xref: /optee_os/core/arch/arm/kernel/boot.c (revision fe5af822179a7b4b7a9c8109aaa09e9441e9f5bb)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2023, Linaro Limited
4  * Copyright (c) 2023, Arm Limited
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <console.h>
12 #include <crypto/crypto.h>
13 #include <drivers/gic.h>
14 #include <dt-bindings/interrupt-controller/arm-gic.h>
15 #include <ffa.h>
16 #include <initcall.h>
17 #include <inttypes.h>
18 #include <io.h>
19 #include <keep.h>
20 #include <kernel/asan.h>
21 #include <kernel/boot.h>
22 #include <kernel/dt.h>
23 #include <kernel/linker.h>
24 #include <kernel/misc.h>
25 #include <kernel/panic.h>
26 #include <kernel/tee_misc.h>
27 #include <kernel/thread.h>
28 #include <kernel/tpm.h>
29 #include <kernel/transfer_list.h>
30 #include <libfdt.h>
31 #include <malloc.h>
32 #include <memtag.h>
33 #include <mm/core_memprot.h>
34 #include <mm/core_mmu.h>
35 #include <mm/fobj.h>
36 #include <mm/tee_mm.h>
37 #include <mm/tee_pager.h>
38 #include <sm/psci.h>
39 #include <trace.h>
40 #include <utee_defines.h>
41 #include <util.h>
42 
43 #include <platform_config.h>
44 
45 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
46 #include <sm/sm.h>
47 #endif
48 
49 #if defined(CFG_WITH_VFP)
50 #include <kernel/vfp.h>
51 #endif
52 
53 /*
54  * In this file we're using unsigned long to represent physical pointers as
55  * they are received in a single register when OP-TEE is initially entered.
56  * This limits 32-bit systems to only use make use of the lower 32 bits
57  * of a physical address for initial parameters.
58  *
59  * 64-bit systems on the other hand can use full 64-bit physical pointers.
60  */
61 #define PADDR_INVALID		ULONG_MAX
62 
63 #if defined(CFG_BOOT_SECONDARY_REQUEST)
64 struct ns_entry_context {
65 	uintptr_t entry_point;
66 	uintptr_t context_id;
67 };
68 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
69 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
70 #endif
71 
72 #ifdef CFG_BOOT_SYNC_CPU
73 /*
74  * Array used when booting, to synchronize cpu.
75  * When 0, the cpu has not started.
76  * When 1, it has started
77  */
78 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
79 DECLARE_KEEP_PAGER(sem_cpu_sync);
80 #endif
81 
82 static unsigned long boot_arg_fdt __nex_bss;
83 static unsigned long boot_arg_nsec_entry __nex_bss;
84 static unsigned long boot_arg_pageable_part __nex_bss;
85 static unsigned long boot_arg_transfer_list __nex_bss;
86 static struct transfer_list_header *mapped_tl __nex_bss;
87 
88 #ifdef CFG_SECONDARY_INIT_CNTFRQ
89 static uint32_t cntfrq;
90 #endif
91 
92 /* May be overridden in plat-$(PLATFORM)/main.c */
93 __weak void plat_primary_init_early(void)
94 {
95 }
96 DECLARE_KEEP_PAGER(plat_primary_init_early);
97 
98 /* May be overridden in plat-$(PLATFORM)/main.c */
99 __weak void boot_primary_init_intc(void)
100 {
101 }
102 
103 /* May be overridden in plat-$(PLATFORM)/main.c */
104 __weak void boot_secondary_init_intc(void)
105 {
106 }
107 
108 /* May be overridden in plat-$(PLATFORM)/main.c */
109 __weak unsigned long plat_get_aslr_seed(void)
110 {
111 	DMSG("Warning: no ASLR seed");
112 
113 	return 0;
114 }
115 
116 #if defined(_CFG_CORE_STACK_PROTECTOR) || defined(CFG_WITH_STACK_CANARIES)
117 /* Generate random stack canary value on boot up */
118 __weak void plat_get_random_stack_canaries(void *buf, size_t ncan, size_t size)
119 {
120 	TEE_Result ret = TEE_ERROR_GENERIC;
121 	size_t i = 0;
122 
123 	assert(buf && ncan && size);
124 
125 	/*
126 	 * With virtualization the RNG is not initialized in Nexus core.
127 	 * Need to override with platform specific implementation.
