fip_sp *fip_sp = NULL;
91 
92 	for_each_secure_partition(sp) {
93 		if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid)))
94 			return &sp->image;
95 	}
96 
97 	for_each_fip_sp(fip_sp) {
98 		if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid)))
99 			return &fip_sp->sp_img.image;
100 	}
101 
102 	return NULL;
103 }
104 
105 bool is_sp_ctx(struct ts_ctx *ctx)
106 {
107 	return ctx && (ctx->ops == &sp_ops);
108 }
109 
110 static void set_sp_ctx_ops(struct ts_ctx *ctx)
111 {
112 	ctx->ops = &sp_ops;
113 }
114 
115 struct sp_session *sp_get_session(uint32_t session_id)
116 {
117 	struct sp_session *s = NULL;
118 
119 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
120 		if (s->endpoint_id == session_id)
121 			return s;
122 	}
123 
124 	return NULL;
125 }
126 
127 TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size,
128 				 const TEE_UUID *ffa_uuid, size_t *elem_count,
129 				 bool count_only)
130 {
131 	TEE_Result res = TEE_SUCCESS;
132 	struct sp_session *s = NULL;
133 
134 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
135 		if (ffa_uuid &&
136 		    memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)))
137 			continue;
138 
139 		if (s->state == sp_dead)
140 			continue;
141 		if (!count_only && !res) {
142 			uint32_t uuid_words[4] = { 0 };
143 
144 			tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid);
145 			res = spmc_fill_partition_entry(ffa_vers, buf, buf_size,
146 							*elem_count,
147 							s->endpoint_id, 1,
148 							s->props, uuid_words);
149 		}
150 		*elem_count += 1;
151 	}
152 
153 	return res;
154 }
155 
156 bool sp_has_exclusive_access(struct sp_mem_map_region *mem,
157 			     struct user_mode_ctx *uctx)
158 {
159 	/*
160 	 * Check that we have access to the region if it is supposed to be
161 	 * mapped to the current context.
162 	 */
163 	if (uctx) {
164 		struct vm_region *region = NULL;
165 
166 		/* Make sure that each mobj belongs to the SP */
167 		TAILQ_FOREACH(region, &uctx->vm_info.regions, link) {
168 			if (region->mobj == mem->mobj)
169 				break;
170 		}
171 
172 		if (!region)
173 			return false;
174 	}
175 
176 	/* Check that it is not shared with another SP */
177 	return !sp_mem_is_shared(mem);
178 }
179 
180 static bool endpoint_id_is_valid(uint32_t id)
181 {
182 	/*
183 	 * These IDs are assigned at the SPMC init so already have valid values
184 	 * by the time this function gets first called
185 	 */
186 	return id != spmd_id && id != spmc_id && id != optee_endpoint_id &&
187 	       id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX;
188 }
189 
190 static TEE_Result new_session_id(uint16_t *endpoint_id)
191 {
192 	uint32_t id = 0;
193 
194 	/* Find the first available endpoint id */
195 	for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) {
196 		if (endpoint_id_is_valid(id) && !sp_get_session(id)) {
197 			*endpoint_id = id;
198 			return TEE_SUCCESS;
199 		}
200 	}
201 
202 	return TEE_ERROR_BAD_FORMAT;
203 }
204 
205 static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s)
206 {
207 	TEE_Result res = TEE_SUCCESS;
208 	struct sp_ctx *spc = NULL;
209 
210 	/* Register context */
211 	spc = calloc(1, sizeof(struct sp_ctx));
212 	if (!spc)
213 		return TEE_ERROR_OUT_OF_MEMORY;
214 
215 	spc->open_session = s;
216 	s->ts_sess.ctx = &spc->ts_ctx;
217 	spc->ts_ctx.uuid = *bin_uuid;
218 
219 	res = vm_info_init(&spc->uctx, &spc->ts_ctx);
220 	if (res)
221 		goto err;
222 
223 	set_sp_ctx_ops(&spc->ts_ctx);
224 
225 	return TEE_SUCCESS;
226 
227 err:
228 	free(spc);
229 	return res;
230 }
231 
232 /*
233  * Insert a new sp_session to the sessions list, so that it is ordered
234  * by boot_order.
235  */
236 static void insert_session_ordered(struct sp_sessions_head *open_sessions,
237 				   struct sp_session *session)
238 {
239 	struct sp_session *s = NULL;
240 
241 	if (!open_sessions || !session)
242 		return;
243 
244 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
245 		if (s->boot_order > session->boot_order)
246 			break;
247 	}
248 
249 	if (!s)
250 		TAILQ_INSERT_TAIL(open_sessions, session, link);
251 	else
252 		TAILQ_INSERT_BEFORE(s, session, link);
253 }
254 
255 static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions,
256 				    const TEE_UUID *bin_uuid,
257 				    const uint32_t boot_order,
258 				    struct sp_session **sess)
259 {
260 	TEE_Result res = TEE_SUCCESS;
261 	struct sp_session *s = calloc(1, sizeof(struct sp_session));
262 
263 	if (!s)
264 		return TEE_ERROR_OUT_OF_MEMORY;
265 
266 	s->boot_order = boot_order;
267 
268 	/* Other properties are filled later, based on the SP's manifest */
269 	s->props = FFA_PART_PROP_IS_PE_ID;
270 
271 	res = new_session_id(&s->endpoint_id);
272 	if (res)
273 		goto err;
274 
275 	DMSG("Loading Secure Partition %pUl", (void *)bin_uuid);
276 	res = sp_create_ctx(bin_uuid, s);
277 	if (res)
278 		goto err;
279 
280 	insert_session_ordered(open_sessions, s);
281 	*sess = s;
282 	return TEE_SUCCESS;
283 
284 err:
285 	free(s);
286 	return res;
287 }
288 
289 static TEE_Result sp_init_set_registers(struct sp_ctx *ctx)
290 {
291 	struct thread_ctx_regs *sp_regs = &ctx->sp_regs;
292 
293 	memset(sp_regs, 0, sizeof(*sp_regs));
294 	sp_regs->sp = ctx->uctx.stack_ptr;
295 	sp_regs->pc = ctx->uctx.entry_func;
296 
297 	return TEE_SUCCESS;
298 }
299 
300 TEE_Result sp_map_shared(struct sp_session *s,
301 			 struct sp_mem_receiver *receiver,
302 			 struct sp_mem *smem,
303 			 uint64_t *va)
304 {
305 	TEE_Result res = TEE_SUCCESS;
306 	struct sp_ctx *ctx = NULL;
307 	uint32_t perm = TEE_MATTR_UR;
308 	struct sp_mem_map_region *reg = NULL;
309 
310 	ctx = to_sp_ctx(s->ts_sess.ctx);
311 
312 	/* Get the permission */
313 	if (receiver->perm.perm & FFA_MEM_ACC_EXE)
314 		perm |= TEE_MATTR_UX;
315 
316 	if (receiver->perm.perm & FFA_MEM_ACC_RW) {
317 		if (receiver->perm.perm & FFA_MEM_ACC_EXE)
318 			return TEE_ERROR_ACCESS_CONFLICT;
319 
320 		perm |= TEE_MATTR_UW;
321 	}
322 	/*
323 	 * Currently we don't support passing a va. We can't guarantee that the
324 	 * full region will be mapped in a contiguous region. A smem->region can
325 	 * have multiple mobj for one share. Currently there doesn't seem to be
326 	 * an option to guarantee that these will be mapped in a contiguous va
327 	 * space.