128 	 */
129 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
130 		IMSG("WARNING: Using fixed value for stack canary");
131 		memset(buf, 0xab, ncan * size);
132 		goto out;
133 	}
134 
135 	ret = crypto_rng_read(buf, ncan * size);
136 	if (ret != TEE_SUCCESS)
137 		panic("Failed to generate random stack canary");
138 
139 out:
140 	/* Leave null byte in canary to prevent string base exploit */
141 	for (i = 0; i < ncan; i++)
142 		*((uint8_t *)buf + size * i) = 0;
143 }
144 #endif /* _CFG_CORE_STACK_PROTECTOR || CFG_WITH_STACK_CANARIES */
145 
146 /*
147  * This function is called as a guard after each smc call which is not
148  * supposed to return.
149  */
150 void __panic_at_smc_return(void)
151 {
152 	panic();
153 }
154 
155 #if defined(CFG_WITH_ARM_TRUSTED_FW)
156 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
157 {
158 	assert(nsec_entry == PADDR_INVALID);
159 	/* Do nothing as we don't have a secure monitor */
160 }
161 #else
162 /* May be overridden in plat-$(PLATFORM)/main.c */
163 __weak void init_sec_mon(unsigned long nsec_entry)
164 {
165 	struct sm_nsec_ctx *nsec_ctx;
166 
167 	assert(nsec_entry != PADDR_INVALID);
168 
169 	/* Initialize secure monitor */
170 	nsec_ctx = sm_get_nsec_ctx();
171 	nsec_ctx->mon_lr = nsec_entry;
172 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
173 	if (nsec_entry & 1)
174 		nsec_ctx->mon_spsr |= CPSR_T;
175 }
176 #endif
177 
178 #if defined(CFG_WITH_ARM_TRUSTED_FW)
179 static void init_vfp_nsec(void)
180 {
181 }
182 #else
183 static void init_vfp_nsec(void)
184 {
185 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
186 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
187 }
188 #endif
189 
190 static void check_crypto_extensions(void)
191 {
192 	bool ce_supported = true;
193 
194 	if (!feat_aes_implemented() &&
195 	    IS_ENABLED(CFG_CRYPTO_AES_ARM_CE)) {
196 		EMSG("AES instructions are not supported");
197 		ce_supported = false;
198 	}
199 
200 	if (!feat_sha1_implemented() &&
201 	    IS_ENABLED(CFG_CRYPTO_SHA1_ARM_CE)) {
202 		EMSG("SHA1 instructions are not supported");
203 		ce_supported = false;
204 	}
205 
206 	if (!feat_sha256_implemented() &&
207 	    IS_ENABLED(CFG_CRYPTO_SHA256_ARM_CE)) {
208 		EMSG("SHA256 instructions are not supported");
209 		ce_supported = false;
210 	}
211 
212 	/* Check aarch64 specific instructions */
213 	if (IS_ENABLED(CFG_ARM64_core)) {
214 		if (!feat_sha512_implemented() &&
215 		    IS_ENABLED(CFG_CRYPTO_SHA512_ARM_CE)) {
216 			EMSG("SHA512 instructions are not supported");
217 			ce_supported = false;
218 		}
219 
220 		if (!feat_sha3_implemented() &&
221 		    IS_ENABLED(CFG_CRYPTO_SHA3_ARM_CE)) {
222 			EMSG("SHA3 instructions are not supported");
223 			ce_supported = false;
224 		}
225 
226 		if (!feat_sm3_implemented() &&
227 		    IS_ENABLED(CFG_CRYPTO_SM3_ARM_CE)) {
228 			EMSG("SM3 instructions are not supported");
229 			ce_supported = false;
230 		}
231 
232 		if (!feat_sm4_implemented() &&
233 		    IS_ENABLED(CFG_CRYPTO_SM4_ARM_CE)) {
234 			EMSG("SM4 instructions are not supported");
235 			ce_supported = false;
236 		}
237 	}
238 
239 	if (!ce_supported)
240 		panic("HW doesn't support CE instructions");
241 }
242 
243 #if defined(CFG_WITH_VFP)
244 
245 #ifdef ARM32
246 static void init_vfp_sec(void)
247 {
248 	uint32_t cpacr = read_cpacr();
249 
250 	/*
251 	 * Enable Advanced SIMD functionality.
252 	 * Enable use of D16-D31 of the Floating-point Extension register
253 	 * file.
254 	 */
255 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
256 	/*
257 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
258 	 * mode.
259 	 */
260 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
261 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
262 	write_cpacr(cpacr);
263 }
264 #endif /* ARM32 */
265 
266 #ifdef ARM64
267 static void init_vfp_sec(void)
268 {
269 	/* Not using VFP until thread_kernel_enable_vfp() */
270 	vfp_disable();
271 }
272 #endif /* ARM64 */
273 
274 #else /* CFG_WITH_VFP */
275 
276 static void init_vfp_sec(void)
277 {
278 	/* Not using VFP */
279 }
280 #endif
281 
282 #ifdef CFG_SECONDARY_INIT_CNTFRQ
283 static void primary_save_cntfrq(void)
284 {
285 	assert(cntfrq == 0);
286 
287 	/*
288 	 * CNTFRQ should be initialized on the primary CPU by a
289 	 * previous boot stage
290 	 */
291 	cntfrq = read_cntfrq();
292 }
293 
294 static void secondary_init_cntfrq(void)
295 {
296 	assert(cntfrq != 0);
297 	write_cntfrq(cntfrq);
298 }
299 #else /* CFG_SECONDARY_INIT_CNTFRQ */
300 static void primary_save_cntfrq(void)
301 {
302 }
303 
304 static void secondary_init_cntfrq(void)
305 {
306 }
307 #endif
308 
309 #ifdef CFG_CORE_SANITIZE_KADDRESS
310 static void init_run_constructors(void)
311 {
312 	const vaddr_t *ctor;
313 
314 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
315 		((void (*)(void))(*ctor))();
316 }
317 
318 static void init_asan(void)
319 {
320 
321 	/*
322 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
323 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
324 	 * Since all the needed values to calculate the value of
325 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
326 	 * calculate it in advance and hard code it into the platform
327 	 * conf.mk. Here where we have all the needed values we double
328 	 * check that the compiler is supplied the correct value.
329 	 */
330 
331 #define __ASAN_SHADOW_START \
332 	ROUNDUP(TEE_RAM_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
333 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
334 #define __CFG_ASAN_SHADOW_OFFSET \
335 	(__ASAN_SHADOW_START - (TEE_RAM_START / 8))
336 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
337 #undef __ASAN_SHADOW_START
338 #undef __CFG_ASAN_SHADOW_OFFSET
339 
340 	/*
341 	 * Assign area covered by the shadow area, everything from start up
342 	 * to the beginning of the shadow area.
343 	 */
344 	asan_set_shadowed((void *)TEE_LOAD_ADDR, &__asan_shadow_start);
345 
346 	/*
347 	 * Add access to areas that aren't opened automatically by a
348 	 * constructor.
349 	 */
350 	asan_tag_access(&__ctor_list, &__ctor_end);
351 	asan_tag_access(__rodata_start, __rodata_end);
352 #ifdef CFG_WITH_PAGER
353 	asan_tag_access(__pageable_start, __pageable_end);
354 #endif /*CFG_WITH_PAGER*/
355 	asan_tag_access(__nozi_start, __nozi_end);
356 #ifdef ARM32
357 	asan_tag_access(__exidx_start, __exidx_end);
358 	asan_tag_access(__extab_start, __extab_end);
359 #endif
360 
361 	init_run_constructors();
362 
363 	/* Everything is tagged correctly, let's start address sanitizing. */
364 	asan_start();
365 }
366 #else /*CFG_CORE_SANITIZE_KADDRESS*/
367 static void init_asan(void)
368 {
369 }
370 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
371 
372 #if defined(CFG_MEMTAG)
373 /* Called from entry_a64.S only when MEMTAG is configured */
374 void boot_init_memtag(void)
375 {
376 	memtag_init_ops(feat_mte_implemented());
377 }
378 
379 /* Called from entry_a64.S only when MEMTAG is configured */
380 void boot_clear_memtag(void)
381 {
382 	enum teecore_memtypes mtypes[] = {
383 		MEM_AREA_TEE_RAM, MEM_AREA_TEE_RAM_RW, MEM_AREA_NEX_RAM_RO,
384 		MEM_AREA_NEX_RAM_RW, MEM_AREA_TEE_ASAN, MEM_AREA_TA_RAM
385 	};
386 	vaddr_t s = 0;
387 	vaddr_t e = 0;
388 	size_t n = 0;
389 
390 	for (n = 0; n < ARRAY_SIZE(mtypes); n++) {
391 		core_mmu_get_mem_by_type(mtypes[n], &s, &e);
392 		if (e > s) {
393 			DMSG("Clearing tags for VA %#"PRIxVA"..%#"PRIxVA,
394 			     s, e - 1);
395 			memtag_set_tags((void *)s, e - s, 0);
396 		}
397 	}
398 }
399 #endif
400 
401 #ifdef CFG_WITH_PAGER
402 
403 #ifdef CFG_CORE_SANITIZE_KADDRESS
404 static void carve_out_asan_mem(tee_mm_pool_t *pool)
405 {
406 	const size_t s = pool->hi - pool->lo;
407 	tee_mm_entry_t *mm;
408 	paddr_t apa = ASAN_MAP_PA;
409 	size_t asz = ASAN_MAP_SZ;
410 
411 	if (core_is_buffer_outside(apa, asz, pool->lo, s))
412 		return;
413 
414 	/* Reserve the shadow area */
415 	if (!core_is_buffer_inside(apa, asz, pool->lo, s)) {
416 		if (apa < pool->lo) {
417 			/*
418 			 * ASAN buffer is overlapping with the beginning of
419 			 * the pool.