328 	 */
329 	if (*va)
330 		return TEE_ERROR_NOT_SUPPORTED;
331 
332 	SLIST_FOREACH(reg, &smem->regions, link) {
333 		res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE,
334 			     perm, 0, reg->mobj, reg->page_offset);
335 
336 		if (res != TEE_SUCCESS) {
337 			EMSG("Failed to map memory region %#"PRIx32, res);
338 			return res;
339 		}
340 	}
341 	return TEE_SUCCESS;
342 }
343 
344 TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem)
345 {
346 	TEE_Result res = TEE_SUCCESS;
347 	vaddr_t vaddr = 0;
348 	size_t len = 0;
349 	struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx);
350 	struct sp_mem_map_region *reg = NULL;
351 
352 	SLIST_FOREACH(reg, &smem->regions, link) {
353 		vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset,
354 					       reg->mobj);
355 		len = reg->page_count * SMALL_PAGE_SIZE;
356 
357 		res = vm_unmap(&ctx->uctx, vaddr, len);
358 		if (res != TEE_SUCCESS)
359 			return res;
360 	}
361 
362 	return TEE_SUCCESS;
363 }
364 
365 static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property,
366 				uint64_t *value)
367 {
368 	const fdt64_t *p = NULL;
369 	int len = 0;
370 
371 	p = fdt_getprop(fdt, node, property, &len);
372 	if (!p)
373 		return TEE_ERROR_ITEM_NOT_FOUND;
374 
375 	if (len != sizeof(*p))
376 		return TEE_ERROR_BAD_FORMAT;
377 
378 	*value = fdt64_ld(p);
379 
380 	return TEE_SUCCESS;
381 }
382 
383 static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property,
384 				uint32_t *value)
385 {
386 	const fdt32_t *p = NULL;
387 	int len = 0;
388 
389 	p = fdt_getprop(fdt, node, property, &len);
390 	if (!p)
391 		return TEE_ERROR_ITEM_NOT_FOUND;
392 
393 	if (len != sizeof(*p))
394 		return TEE_ERROR_BAD_FORMAT;
395 
396 	*value = fdt32_to_cpu(*p);
397 
398 	return TEE_SUCCESS;
399 }
400 
401 static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property,
402 				uint16_t *value)
403 {
404 	const fdt16_t *p = NULL;
405 	int len = 0;
406 
407 	p = fdt_getprop(fdt, node, property, &len);
408 	if (!p)
409 		return TEE_ERROR_ITEM_NOT_FOUND;
410 
411 	if (len != sizeof(*p))
412 		return TEE_ERROR_BAD_FORMAT;
413 
414 	*value = fdt16_to_cpu(*p);
415 
416 	return TEE_SUCCESS;
417 }
418 
419 static TEE_Result sp_dt_get_uuid(const void *fdt, int node,
420 				 const char *property, TEE_UUID *uuid)
421 {
422 	uint32_t uuid_array[4] = { 0 };
423 	const fdt32_t *p = NULL;
424 	int len = 0;
425 	int i = 0;
426 
427 	p = fdt_getprop(fdt, node, property, &len);
428 	if (!p)
429 		return TEE_ERROR_ITEM_NOT_FOUND;
430 
431 	if (len != sizeof(TEE_UUID))
432 		return TEE_ERROR_BAD_FORMAT;
433 
434 	for (i = 0; i < 4; i++)
435 		uuid_array[i] = fdt32_to_cpu(p[i]);
436 
437 	tee_uuid_from_octets(uuid, (uint8_t *)uuid_array);
438 
439 	return TEE_SUCCESS;
440 }
441 
442 static TEE_Result sp_is_elf_format(const void *fdt, int sp_node,
443 				   bool *is_elf_format)
444 {
445 	TEE_Result res = TEE_SUCCESS;
446 	uint32_t elf_format = 0;
447 
448 	res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format);
449 	if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND)
450 		return res;
451 
452 	*is_elf_format = (elf_format != 0);
453 
454 	return TEE_SUCCESS;
455 }
456 
457 static TEE_Result sp_binary_open(const TEE_UUID *uuid,
458 				 const struct ts_store_ops **ops,
459 				 struct ts_store_handle **handle)
460 {
461 	TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND;
462 
463 	SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) {
464 		res = (*ops)->open(uuid, handle);
465 		if (res != TEE_ERROR_ITEM_NOT_FOUND &&
466 		    res != TEE_ERROR_STORAGE_NOT_AVAILABLE)
467 			break;
468 	}
469 
470 	return res;
471 }
472 
473 static TEE_Result load_binary_sp(struct ts_session *s,
474 				 struct user_mode_ctx *uctx)
475 {
476 	size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0;
477 	size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE);
478 	size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE;
479 	const struct ts_store_ops *store_ops = NULL;
480 	struct ts_store_handle *handle = NULL;
481 	TEE_Result res = TEE_SUCCESS;
482 	tee_mm_entry_t *mm = NULL;
483 	struct fobj *fobj = NULL;
484 	struct mobj *mobj = NULL;
485 	uaddr_t base_addr = 0;
486 	uint32_t vm_flags = 0;
487 	unsigned int idx = 0;
488 	vaddr_t va = 0;
489 
490 	if (!s || !uctx)
491 		return TEE_ERROR_BAD_PARAMETERS;
492 
493 	DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid);
494 
495 	/* Initialize the bounce buffer */
496 	fobj = fobj_sec_mem_alloc(bb_num_pages);
497 	mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
498 	fobj_put(fobj);
499 	if (!mobj)
500 		return TEE_ERROR_OUT_OF_MEMORY;
501 
502 	res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0);
503 	mobj_put(mobj);
504 	if (res)
505 		return res;
506 
507 	uctx->bbuf = (uint8_t *)va;
508 	uctx->bbuf_size = BOUNCE_BUFFER_SIZE;
509 
510 	vm_set_ctx(uctx->ts_ctx);
511 
512 	/* Find TS store and open SP binary */
513 	res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle);
514 	if (res != TEE_SUCCESS) {
515 		EMSG("Failed to open SP binary");
516 		return res;
517 	}
518 
519 	/* Query binary size and calculate page count */
520 	res = store_ops->get_size(handle, &bin_size);
521 	if (res != TEE_SUCCESS)
522 		goto err;
523 
524 	if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) {
525 		res = TEE_ERROR_OVERFLOW;
526 		goto err;
527 	}
528 
529 	bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE;
530 
531 	/* Allocate memory */
532 	mm = tee_mm_alloc(&tee_mm_sec_ddr, bin_size_rounded);
533 	if (!mm) {
534 		res = TEE_ERROR_OUT_OF_MEMORY;
535 		goto err;
536 	}
537 
538 	base_addr = tee_mm_get_smem(mm);
539 
540 	/* Create mobj */
541 	mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true);
542 	if (!mobj) {
543 		res = TEE_ERROR_OUT_OF_MEMORY;
544 		goto err_free_tee_mm;
545 	}
546 
547 	res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count);
548 	if (res)
549 		goto err_free_mobj;
550 
551 	/* Map memory area for the SP binary */
552 	va = 0;
553 	res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX,
554 		     vm_flags, mobj, 0);
555 	if (res)
556 		goto err_free_mobj;
557 
558 	/* Read SP binary into the previously mapped memory area */
559 	res = store_ops->read(handle, NULL, (void *)va, bin_size);
560 	if (res)
561 		goto err_unmap;
562 
563 	/* Set memory protection to allow execution */
564 	res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX);
565 	if (res)
566 		goto err_unmap;
567 
568 	mobj_put(mobj);
569 	store_ops->close(handle);
570 
571 	/* The entry point must be at the beginning of the SP binary. */
572 	uctx->entry_func = va;
573 	uctx->load_addr = va;
574 	uctx->is_32bit = false;
575 
576 	s->handle_scall = s->ctx->ops->handle_scall;
577 
578 	return TEE_SUCCESS;
579 
580 err_unmap:
581 	vm_unmap(uctx, va, bin_size_rounded);
582 
583 err_free_mobj:
584 	mobj_put(mobj);
585 
586 err_free_tee_mm:
587 	tee_mm_free(mm);
588 
589 err:
590 	store_ops->close(handle);
591 
592 	return res;
593 }
594 
595 static TEE_Result sp_open_session(struct sp_session **sess,
596 				  struct sp_sessions_head *open_sessions,
597 				  const TEE_UUID *ffa_uuid,
598 				  const TEE_UUID *bin_uuid,
599 				  const uint32_t boot_order,
600 				  const void *fdt)
601 {
602 	TEE_Result res = TEE_SUCCESS;
603 	struct sp_session *s = NULL;
604 	struct sp_ctx *ctx = NULL;
605 	bool is_elf_format = false;
606 
607 	if (!find_secure_partition(bin_uuid))
608 		return TEE_ERROR_ITEM_NOT_FOUND;
609 
610 	res = sp_create_session(open_sessions, bin_uuid, boot_order, &s);
611 	if (res != TEE_SUCCESS) {
612 		DMSG("sp_create_session failed %#"PRIx32, res);
613 		return res;
614 	}
615 
616 	ctx = to_sp_ctx(s->ts_sess.ctx);
617 	assert(ctx);
618 	if (!ctx)
619 		return TEE_ERROR_TARGET_DEAD;
620 	*sess = s;
621 
622 	ts_push_current_session(&s->ts_sess);
623 
624 	res = sp_is_elf_format(fdt, 0, &is_elf_format);
625 	if (res == TEE_SUCCESS) {
626 		if (is_elf_format) {
627 			/* Load the SP using ldelf. */
628 			ldelf_load_ldelf(&ctx->uctx);
629 			res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx);
630 		} else {
631 			/* Raw binary format SP */
632 			res = load_binary_sp(&s->ts_sess, &ctx->uctx);
633 		}
634 	} else {
635 		EMSG("Failed to detect SP format");
636 	}
637 
638 	if (res != TEE_SUCCESS) {
639 		EMSG("Failed loading SP  %#"PRIx32, res);
640 		ts_pop_current_session();
641 		return TEE_ERROR_TARGET_DEAD;
642 	}
643 
644 	/*
645 	 * Make the SP ready for its first run.