420 			 */
421 			asz -= pool->lo - apa;
422 			apa = pool->lo;
423 		} else {
424 			/*
425 			 * ASAN buffer is overlapping with the end of the
426 			 * pool.
427 			 */
428 			asz = pool->hi - apa;
429 		}
430 	}
431 	mm = tee_mm_alloc2(pool, apa, asz);
432 	assert(mm);
433 }
434 #else
435 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused)
436 {
437 }
438 #endif
439 
440 static void print_pager_pool_size(void)
441 {
442 	struct tee_pager_stats __maybe_unused stats;
443 
444 	tee_pager_get_stats(&stats);
445 	IMSG("Pager pool size: %zukB",
446 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
447 }
448 
449 static void init_virt_pool(tee_mm_pool_t *virt_pool)
450 {
451 	const vaddr_t begin = VCORE_START_VA;
452 	size_t size = TEE_RAM_VA_SIZE;
453 
454 #ifdef CFG_CORE_SANITIZE_KADDRESS
455 	/* Carve out asan memory, flat maped after core memory */
456 	if (begin + size > ASAN_SHADOW_PA)
457 		size = ASAN_MAP_PA - begin;
458 #endif
459 
460 	if (!tee_mm_init(virt_pool, begin, size, SMALL_PAGE_SHIFT,
461 			 TEE_MM_POOL_NO_FLAGS))
462 		panic("core_virt_mem_pool init failed");
463 }
464 
465 /*
466  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
467  * The init part is also paged just as the rest of the normal paged code, with
468  * the difference that it's preloaded during boot. When the backing store
469  * is configured the entire paged binary is copied in place and then also
470  * the init part. Since the init part has been relocated (references to
471  * addresses updated to compensate for the new load address) this has to be
472  * undone for the hashes of those pages to match with the original binary.
473  *
474  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
475  * unchanged.
476  */
477 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
478 {
479 #ifdef CFG_CORE_ASLR
480 	unsigned long *ptr = NULL;
481 	const uint32_t *reloc = NULL;
482 	const uint32_t *reloc_end = NULL;
483 	unsigned long offs = boot_mmu_config.map_offset;
484 	const struct boot_embdata *embdata = (const void *)__init_end;
485 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_LOAD_ADDR;
486 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_LOAD_ADDR;
487 
488 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
489 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
490 
491 	for (; reloc < reloc_end; reloc++) {
492 		if (*reloc < addr_start)
493 			continue;
494 		if (*reloc >= addr_end)
495 			break;
496 		ptr = (void *)(paged_store + *reloc - addr_start);
497 		*ptr -= offs;
498 	}
499 #endif
500 }
501 
502 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
503 				   void *store)
504 {
505 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
506 #ifdef CFG_CORE_ASLR
507 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
508 	const struct boot_embdata *embdata = (const void *)__init_end;
509 	const void *reloc = __init_end + embdata->reloc_offset;
510 
511 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
512 					 reloc, embdata->reloc_len, store);
513 #else
514 	return fobj_ro_paged_alloc(num_pages, hashes, store);
515 #endif
516 }
517 
518 static void init_runtime(unsigned long pageable_part)
519 {
520 	size_t n;
521 	size_t init_size = (size_t)(__init_end - __init_start);
522 	size_t pageable_start = (size_t)__pageable_start;
523 	size_t pageable_end = (size_t)__pageable_end;
524 	size_t pageable_size = pageable_end - pageable_start;
525 	vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR +
526 			     VCORE_START_VA;
527 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
528 			   TEE_SHA256_HASH_SIZE;
529 	const struct boot_embdata *embdata = (const void *)__init_end;
530 	const void *tmp_hashes = NULL;
531 	tee_mm_entry_t *mm = NULL;
532 	struct fobj *fobj = NULL;
533 	uint8_t *paged_store = NULL;
534 	uint8_t *hashes = NULL;
535 
536 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
537 	assert(embdata->total_len >= embdata->hashes_offset +
538 				     embdata->hashes_len);
539 	assert(hash_size == embdata->hashes_len);
540 
541 	tmp_hashes = __init_end + embdata->hashes_offset;
542 
543 	init_asan();
544 
545 	/* Add heap2 first as heap1 may be too small as initial bget pool */
546 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
547 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
548 
549 	/*
550 	 * This needs to be initialized early to support address lookup
551 	 * in MEM_AREA_TEE_RAM
552 	 */
553 	tee_pager_early_init();
554 
555 	hashes = malloc(hash_size);
556 	IMSG_RAW("\n");
557 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
558 	assert(hashes);
559 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
560 
561 	/*
562 	 * Need tee_mm_sec_ddr initialized to be able to allocate secure
563 	 * DDR below.
564 	 */
565 	core_mmu_init_ta_ram();
566 
567 	carve_out_asan_mem(&tee_mm_sec_ddr);
568 
569 	mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size);
570 	assert(mm);
571 	paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
572 				   pageable_size);
573 	/*
574 	 * Load pageable part in the dedicated allocated area:
575 	 * - Move pageable non-init part into pageable area. Note bootloader
576 	 *   may have loaded it anywhere in TA RAM hence use memmove().
577 	 * - Copy pageable init part from current location into pageable area.
578 	 */
579 	memmove(paged_store + init_size,
580 		phys_to_virt(pageable_part,
581 			     core_mmu_get_type_by_pa(pageable_part),
582 			     __pageable_part_end - __pageable_part_start),
583 		__pageable_part_end - __pageable_part_start);
584 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
585 	/*
586 	 * Undo eventual relocation for the init part so the hash checks
587 	 * can pass.
588 	 */
589 	undo_init_relocation(paged_store);
590 
591 	/* Check that hashes of what's in pageable area is OK */
592 	DMSG("Checking hashes of pageable area");
593 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
594 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
595 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
596 		TEE_Result res;
597 
598 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
599 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
600 		if (res != TEE_SUCCESS) {
601 			EMSG("Hash failed for page %zu at %p: res 0x%x",
602 			     n, (void *)page, res);
603 			panic();
604 		}
605 	}
606 
607 	/*
608 	 * Assert prepaged init sections are page aligned so that nothing
609 	 * trails uninited at the end of the premapped init area.
610 	 */
611 	assert(!(init_size & SMALL_PAGE_MASK));
612 
613 	/*
614 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
615 	 * is supplied to tee_pager_init() below.
616 	 */
617 	init_virt_pool(&core_virt_mem_pool);
618 
619 	/*
620 	 * Assign alias area for pager end of the small page block the rest
621 	 * of the binary is loaded into. We're taking more than needed, but
622 	 * we're guaranteed to not need more than the physical amount of
623 	 * TZSRAM.
624 	 */
625 	mm = tee_mm_alloc2(&core_virt_mem_pool,
626 			   (vaddr_t)core_virt_mem_pool.lo +
627 			   core_virt_mem_pool.size - TZSRAM_SIZE,
628 			   TZSRAM_SIZE);
629 	assert(mm);
630 	tee_pager_set_alias_area(mm);
631 
632 	/*
633 	 * Claim virtual memory which isn't paged.
634 	 * Linear memory (flat map core memory) ends there.
635 	 */
636 	mm = tee_mm_alloc2(&core_virt_mem_pool, VCORE_UNPG_RX_PA,
637 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
638 	assert(mm);
639 
640 	/*
641 	 * Allocate virtual memory for the pageable area and let the pager
642 	 * take charge of all the pages already assigned to that memory.
643 	 */
644 	mm = tee_mm_alloc2(&core_virt_mem_pool, (vaddr_t)__pageable_start,
645 			   pageable_size);
646 	assert(mm);
647 	fobj = ro_paged_alloc(mm, hashes, paged_store);
648 	assert(fobj);
649 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
650 				  fobj);
651 	fobj_put(fobj);
652 
653 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
654 	tee_pager_add_pages(pageable_start + init_size,
655 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
656 			    true);
657 	if (pageable_end < tzsram_end)
658 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
659 						   SMALL_PAGE_SIZE, true);
660 
661 	/*
662 	 * There may be physical pages in TZSRAM before the core load address.
663 	 * These pages can be added to the physical pages pool of the pager.