646 	 * Set state to busy to prevent other endpoints from sending messages to
647 	 * the SP before its boot phase is done.
648 	 */
649 	s->state = sp_busy;
650 	s->caller_id = 0;
651 	sp_init_set_registers(ctx);
652 	memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid));
653 	ts_pop_current_session();
654 
655 	return TEE_SUCCESS;
656 }
657 
658 static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid)
659 {
660 	const struct fdt_property *description = NULL;
661 	int description_name_len = 0;
662 
663 	if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) {
664 		EMSG("Failed loading SP, manifest not found");
665 		return TEE_ERROR_BAD_PARAMETERS;
666 	}
667 
668 	description = fdt_get_property(fdt, 0, "description",
669 				       &description_name_len);
670 	if (description)
671 		DMSG("Loading SP: %s", description->data);
672 
673 	if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) {
674 		EMSG("Missing or invalid UUID in SP manifest");
675 		return TEE_ERROR_BAD_FORMAT;
676 	}
677 
678 	return TEE_SUCCESS;
679 }
680 
681 static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt,
682 				   void **fdt_copy, size_t *mapped_size)
683 {
684 	size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE);
685 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
686 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
687 	TEE_Result res = TEE_SUCCESS;
688 	struct mobj *m = NULL;
689 	struct fobj *f = NULL;
690 	vaddr_t va = 0;
691 
692 	f = fobj_sec_mem_alloc(num_pages);
693 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
694 	fobj_put(f);
695 	if (!m)
696 		return TEE_ERROR_OUT_OF_MEMORY;
697 
698 	res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0);
699 	mobj_put(m);
700 	if (res)
701 		return res;
702 
703 	if (fdt_open_into(fdt, (void *)va, total_size))
704 		return TEE_ERROR_GENERIC;
705 
706 	*fdt_copy = (void *)va;
707 	*mapped_size = total_size;
708 
709 	return res;
710 }
711 
712 static void fill_boot_info_1_0(vaddr_t buf, const void *fdt)
713 {
714 	struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf;
715 	static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0";
716 
717 	memcpy(&info->magic, "FF-A", 4);
718 	info->count = 1;
719 
720 	COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name));
721 	memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name));
722 	info->nvp[0].value = (uintptr_t)fdt;
723 	info->nvp[0].size = fdt_totalsize(fdt);
724 }
725 
726 static void fill_boot_info_1_1(vaddr_t buf, const void *fdt)
727 {
728 	size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8);
729 	struct ffa_boot_info_header_1_1 *header =
730 		(struct ffa_boot_info_header_1_1 *)buf;
731 	struct ffa_boot_info_1_1 *desc =
732 		(struct ffa_boot_info_1_1 *)(buf + desc_offs);
733 
734 	header->signature = FFA_BOOT_INFO_SIGNATURE;
735 	header->version = FFA_BOOT_INFO_VERSION;
736 	header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1);
737 	header->desc_size = sizeof(struct ffa_boot_info_1_1);
738 	header->desc_count = 1;
739 	header->desc_offset = desc_offs;
740 
741 	memset(&desc[0].name, 0, sizeof(desc[0].name));
742 	/* Type: Standard boot info (bit[7] == 0), FDT type */
743 	desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT;
744 	/* Flags: Contents field contains an address */
745 	desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR <<
746 			FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
747 	desc[0].size = fdt_totalsize(fdt);
748 	desc[0].contents = (uintptr_t)fdt;
749 }
750 
751 static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt,
752 					   struct thread_smc_args *args,
753 					   vaddr_t *va, size_t *mapped_size,
754 					   uint32_t sp_ffa_version)
755 {
756 	size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE);
757 	size_t num_pages = total_size / SMALL_PAGE_SIZE;
758 	uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW;
759 	TEE_Result res = TEE_SUCCESS;
760 	struct fobj *f = NULL;
761 	struct mobj *m = NULL;
762 	uint32_t info_reg = 0;
763 
764 	f = fobj_sec_mem_alloc(num_pages);
765 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
766 	fobj_put(f);
767 	if (!m)
768 		return TEE_ERROR_OUT_OF_MEMORY;
769 
770 	res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0);
771 	mobj_put(m);
772 	if (res)
773 		return res;
774 
775 	*mapped_size = total_size;
776 
777 	switch (sp_ffa_version) {
778 	case MAKE_FFA_VERSION(1, 0):
779 		fill_boot_info_1_0(*va, fdt);
780 		break;
781 	case MAKE_FFA_VERSION(1, 1):
782 		fill_boot_info_1_1(*va, fdt);
783 		break;
784 	default:
785 		EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version);
786 		return TEE_ERROR_NOT_SUPPORTED;
787 	}
788 
789 	res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg);
790 	if (res) {
791 		if (res == TEE_ERROR_ITEM_NOT_FOUND) {
792 			/* If the property is not present, set default to x0 */
793 			info_reg = 0;
794 		} else {
795 			return TEE_ERROR_BAD_FORMAT;
796 		}
797 	}
798 
799 	switch (info_reg) {
800 	case 0:
801 		args->a0 = *va;
802 		break;
803 	case 1:
804 		args->a1 = *va;
805 		break;
806 	case 2:
807 		args->a2 = *va;
808 		break;
809 	case 3:
810 		args->a3 = *va;
811 		break;
812 	default:
813 		EMSG("Invalid register selected for passing boot info");
814 		return TEE_ERROR_BAD_FORMAT;
815 	}
816 
817 	return TEE_SUCCESS;
818 }
819 
820 static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx,
821 						       const void *fdt)
822 {
823 	int node = 0;
824 	int subnode = 0;
825 	tee_mm_entry_t *mm = NULL;
826 	TEE_Result res = TEE_SUCCESS;
827 
828 	/*
829 	 * Memory regions are optional in the SP manifest, it's not an error if
830 	 * we don't find any.