664 	 * This setup may happen when a the secure bootloader runs in TZRAM
665 	 * and its memory can be reused by OP-TEE once boot stages complete.
666 	 */
667 	tee_pager_add_pages(core_virt_mem_pool.lo,
668 			    (VCORE_UNPG_RX_PA - core_virt_mem_pool.lo) /
669 				SMALL_PAGE_SIZE,
670 			    true);
671 
672 	print_pager_pool_size();
673 }
674 #else
675 
676 static void init_runtime(unsigned long pageable_part __unused)
677 {
678 	init_asan();
679 
680 	/*
681 	 * By default whole OP-TEE uses malloc, so we need to initialize
682 	 * it early. But, when virtualization is enabled, malloc is used
683 	 * only by TEE runtime, so malloc should be initialized later, for
684 	 * every virtual partition separately. Core code uses nex_malloc
685 	 * instead.
686 	 */
687 #ifdef CFG_NS_VIRTUALIZATION
688 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
689 					      __nex_heap_start);
690 #else
691 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
692 #endif
693 
694 	IMSG_RAW("\n");
695 }
696 #endif
697 
698 #if defined(CFG_DT)
699 static int add_optee_dt_node(struct dt_descriptor *dt)
700 {
701 	int offs;
702 	int ret;
703 
704 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
705 		DMSG("OP-TEE Device Tree node already exists!");
706 		return 0;
707 	}
708 
709 	offs = fdt_path_offset(dt->blob, "/firmware");
710 	if (offs < 0) {
711 		offs = add_dt_path_subnode(dt, "/", "firmware");
712 		if (offs < 0)
713 			return -1;
714 	}
715 
716 	offs = fdt_add_subnode(dt->blob, offs, "optee");
717 	if (offs < 0)
718 		return -1;
719 
720 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
721 				 "linaro,optee-tz");
722 	if (ret < 0)
723 		return -1;
724 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
725 	if (ret < 0)
726 		return -1;
727 
728 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
729 		/*
730 		 * The format of the interrupt property is defined by the
731 		 * binding of the interrupt domain root. In this case it's
732 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
733 		 * these.
734 		 *
735 		 * An SPI type of interrupt is indicated with a 0 in the
736 		 * first cell. A PPI type is indicated with value 1.
737 		 *
738 		 * The interrupt number goes in the second cell where
739 		 * SPIs ranges from 0 to 987 and PPI ranges from 0 to 15.
740 		 *
741 		 * Flags are passed in the third cells.
742 		 */
743 		uint32_t itr_trigger = 0;
744 		uint32_t itr_type = 0;
745 		uint32_t itr_id = 0;
746 		uint32_t val[3] = { };
747 
748 		/* PPI are visible only in current CPU cluster */
749 		static_assert(IS_ENABLED(CFG_CORE_FFA) ||
750 			      !CFG_CORE_ASYNC_NOTIF_GIC_INTID ||
751 			      (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
752 			       GIC_SPI_BASE) ||
753 			      ((CFG_TEE_CORE_NB_CORE <= 8) &&
754 			       (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
755 				GIC_PPI_BASE)));
756 
757 		if (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= GIC_SPI_BASE) {
758 			itr_type = GIC_SPI;
759 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_SPI_BASE;
760 			itr_trigger = IRQ_TYPE_EDGE_RISING;
761 		} else {
762 			itr_type = GIC_PPI;
763 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_PPI_BASE;
764 			itr_trigger = IRQ_TYPE_EDGE_RISING |
765 				      GIC_CPU_MASK_SIMPLE(CFG_TEE_CORE_NB_CORE);
766 		}
767 
768 		val[0] = TEE_U32_TO_BIG_ENDIAN(itr_type);
769 		val[1] = TEE_U32_TO_BIG_ENDIAN(itr_id);
770 		val[2] = TEE_U32_TO_BIG_ENDIAN(itr_trigger);
771 
772 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
773 				  sizeof(val));
774 		if (ret < 0)
775 			return -1;
776 	}
777 	return 0;
778 }
779 
780 #ifdef CFG_PSCI_ARM32
781 static int append_psci_compatible(void *fdt, int offs, const char *str)
782 {
783 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
784 }
785 
786 static int dt_add_psci_node(struct dt_descriptor *dt)
787 {
788 	int offs;
789 
790 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
791 		DMSG("PSCI Device Tree node already exists!");
792 		return 0;
793 	}
794 
795 	offs = add_dt_path_subnode(dt, "/", "psci");
796 	if (offs < 0)
797 		return -1;
798 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
799 		return -1;
800 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
801 		return -1;
802 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
803 		return -1;
804 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
805 		return -1;
806 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
807 		return -1;
808 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
809 		return -1;
810 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