831 	 */
832 	node = fdt_node_offset_by_compatible(fdt, 0,
833 					     "arm,ffa-manifest-memory-regions");
834 	if (node < 0)
835 		return TEE_SUCCESS;
836 
837 	fdt_for_each_subnode(subnode, fdt, node) {
838 		uint64_t load_rel_offset = 0;
839 		uint32_t attributes = 0;
840 		uint64_t base_addr = 0;
841 		uint32_t pages_cnt = 0;
842 		uint32_t flags = 0;
843 		uint32_t perm = 0;
844 		size_t size = 0;
845 		vaddr_t va = 0;
846 
847 		mm = NULL;
848 
849 		/* Load address relative offset of a memory region */
850 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
851 				   &load_rel_offset)) {
852 			va = ctx->uctx.load_addr + load_rel_offset;
853 		} else {
854 			/* Skip non load address relative memory regions */
855 			continue;
856 		}
857 
858 		if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
859 			EMSG("Both base-address and load-address-relative-offset fields are set");
860 			return TEE_ERROR_BAD_FORMAT;
861 		}
862 
863 		/* Size of memory region as count of 4K pages */
864 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
865 			EMSG("Mandatory field is missing: pages-count");
866 			return TEE_ERROR_BAD_FORMAT;
867 		}
868 
869 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
870 			return TEE_ERROR_OVERFLOW;
871 
872 		/* Memory region attributes  */
873 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
874 			EMSG("Mandatory field is missing: attributes");
875 			return TEE_ERROR_BAD_FORMAT;
876 		}
877 
878 		/* Check instruction and data access permissions */
879 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
880 		case SP_MANIFEST_ATTR_RO:
881 			perm = TEE_MATTR_UR;
882 			break;
883 		case SP_MANIFEST_ATTR_RW:
884 			perm = TEE_MATTR_URW;
885 			break;
886 		case SP_MANIFEST_ATTR_RX:
887 			perm = TEE_MATTR_URX;
888 			break;
889 		default:
890 			EMSG("Invalid memory access permissions");
891 			return TEE_ERROR_BAD_FORMAT;
892 		}
893 
894 		res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags);
895 		if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) {
896 			EMSG("Optional field with invalid value: flags");
897 			return TEE_ERROR_BAD_FORMAT;
898 		}
899 
900 		/* Load relative regions must be secure */
901 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
902 			EMSG("Invalid memory security attribute");
903 			return TEE_ERROR_BAD_FORMAT;
904 		}
905 
906 		if (flags & SP_MANIFEST_FLAG_NOBITS) {
907 			/*
908 			 * NOBITS flag is set, which means that loaded binary
909 			 * doesn't contain this area, so it's need to be
910 			 * allocated.
911 			 */
912 			struct mobj *m = NULL;
913 			unsigned int idx = 0;
914 
915 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
916 			if (!mm)
917 				return TEE_ERROR_OUT_OF_MEMORY;
918 
919 			base_addr = tee_mm_get_smem(mm);
920 
921 			m = sp_mem_new_mobj(pages_cnt,
922 					    TEE_MATTR_MEM_TYPE_CACHED, true);
923 			if (!m) {
924 				res = TEE_ERROR_OUT_OF_MEMORY;
925 				goto err_mm_free;
926 			}
927 
928 			res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
929 			if (res) {
930 				mobj_put(m);
931 				goto err_mm_free;
932 			}
933 
934 			res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
935 			mobj_put(m);
936 			if (res)
937 				goto err_mm_free;
938 		} else {
939 			/*
940 			 * If NOBITS is not present the memory area is already
941 			 * mapped and only need to set the correct permissions.
942 			 */
943 			res = vm_set_prot(&ctx->uctx, va, size, perm);
944 			if (res)
945 				return res;
946 		}
947 	}
948 
949 	return TEE_SUCCESS;
950 
951 err_mm_free:
952 	tee_mm_free(mm);
953 	return res;
954 }
955 
956 static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt)
957 {
958 	int node = 0;
959 	int subnode = 0;
960 	TEE_Result res = TEE_SUCCESS;
961 	const char *dt_device_match_table = {
962 		"arm,ffa-manifest-device-regions",
963 	};
964 
965 	/*
966 	 * Device regions are optional in the SP manifest, it's not an error if
967 	 * we don't find any
968 	 */
969 	node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table);
970 	if (node < 0)
971 		return TEE_SUCCESS;
972 
973 	fdt_for_each_subnode(subnode, fdt, node) {
974 		uint64_t base_addr = 0;
975 		uint32_t pages_cnt = 0;
976 		uint32_t attributes = 0;
977 		struct mobj *m = NULL;
978 		bool is_secure = true;
979 		uint32_t perm = 0;
980 		vaddr_t va = 0;
981 		unsigned int idx = 0;
982 
983 		/*
984 		 * Physical base address of a device MMIO region.
985 		 * Currently only physically contiguous region is supported.
986 		 */
987 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) {
988 			EMSG("Mandatory field is missing: base-address");
989 			return TEE_ERROR_BAD_FORMAT;
990 		}
991 
992 		/* Total size of MMIO region as count of 4K pages */
993 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
994 			EMSG("Mandatory field is missing: pages-count");
995 			return TEE_ERROR_BAD_FORMAT;
996 		}
997 
998 		/* Data access, instruction access and security attributes */
999 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1000 			EMSG("Mandatory field is missing: attributes");
1001 			return TEE_ERROR_BAD_FORMAT;
1002 		}
1003 
1004 		/* Check instruction and data access permissions */
1005 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1006 		case SP_MANIFEST_ATTR_RO:
1007 			perm = TEE_MATTR_UR;
1008 			break;
1009 		case SP_MANIFEST_ATTR_RW:
1010 			perm = TEE_MATTR_URW;
1011 			break;
1012 		default:
1013 			EMSG("Invalid memory access permissions");
1014 			return TEE_ERROR_BAD_FORMAT;
1015 		}
1016 
1017 		/*
1018 		 * The SP is a secure endpoint, security attribute can be
1019 		 * secure or non-secure
1020 		 */
1021 		if (attributes & SP_MANIFEST_ATTR_NSEC)
1022 			is_secure = false;
1023 
1024 		/* Memory attributes must be Device-nGnRnE */
1025 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O,
1026 				    is_secure);
1027 		if (!m)
1028 			return TEE_ERROR_OUT_OF_MEMORY;
1029 
1030 		res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt);
1031 		if (res) {
1032 			mobj_put(m);
1033 			return res;
1034 		}
1035 
1036 		res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE,
1037 			     perm, 0, m, 0);
1038 		mobj_put(m);
1039 		if (res)
1040 			return res;
1041 
1042 		/*
1043 		 * Overwrite the device region's PA in the fdt with the VA. This
1044 		 * fdt will be passed to the SP.
1045 		 */
1046 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1047 
1048 		/*
1049 		 * Unmap the region if the overwrite failed since the SP won't
1050 		 * be able to access it without knowing the VA.
1051 		 */
1052 		if (res) {
1053 			vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE);
1054 			return res;
1055 		}
1056 	}
1057 
1058 	return TEE_SUCCESS;
1059 }
1060 
1061 static TEE_Result swap_sp_endpoints(uint32_t endpoint_id,
1062 				    uint32_t new_endpoint_id)
1063 {
1064 	struct sp_session *session = sp_get_session(endpoint_id);
1065 	uint32_t manifest_endpoint_id = 0;
1066 
1067 	/*
1068 	 * We don't know in which order the SPs are loaded. The endpoint ID
1069 	 * defined in the manifest could already be generated by
1070 	 * new_session_id() and used by another SP. If this is the case, we swap
1071 	 * the ID's of the two SPs. We also have to make sure that the ID's are
1072 	 * not defined twice in the manifest.
1073 	 */
1074 
1075 	/* The endpoint ID was not assigned yet */
1076 	if (!session)
1077 		return TEE_SUCCESS;
1078 
1079 	/*
1080 	 * Read the manifest file from the SP who originally had the endpoint.
1081 	 * We can safely swap the endpoint ID's if the manifest file doesn't
1082 	 * have an endpoint ID defined.
1083 	 */
1084 	if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) {
1085 		assert(manifest_endpoint_id == endpoint_id);
1086 		EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id);
1087 		return TEE_ERROR_ACCESS_CONFLICT;
1088 	}
1089 
1090 	session->endpoint_id = new_endpoint_id;
1091 
1092 	return TEE_SUCCESS;
1093 }
1094 
1095 static TEE_Result read_manifest_endpoint_id(struct sp_session *s)
1096 {
1097 	uint32_t endpoint_id = 0;
1098 
1099 	/*
1100 	 * The endpoint ID can be optionally defined in the manifest file. We
1101 	 * have to map the ID inside the manifest to the SP if it's defined.
1102 	 * If not, the endpoint ID generated inside new_session_id() will be
1103 	 * used.
1104 	 */
1105 	if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) {
1106 		TEE_Result res = TEE_ERROR_GENERIC;
1107 
1108 		if (!endpoint_id_is_valid(endpoint_id)) {
1109 			EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id);
1110 			return TEE_ERROR_BAD_FORMAT;
1111 		}
1112 
1113 		res = swap_sp_endpoints(endpoint_id, s->endpoint_id);
1114 		if (res)
1115 			return res;
1116 
1117 		DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest",
1118 		     endpoint_id);
1119 		/* Assign the endpoint ID to the current SP */
1120 		s->endpoint_id = endpoint_id;
1121 	}
1122 	return TEE_SUCCESS;
1123 }
1124 
1125 static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt)
1126 {
1127 	int node = 0;
1128 	int subnode = 0;
1129 	tee_mm_entry_t *mm = NULL;
1130 	TEE_Result res = TEE_SUCCESS;
1131 
1132 	/*
1133 	 * Memory regions are optional in the SP manifest, it's not an error if
1134 	 * we don't find any.
1135 	 */
1136 	node = fdt_node_offset_by_compatible(fdt, 0,
1137 					     "arm,ffa-manifest-memory-regions");
1138 	if (node < 0)
1139 		return TEE_SUCCESS;
1140 
1141 	fdt_for_each_subnode(subnode, fdt, node) {
1142 		uint64_t load_rel_offset = 0;
1143 		bool alloc_needed = false;
1144 		uint32_t attributes = 0;
1145 		uint64_t base_addr = 0;
1146 		uint32_t pages_cnt = 0;
1147 		bool is_secure = true;
1148 		struct mobj *m = NULL;
1149 		unsigned int idx = 0;
1150 		uint32_t perm = 0;
1151 		size_t size = 0;
1152 		vaddr_t va = 0;
1153 
1154 		mm = NULL;
1155 
1156 		/* Load address relative offset of a memory region */
1157 		if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset",
1158 				   &load_rel_offset)) {
1159 			/*
1160 			 * At this point the memory region is already mapped by
1161 			 * handle_fdt_load_relative_mem_regions.
1162 			 * Only need to set the base-address in the manifest and
1163 			 * then skip the rest of the mapping process.
1164 			 */
1165 			va = ctx->uctx.load_addr + load_rel_offset;
1166 			res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1167 			if (res)
1168 				return res;
1169 
1170 			continue;
1171 		}
1172 
1173 		/*
1174 		 * Base address of a memory region.
1175 		 * If not present, we have to allocate the specified memory.
1176 		 * If present, this field could specify a PA or VA. Currently
1177 		 * only a PA is supported.
1178 		 */
1179 		if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr))
1180 			alloc_needed = true;
1181 
1182 		/* Size of memory region as count of 4K pages */
1183 		if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) {
1184 			EMSG("Mandatory field is missing: pages-count");
1185 			return TEE_ERROR_BAD_FORMAT;
1186 		}
1187 
1188 		if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size))
1189 			return TEE_ERROR_OVERFLOW;
1190 
1191 		/*
1192 		 * Memory region attributes:
1193 		 * - Instruction/data access permissions
1194 		 * - Cacheability/shareability attributes
1195 		 * - Security attributes
1196 		 *
1197 		 * Cacheability/shareability attributes can be ignored for now.
1198 		 * OP-TEE only supports a single type for normal cached memory
1199 		 * and currently there is no use case that would require to
1200 		 * change this.
1201 		 */
1202 		if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) {
1203 			EMSG("Mandatory field is missing: attributes");
1204 			return TEE_ERROR_BAD_FORMAT;
1205 		}
1206 
1207 		/* Check instruction and data access permissions */
1208 		switch (attributes & SP_MANIFEST_ATTR_RWX) {
1209 		case SP_MANIFEST_ATTR_RO:
1210 			perm = TEE_MATTR_UR;
1211 			break;
1212 		case SP_MANIFEST_ATTR_RW:
1213 			perm = TEE_MATTR_URW;
1214 			break;
1215 		case SP_MANIFEST_ATTR_RX:
1216 			perm = TEE_MATTR_URX;
1217 			break;
1218 		default:
1219 			EMSG("Invalid memory access permissions");
1220 			return TEE_ERROR_BAD_FORMAT;
1221 		}
1222 
1223 		/*
1224 		 * The SP is a secure endpoint, security attribute can be
1225 		 * secure or non-secure.
1226 		 * The SPMC cannot allocate non-secure memory, i.e. if the base
1227 		 * address is missing this attribute must be secure.
1228 		 */
1229 		if (attributes & SP_MANIFEST_ATTR_NSEC) {
1230 			if (alloc_needed) {
1231 				EMSG("Invalid memory security attribute");
1232 				return TEE_ERROR_BAD_FORMAT;
1233 			}
1234 			is_secure = false;
1235 		}
1236 
1237 		if (alloc_needed) {
1238 			/* Base address is missing, we have to allocate */
1239 			mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
1240 			if (!mm)
1241 				return TEE_ERROR_OUT_OF_MEMORY;
1242 
1243 			base_addr = tee_mm_get_smem(mm);
1244 		}
1245 
1246 		m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED,
1247 				    is_secure);
1248 		if (!m) {
1249 			res = TEE_ERROR_OUT_OF_MEMORY;
1250 			goto err_mm_free;
1251 		}
1252 
1253 		res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt);
1254 		if (res) {
1255 			mobj_put(m);
1256 			goto err_mm_free;
1257 		}
1258 
1259 		res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0);
1260 		mobj_put(m);
1261 		if (res)
1262 			goto err_mm_free;
1263 
1264 		/*
1265 		 * Overwrite the memory region's base address in the fdt with
1266 		 * the VA. This fdt will be passed to the SP.
1267 		 * If the base-address field was not present in the original
1268 		 * fdt, this function will create it. This doesn't cause issues
1269 		 * since the necessary extra space has been allocated when
1270 		 * opening the fdt.
1271 		 */
1272 		res = fdt_setprop_u64(fdt, subnode, "base-address", va);
1273 
1274 		/*
1275 		 * Unmap the region if the overwrite failed since the SP won't
1276 		 * be able to access it without knowing the VA.
1277 		 */
1278 		if (res) {
1279 			vm_unmap(&ctx->uctx, va, size);
1280 			goto err_mm_free;
1281 		}
1282 	}
1283 
1284 	return TEE_SUCCESS;
1285 
1286 err_mm_free:
1287 	tee_mm_free(mm);
1288 	return res;
1289 }
1290 
1291 static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt)
1292 {
1293 	uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW;
1294 	uint32_t dummy_size __maybe_unused = 0;
1295 	TEE_Result res = TEE_SUCCESS;
1296 	size_t page_count = 0;
1297 	struct fobj *f = NULL;
1298 	struct mobj *m = NULL;
1299 	vaddr_t log_addr = 0;
1300 	size_t log_size = 0;
1301 	int node = 0;
1302 
1303 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log");
1304 	if (node < 0)
1305 		return TEE_SUCCESS;
1306 
1307 	/* Checking the existence and size of the event log properties */
1308 	if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) {
1309 		EMSG("tpm_event_log_addr not found or has invalid size");
1310 		return TEE_ERROR_BAD_FORMAT;
1311 	}
1312 
1313 	if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) {
1314 		EMSG("tpm_event_log_size not found or has invalid size");
1315 		return TEE_ERROR_BAD_FORMAT;
1316 	}
1317 
1318 	/* Validating event log */
1319 	res = tpm_get_event_log_size(&log_size);
1320 	if (res)
1321 		return res;
1322 
1323 	if (!log_size) {
1324 		EMSG("Empty TPM event log was provided");
1325 		return TEE_ERROR_ITEM_NOT_FOUND;
1326 	}
1327 
1328 	/* Allocating memory area for the event log to share with the SP */
1329 	page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE);
1330 
1331 	f = fobj_sec_mem_alloc(page_count);
1332 	m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED);
1333 	fobj_put(f);
1334 	if (!m)
1335 		return TEE_ERROR_OUT_OF_MEMORY;
1336 
1337 	res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0);
1338 	mobj_put(m);
1339 	if (res)
1340 		return res;
1341 
1342 	/* Copy event log */
1343 	res = tpm_get_event_log((void *)log_addr, &log_size);
1344 	if (res)
1345 		goto err_unmap;
1346 
1347 	/* Setting event log details in the manifest */
1348 	res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr);
1349 	if (res)
1350 		goto err_unmap;
1351 
1352 	res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size);
1353 	if (res)
1354 		goto err_unmap;
1355 
1356 	return TEE_SUCCESS;
1357 
1358 err_unmap:
1359 	vm_unmap(&ctx->uctx, log_addr, log_size);
1360 
1361 	return res;
1362 }
1363 
1364 /*
1365  * Note: this function is called only on the primary CPU. It assumes that the
1366  * features present on the primary CPU are available on all of the secondary
1367  * CPUs as well.