811 		return -1;
812 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
813 		return -1;
814 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
815 		return -1;
816 	return 0;
817 }
818 
819 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
820 				    const char *prefix)
821 {
822 	const size_t prefix_len = strlen(prefix);
823 	size_t l;
824 	int plen;
825 	const char *prop;
826 
827 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
828 	if (!prop)
829 		return -1;
830 
831 	while (plen > 0) {
832 		if (memcmp(prop, prefix, prefix_len) == 0)
833 			return 0; /* match */
834 
835 		l = strlen(prop) + 1;
836 		prop += l;
837 		plen -= l;
838 	}
839 
840 	return -1;
841 }
842 
843 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
844 {
845 	int offs = 0;
846 
847 	while (1) {
848 		offs = fdt_next_node(dt->blob, offs, NULL);
849 		if (offs < 0)
850 			break;
851 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
852 			continue; /* already set */
853 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
854 			continue; /* no compatible */
855 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
856 			return -1;
857 		/* Need to restart scanning as offsets may have changed */
858 		offs = 0;
859 	}
860 	return 0;
861 }
862 
863 static int config_psci(struct dt_descriptor *dt)
864 {
865 	if (dt_add_psci_node(dt))
866 		return -1;
867 	return dt_add_psci_cpu_enable_methods(dt);
868 }
869 #else
870 static int config_psci(struct dt_descriptor *dt __unused)
871 {
872 	return 0;
873 }
874 #endif /*CFG_PSCI_ARM32*/
875 
876 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
877 {
878 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
879 				   CFG_TZDRAM_SIZE);
880 }
881 
882 static void update_external_dt(void)
883 {
884 	struct dt_descriptor *dt = get_external_dt_desc();
885 
886 	if (!dt || !dt->blob)
887 		return;
888 
889 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
890 		panic("Failed to add OP-TEE Device Tree node");
891 
892 	if (config_psci(dt))
893 		panic("Failed to config PSCI");
894 
895 #ifdef CFG_CORE_RESERVED_SHM
896 	if (mark_static_shm_as_reserved(dt))
897 		panic("Failed to config non-secure memory");
898 #endif
899 
900 	if (mark_tzdram_as_reserved(dt))
901 		panic("Failed to config secure memory");
902 }
903 #else /*CFG_DT*/
904 static void update_external_dt(void)
905 {
906 }
907 #endif /*!CFG_DT*/
908 
909 #ifdef CFG_NS_VIRTUALIZATION
910 static TEE_Result virt_init_heap(void)
911 {
912 	/* We need to initialize pool for every virtual guest partition */
913 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
914 
915 	return TEE_SUCCESS;
916 }
917 preinit_early(virt_init_heap);
918 #endif
919 
920 void init_tee_runtime(void)
921 {
922 #ifndef CFG_WITH_PAGER
923 	/* Pager initializes TA RAM early */
924 	core_mmu_init_ta_ram();
925 #endif
926 	/*
927 	 * With virtualization we call this function when creating the
928 	 * OP-TEE partition instead.
929 	 */
930 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
931 		call_preinitcalls();
932 	call_initcalls();
933 
934 	/*
935 	 * These two functions uses crypto_rng_read() to initialize the
936 	 * pauth keys. Once call_initcalls() returns we're guaranteed that
937 	 * crypto_rng_read() is ready to be used.
938 	 */
939 	thread_init_core_local_pauth_keys();
940 	thread_init_thread_pauth_keys();
941 
942 	/*
943 	 * Reinitialize canaries around the stacks with crypto_rng_read().
944 	 *
945 	 * TODO: Updating canaries when CFG_NS_VIRTUALIZATION is enabled will
946 	 * require synchronization between thread_check_canaries() and
947 	 * thread_update_canaries().
948 	 */
949 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
950 		thread_update_canaries();
951 }
952 
953 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
954 {
955 	thread_init_core_local_stacks();
956 	/*
957 	 * Mask asynchronous exceptions before switch to the thread vector
958 	 * as the thread handler requires those to be masked while
959 	 * executing with the temporary stack. The thread subsystem also
960 	 * asserts that the foreign interrupts are blocked when using most of
961 	 * its functions.
962 	 */
963 	thread_set_exceptions(THREAD_EXCP_ALL);
964 	primary_save_cntfrq();
965 	init_vfp_sec();
966 
967 	if (IS_ENABLED(CFG_CRYPTO_WITH_CE))
968 		check_crypto_extensions();
969 
970 	/*
971 	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
972 	 * set a current thread right now to avoid a chicken-and-egg problem
973 	 * (thread_init_boot_thread() sets the current thread but needs
974 	 * things set by init_runtime()).