1368  */
1369 static TEE_Result handle_hw_features(void *fdt)
1370 {
1371 	uint32_t val __maybe_unused = 0;
1372 	TEE_Result res = TEE_SUCCESS;
1373 	int node = 0;
1374 
1375 	/*
1376 	 * HW feature descriptions are optional in the SP manifest, it's not an
1377 	 * error if we don't find any.
1378 	 */
1379 	node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features");
1380 	if (node < 0)
1381 		return TEE_SUCCESS;
1382 
1383 	/* Modify the crc32 property only if it's already present */
1384 	if (!sp_dt_get_u32(fdt, node, "crc32", &val)) {
1385 		res = fdt_setprop_u32(fdt, node, "crc32",
1386 				      feat_crc32_implemented());
1387 		if (res)
1388 			return res;
1389 	}
1390 
1391 	return TEE_SUCCESS;
1392 }
1393 
1394 static TEE_Result read_ns_interrupts_action(const void *fdt,
1395 					    struct sp_session *s)
1396 {
1397 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1398 
1399 	res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode);
1400 
1401 	if (res) {
1402 		EMSG("Mandatory property is missing: ns-interrupts-action");
1403 		return res;
1404 	}
1405 
1406 	switch (s->ns_int_mode) {
1407 	case SP_MANIFEST_NS_INT_QUEUED:
1408 	case SP_MANIFEST_NS_INT_SIGNALED:
1409 		/* OK */
1410 		break;
1411 
1412 	case SP_MANIFEST_NS_INT_MANAGED_EXIT:
1413 		EMSG("Managed exit is not implemented");
1414 		return TEE_ERROR_NOT_IMPLEMENTED;
1415 
1416 	default:
1417 		EMSG("Invalid ns-interrupts-action value: %"PRIu32,
1418 		     s->ns_int_mode);
1419 		return TEE_ERROR_BAD_PARAMETERS;
1420 	}
1421 
1422 	return TEE_SUCCESS;
1423 }
1424 
1425 static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s)
1426 {
1427 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1428 	uint32_t ffa_version = 0;
1429 
1430 	res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version);
1431 	if (res) {
1432 		EMSG("Mandatory property is missing: ffa-version");
1433 		return res;
1434 	}
1435 
1436 	if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) {
1437 		EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version);
1438 		return TEE_ERROR_BAD_PARAMETERS;
1439 	}
1440 
1441 	s->rxtx.ffa_vers = ffa_version;
1442 
1443 	return TEE_SUCCESS;
1444 }
1445 
1446 static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s)
1447 {
1448 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1449 	uint32_t exec_state = 0;
1450 
1451 	res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state);
1452 	if (res) {
1453 		EMSG("Mandatory property is missing: execution-state");
1454 		return res;
1455 	}
1456 
1457 	/* Currently only AArch64 SPs are supported */
1458 	if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) {
1459 		s->props |= FFA_PART_PROP_AARCH64_STATE;
1460 	} else {
1461 		EMSG("Invalid execution-state value: %"PRIu32, exec_state);
1462 		return TEE_ERROR_BAD_PARAMETERS;
1463 	}
1464 
1465 	return TEE_SUCCESS;
1466 }
1467 
1468 static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s)
1469 {
1470 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1471 	uint32_t msg_method = 0;
1472 
1473 	res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method);
1474 	if (res) {
1475 		EMSG("Mandatory property is missing: messaging-method");
1476 		return res;
1477 	}
1478 
1479 	if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE)
1480 		s->props |= FFA_PART_PROP_DIRECT_REQ_RECV;
1481 
1482 	if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND)
1483 		s->props |= FFA_PART_PROP_DIRECT_REQ_SEND;
1484 
1485 	if (msg_method & SP_MANIFEST_INDIRECT_REQ)
1486 		IMSG("Indirect messaging is not supported");
1487 
1488 	return TEE_SUCCESS;
1489 }
1490 
1491 static TEE_Result read_vm_availability_msg(const void *fdt,
1492 					   struct sp_session *s)
1493 {
1494 	TEE_Result res = TEE_ERROR_BAD_PARAMETERS;
1495 	uint32_t v = 0;
1496 
1497 	res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v);
1498 
1499 	/* This field in the manifest is optional */
1500 	if (res == TEE_ERROR_ITEM_NOT_FOUND)
1501 		return TEE_SUCCESS;
1502 
1503 	if (res)
1504 		return res;
1505 
1506 	if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) {
1507 		EMSG("Invalid vm-availability-messages value: %"PRIu32, v);
1508 		return TEE_ERROR_BAD_PARAMETERS;
1509 	}
1510 
1511 	if (v & SP_MANIFEST_VM_CREATED_MSG)
1512 		s->props |= FFA_PART_PROP_NOTIF_CREATED;
1513 
1514 	if (v & SP_MANIFEST_VM_DESTROYED_MSG)
1515 		s->props |= FFA_PART_PROP_NOTIF_DESTROYED;
1516 
1517 	return TEE_SUCCESS;
1518 }
1519 
1520 static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt)
1521 {
1522 	TEE_Result res = TEE_SUCCESS;
1523 	struct sp_session *sess = NULL;
1524 	TEE_UUID ffa_uuid = {};
1525 	uint16_t boot_order = 0;
1526 	uint32_t boot_order_arg = 0;
1527 
1528 	res = fdt_get_uuid(fdt, &ffa_uuid);
1529 	if (res)
1530 		return res;
1531 
1532 	res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order);
1533 	if (res == TEE_SUCCESS) {
1534 		boot_order_arg = boot_order;
1535 	} else if (res == TEE_ERROR_ITEM_NOT_FOUND) {
1536 		boot_order_arg = UINT32_MAX;
1537 	} else {
1538 		EMSG("Failed reading boot-order property err:%#"PRIx32, res);
1539 		return res;
1540 	}
1541 
1542 	res = sp_open_session(&sess,
1543 			      &open_sp_sessions,
1544 			      &ffa_uuid, bin_uuid, boot_order_arg, fdt);
1545 	if (res)
1546 		return res;
1547 
1548 	sess->fdt = fdt;
1549 
1550 	res = read_manifest_endpoint_id(sess);
1551 	if (res)
1552 		return res;
1553 	DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id);
1554 
1555 	res = read_ns_interrupts_action(fdt, sess);
1556 	if (res)
1557 		return res;
1558 
1559 	res = read_ffa_version(fdt, sess);
1560 	if (res)
1561 		return res;
1562 
1563 	res = read_sp_exec_state(fdt, sess);
1564 	if (res)
1565 		return res;
1566 
1567 	res = read_sp_msg_types(fdt, sess);
1568 	if (res)
1569 		return res;
1570 
1571 	res = read_vm_availability_msg(fdt, sess);
1572 	if (res)
1573 		return res;
1574 
1575 	return TEE_SUCCESS;
1576 }
1577 
1578 static TEE_Result sp_first_run(struct sp_session *sess)
1579 {
1580 	TEE_Result res = TEE_SUCCESS;
1581 	struct thread_smc_args args = { };
1582 	struct sp_ctx *ctx = NULL;
1583 	vaddr_t boot_info_va = 0;
1584 	size_t boot_info_size = 0;
1585 	void *fdt_copy = NULL;
1586 	size_t fdt_size = 0;
1587 
1588 	ctx = to_sp_ctx(sess->ts_sess.ctx);
1589 	ts_push_current_session(&sess->ts_sess);
1590 	sess->is_initialized = false;
1591 
1592 	/*
1593 	 * Load relative memory regions must be handled before doing any other
1594 	 * mapping to prevent conflicts in the VA space.
1595 	 */
1596 	res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt);
1597 	if (res) {
1598 		ts_pop_current_session();
1599 		return res;
1600 	}
1601 
1602 	res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size);
1603 	if (res)
1604 		goto out;
1605 
1606 	res = handle_fdt_dev_regions(ctx, fdt_copy);
1607 	if (res)
1608 		goto out;
1609 
1610 	res = handle_fdt_mem_regions(ctx, fdt_copy);
1611 	if (res)
1612 		goto out;
1613 
1614 	if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) {
1615 		res = handle_tpm_event_log(ctx, fdt_copy);
1616 		if (res)
1617 			goto out;
1618 	}
1619 
1620 	res = handle_hw_features(fdt_copy);
1621 	if (res)
1622 		goto out;
1623 
1624 	res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va,
1625 				       &boot_info_size, sess->rxtx.ffa_vers);
1626 	if (res)
1627 		goto out;
1628 
1629 	ts_pop_current_session();
1630 
1631 	res = sp_enter(&args, sess);
1632 	if (res) {
1633 		ts_push_current_session(&sess->ts_sess);
1634 		goto out;
1635 	}
1636 
1637 	spmc_sp_msg_handler(&args, sess);
1638 
1639 	ts_push_current_session(&sess->ts_sess);
1640 	sess->is_initialized = true;
1641 
1642 out:
1643 	/* Free the boot info page from the SP memory */
1644 	vm_unmap(&ctx->uctx, boot_info_va, boot_info_size);
1645 	vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size);
1646 	ts_pop_current_session();
1647 
1648 	return res;
1649 }
1650 
1651 TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp)
1652 {
1653 	TEE_Result res = TEE_SUCCESS;
1654 	struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx);
1655 
1656 	ctx->sp_regs.x[0] = args->a0;
1657 	ctx->sp_regs.x[1] = args->a1;
1658 	ctx->sp_regs.x[2] = args->a2;
1659 	ctx->sp_regs.x[3] = args->a3;
1660 	ctx->sp_regs.x[4] = args->a4;
1661 	ctx->sp_regs.x[5] = args->a5;
1662 	ctx->sp_regs.x[6] = args->a6;
1663 	ctx->sp_regs.x[7] = args->a7;
1664 
1665 	res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0);
1666 
1667 	args->a0 = ctx->sp_regs.x[0];
1668 	args->a1 = ctx->sp_regs.x[1];
1669 	args->a2 = ctx->sp_regs.x[2];
1670 	args->a3 = ctx->sp_regs.x[3];
1671 	args->a4 = ctx->sp_regs.x[4];
1672 	args->a5 = ctx->sp_regs.x[5];
1673 	args->a6 = ctx->sp_regs.x[6];
1674 	args->a7 = ctx->sp_regs.x[7];
1675 
1676 	return res;
1677 }
1678 
1679 /*
1680  * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive
1681  * active on NS interrupt than the callee, the callee must inherit the caller's
1682  * configuration.
1683  * Each SP's own NS action setting is stored in ns_int_mode. The effective
1684  * action will be MIN([self action], [caller's action]) which is stored in the
1685  * ns_int_mode_inherited field.
1686  */
1687 static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s,
1688 						 struct ts_session *caller,
1689 						 uint64_t *cpsr)
1690 {
1691 	if (caller) {
1692 		struct sp_session *caller_sp = to_sp_session(caller);
1693 
1694 		s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited,
1695 					       s->ns_int_mode);
1696 	} else {
1697 		s->ns_int_mode_inherited = s->ns_int_mode;
1698 	}
1699 
1700 	if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED)
1701 		*cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1702 				   ARM32_CPSR_F_SHIFT);
1703 	else
1704 		*cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR,
1705 				    ARM32_CPSR_F_SHIFT);
1706 }
1707 
1708 static TEE_Result sp_enter_invoke_cmd(struct ts_session *s,
1709 				      uint32_t cmd __unused)
1710 {
1711 	struct sp_ctx *ctx = to_sp_ctx(s->ctx);
1712 	TEE_Result res = TEE_SUCCESS;
1713 	uint32_t exceptions = 0;
1714 	struct sp_session *sp_s = to_sp_session(s);
1715 	struct ts_session *sess = NULL;
1716 	struct thread_ctx_regs *sp_regs = NULL;
1717 	uint32_t thread_id = THREAD_ID_INVALID;
1718 	struct ts_session *caller = NULL;
1719 	uint32_t rpc_target_info = 0;
1720 	uint32_t panicked = false;
1721 	uint32_t panic_code = 0;
1722 
1723 	sp_regs = &ctx->sp_regs;
1724 	ts_push_current_session(s);
1725 
1726 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1727 
1728 	/* Enable/disable foreign interrupts in CPSR/SPSR */
1729 	caller = ts_get_calling_session();
1730 	sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr);
1731 
1732 	/*
1733 	 * Store endpoint ID and thread ID in rpc_target_info. This will be used
1734 	 * as w1 in FFA_INTERRUPT in case of a foreign interrupt.
1735 	 */
1736 	rpc_target_info = thread_get_tsd()->rpc_target_info;
1737 	thread_id = thread_get_id();
1738 	assert(thread_id <= UINT16_MAX);
1739 	thread_get_tsd()->rpc_target_info =
1740 		FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id);
1741 
1742 	__thread_enter_user_mode(sp_regs, &panicked, &panic_code);
1743 
1744 	/* Restore rpc_target_info */
1745 	thread_get_tsd()->rpc_target_info = rpc_target_info;
1746 
1747 	thread_unmask_exceptions(exceptions);
1748 
1749 	thread_user_clear_vfp(&ctx->uctx);
1750 
1751 	if (panicked) {
1752 		DMSG("SP panicked with code  %#"PRIx32, panic_code);
1753 		abort_print_current_ts();
1754 
1755 		sess = ts_pop_current_session();
1756 		cpu_spin_lock(&sp_s->spinlock);
1757 		sp_s->state = sp_dead;
1758 		cpu_spin_unlock(&sp_s->spinlock);
1759 
1760 		return TEE_ERROR_TARGET_DEAD;
1761 	}
1762 
1763 	sess = ts_pop_current_session();
1764 	assert(sess == s);
1765 
1766 	return res;
1767 }
1768 
1769 /* We currently don't support 32 bits */
1770 #ifdef ARM64
1771 static void sp_svc_store_registers(struct thread_scall_regs *regs,
1772 				   struct thread_ctx_regs *sp_regs)
1773 {
1774 	COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0));
1775 	memcpy(sp_regs->x, &regs->x0, 31 * sizeof(regs->x0));
1776 	sp_regs->pc = regs->elr;
1777 	sp_regs->sp = regs->sp_el0;
1778 }
1779 #endif
1780 
1781 static bool sp_handle_scall(struct thread_scall_regs *regs)
1782 {
1783 	struct ts_session *ts = ts_get_current_session();
1784 	struct sp_ctx *uctx = to_sp_ctx(ts->ctx);
1785 	struct sp_session *s = uctx->open_session;
1786 
1787 	assert(s);
1788 
1789 	sp_svc_store_registers(regs, &uctx->sp_regs);
1790 
1791 	regs->x0 = 0;
1792 	regs->x1 = 0; /* panic */
1793 	regs->x2 = 0; /* panic code */
1794 
1795 	/*
1796 	 * All the registers of the SP are saved in the SP session by the SVC
1797 	 * handler.
1798 	 * We always return to S-El1 after handling the SVC. We will continue
1799 	 * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode).
1800 	 * The sp_enter() function copies the FF-A parameters (a0-a7) from the
1801 	 * saved registers to the thread_smc_args. The thread_smc_args object is
1802 	 * afterward used by the spmc_sp_msg_handler() to handle the
1803 	 * FF-A message send by the SP.
1804 	 */
1805 	return false;
1806 }
1807 
1808 static void sp_dump_state(struct ts_ctx *ctx)
1809 {
1810 	struct sp_ctx *utc = to_sp_ctx(ctx);
1811 
1812 	if (utc->uctx.dump_entry_func) {
1813 		TEE_Result res = ldelf_dump_state(&utc->uctx);
1814 
1815 		if (!res || res == TEE_ERROR_TARGET_DEAD)
1816 			return;
1817 	}
1818 
1819 	user_mode_ctx_print_mappings(&utc->uctx);
1820 }
1821 
1822 static const struct ts_ops sp_ops = {
1823 	.enter_invoke_cmd = sp_enter_invoke_cmd,
1824 	.handle_scall = sp_handle_scall,
1825 	.dump_state = sp_dump_state,
1826 };
1827 
1828 static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid)
1829 {
1830 	enum teecore_memtypes mtype = MEM_AREA_TA_RAM;
1831 	struct sp_pkg_header *sp_pkg_hdr = NULL;
1832 	struct fip_sp *sp = NULL;
1833 	uint64_t sp_fdt_end = 0;
1834 	size_t sp_pkg_size = 0;
1835 	vaddr_t sp_pkg_va = 0;
1836 
1837 	/* Process the first page which contains the SP package header */
1838 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE);
1839 	if (!sp_pkg_va) {
1840 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1841 		return TEE_ERROR_GENERIC;
1842 	}
1843 
1844 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1845 
1846 	if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) {
1847 		EMSG("Invalid SP package magic");
1848 		return TEE_ERROR_BAD_FORMAT;
1849 	}
1850 
1851 	if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 &&
1852 	    sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) {
1853 		EMSG("Invalid SP header version");
1854 		return TEE_ERROR_BAD_FORMAT;
1855 	}
1856 
1857 	if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size,
1858 			 &sp_pkg_size)) {
1859 		EMSG("Invalid SP package size");
1860 		return TEE_ERROR_BAD_FORMAT;
1861 	}
1862 
1863 	if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size,
1864 			 &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) {
1865 		EMSG("Invalid SP manifest size");
1866 		return TEE_ERROR_BAD_FORMAT;
1867 	}
1868 
1869 	/* Process the whole SP package now that the size is known */
1870 	sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size);
1871 	if (!sp_pkg_va) {
1872 		EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa);
1873 		return TEE_ERROR_GENERIC;
1874 	}
1875 
1876 	sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va;
1877 
1878 	sp = calloc(1, sizeof(struct fip_sp));
1879 	if (!sp)
1880 		return TEE_ERROR_OUT_OF_MEMORY;
1881 
1882 	memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid));
1883 	sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset);
1884 	sp->sp_img.image.size = sp_pkg_hdr->img_size;
1885 	sp->sp_img.image.flags = 0;
1886 	sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset);
1887 
1888 	STAILQ_INSERT_TAIL(&fip_sp_list, sp, link);
1889 
1890 	return TEE_SUCCESS;
1891 }
1892 
1893 static TEE_Result fip_sp_init_all(void)
1894 {
1895 	TEE_Result res = TEE_SUCCESS;
1896 	uint64_t sp_pkg_addr = 0;
1897 	const void *fdt = NULL;
1898 	TEE_UUID sp_uuid = { };
1899 	int sp_pkgs_node = 0;
1900 	int subnode = 0;
1901 	int root = 0;
1902 
1903 	fdt = get_manifest_dt();
1904 	if (!fdt) {
1905 		EMSG("No SPMC manifest found");
1906 		return TEE_ERROR_GENERIC;
1907 	}
1908 
1909 	root = fdt_path_offset(fdt, "/");
1910 	if (root < 0)
1911 		return TEE_ERROR_BAD_FORMAT;
1912 
1913 	if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0"))
1914 		return TEE_ERROR_BAD_FORMAT;
1915 
1916 	/* SP packages are optional, it's not an error if we don't find any */
1917 	sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg");
1918 	if (sp_pkgs_node < 0)
1919 		return TEE_SUCCESS;
1920 
1921 	fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) {
1922 		res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr);
1923 		if (res) {
1924 			EMSG("Invalid FIP SP load address");
1925 			return res;
1926 		}
1927 
1928 		res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid);
1929 		if (res) {
1930 			EMSG("Invalid FIP SP uuid");
1931 			return res;
1932 		}
1933 
1934 		res = process_sp_pkg(sp_pkg_addr, &sp_uuid);
1935 		if (res) {
1936 			EMSG("Invalid FIP SP package");
1937 			return res;
1938 		}
1939 	}
1940 
1941 	return TEE_SUCCESS;
1942 }
1943 
1944 static void fip_sp_deinit_all(void)
1945 {
1946 	while (!STAILQ_EMPTY(&fip_sp_list)) {
1947 		struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list);
1948 
1949 		STAILQ_REMOVE_HEAD(&fip_sp_list, link);
1950 		free(sp);
1951 	}
1952 }
1953 
1954 static TEE_Result sp_init_all(void)
1955 {
1956 	TEE_Result res = TEE_SUCCESS;
1957 	const struct sp_image *sp = NULL;
1958 	const struct fip_sp *fip_sp = NULL;
1959 	char __maybe_unused msg[60] = { '\0', };
1960 	struct sp_session *s = NULL;
1961 	struct sp_session *prev_sp = NULL;
1962 
1963 	for_each_secure_partition(sp) {
1964 		if (sp->image.uncompressed_size)
1965 			snprintf(msg, sizeof(msg),
1966 				 " (compressed, uncompressed %u)",
1967 				 sp->image.uncompressed_size);
1968 		else
1969 			msg[0] = '\0';
1970 		DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid,
1971 		     sp->image.size, msg);
1972 
1973 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1974 
1975 		if (res != TEE_SUCCESS) {
1976 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1977 			     &sp->image.uuid, res);
1978 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1979 				panic();
1980 		}
1981 	}
1982 
1983 	res = fip_sp_init_all();
1984 	if (res)
1985 		panic("Failed initializing FIP SPs");
1986 
1987 	for_each_fip_sp(fip_sp) {
1988 		sp = &fip_sp->sp_img;
1989 
1990 		DMSG("SP %pUl size %u", (void *)&sp->image.uuid,
1991 		     sp->image.size);
1992 
1993 		res = sp_init_uuid(&sp->image.uuid, sp->fdt);
1994 
1995 		if (res != TEE_SUCCESS) {
1996 			EMSG("Failed initializing SP(%pUl) err:%#"PRIx32,
1997 			     &sp->image.uuid, res);
1998 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
1999 				panic();
2000 		}
2001 	}
2002 
2003 	/*
2004 	 * At this point all FIP SPs are loaded by ldelf or by the raw binary SP
2005 	 * loader, so the original images (loaded by BL2) are not needed anymore
2006 	 */
2007 	fip_sp_deinit_all();
2008 
2009 	/*
2010 	 * Now that all SPs are loaded, check through the boot order values,
2011 	 * and warn in case there is a non-unique value.
2012 	 */
2013 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2014 		/* User specified boot-order values are uint16 */
2015 		if (s->boot_order > UINT16_MAX)
2016 			break;
2017 
2018 		if (prev_sp && prev_sp->boot_order == s->boot_order)
2019 			IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)",
2020 			     &prev_sp->ts_sess.ctx->uuid,
2021 			     &s->ts_sess.ctx->uuid);
2022 
2023 		prev_sp = s;
2024 	}
2025 
2026 	/* Continue the initialization and run the SP */
2027 	TAILQ_FOREACH(s, &open_sp_sessions, link) {
2028 		DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id);
2029 
2030 		res = sp_first_run(s);
2031 		if (res != TEE_SUCCESS) {
2032 			EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32,
2033 			     s->endpoint_id, res);
2034 			if (!IS_ENABLED(CFG_SP_SKIP_FAILED))
2035 				panic();
2036 		}
2037 	}
2038 
2039 	return TEE_SUCCESS;
2040 }
2041 
2042 boot_final(sp_init_all);
2043 
2044 static TEE_Result secure_partition_open(const TEE_UUID *uuid,
2045 					struct ts_store_handle **h)
2046 {
2047 	return emb_ts_open(uuid, h, find_secure_partition);
2048 }
2049 
2050 REGISTER_SP_STORE(2) = {
2051 	.description = "SP store",
2052 	.open = secure_partition_open,
2053 	.get_size = emb_ts_get_size,
2054 	.get_tag = emb_ts_get_tag,
2055 	.read = emb_ts_read,
2056 	.close = emb_ts_close,
2057 };
2058