975 	 */
976 	thread_get_core_local()->curr_thread = 0;
977 	init_runtime(pageable_part);
978 
979 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
980 		/*
981 		 * Virtualization: We can't initialize threads right now because
982 		 * threads belong to "tee" part and will be initialized
983 		 * separately per each new virtual guest. So, we'll clear
984 		 * "curr_thread" and call it done.
985 		 */
986 		thread_get_core_local()->curr_thread = -1;
987 	} else {
988 		thread_init_boot_thread();
989 	}
990 	thread_init_primary();
991 	thread_init_per_cpu();
992 	init_sec_mon(nsec_entry);
993 }
994 
995 static bool cpu_nmfi_enabled(void)
996 {
997 #if defined(ARM32)
998 	return read_sctlr() & SCTLR_NMFI;
999 #else
1000 	/* Note: ARM64 does not feature non-maskable FIQ support. */
1001 	return false;
1002 #endif
1003 }
1004 
1005 /*
1006  * Note: this function is weak just to make it possible to exclude it from
1007  * the unpaged area.
1008  */
1009 void __weak boot_init_primary_late(unsigned long fdt __unused,
1010 				   unsigned long manifest __unused)
1011 {
1012 	size_t fdt_size = CFG_DTB_MAX_SIZE;
1013 
1014 	if (IS_ENABLED(CFG_TRANSFER_LIST) && mapped_tl) {
1015 		struct transfer_list_entry *tl_e = NULL;
1016 
1017 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1018 		if (tl_e)
1019 			fdt_size = tl_e->data_size;
1020 	}
1021 
1022 	init_external_dt(boot_arg_fdt, fdt_size);
1023 	reinit_manifest_dt();
1024 #ifdef CFG_CORE_SEL1_SPMC
1025 	tpm_map_log_area(get_manifest_dt());
1026 #else
1027 	tpm_map_log_area(get_external_dt());
1028 #endif
1029 	discover_nsec_memory();
1030 	update_external_dt();
1031 	configure_console_from_dt();
1032 
1033 	IMSG("OP-TEE version: %s", core_v_str);
1034 	if (IS_ENABLED(CFG_INSECURE)) {
1035 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1036 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1037 	}
1038 	IMSG("Primary CPU initializing");
1039 #ifdef CFG_CORE_ASLR
1040 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1041 	     (unsigned long)boot_mmu_config.map_offset, VCORE_START_VA);
1042 #endif
1043 	if (IS_ENABLED(CFG_MEMTAG))
1044 		DMSG("Memory tagging %s",
1045 		     memtag_is_enabled() ?  "enabled" : "disabled");
1046 
1047 	/* Check if platform needs NMFI workaround */
1048 	if (cpu_nmfi_enabled())	{
1049 		if (!IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1050 			IMSG("WARNING: This ARM core has NMFI enabled, please apply workaround!");
1051 	} else {
1052 		if (IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1053 			IMSG("WARNING: This ARM core does not have NMFI enabled, no need for workaround");
1054 	}
1055 
1056 	boot_primary_init_intc();
1057 	init_vfp_nsec();
1058 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1059 		IMSG("Initializing virtualization support");
1060 		core_mmu_init_virtualization();
1061 	} else {
1062 		init_tee_runtime();
1063 	}
1064 	call_finalcalls();
1065 	IMSG("Primary CPU switching to normal world boot");
1066 }
1067 
1068 static void init_secondary_helper(unsigned long nsec_entry)
1069 {
1070 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1071 
1072 	/*
1073 	 * Mask asynchronous exceptions before switch to the thread vector
1074 	 * as the thread handler requires those to be masked while
1075 	 * executing with the temporary stack. The thread subsystem also
1076 	 * asserts that the foreign interrupts are blocked when using most of
1077 	 * its functions.
1078 	 */
1079 	thread_set_exceptions(THREAD_EXCP_ALL);
1080 
1081 	secondary_init_cntfrq();
1082 	thread_init_per_cpu();
1083 	init_sec_mon(nsec_entry);
1084 	boot_secondary_init_intc();
1085 	init_vfp_sec();
1086 	init_vfp_nsec();
1087 
1088 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1089 }
1090 
1091 /*
1092  * Note: this function is weak just to make it possible to exclude it from
1093  * the unpaged area so that it lies in the init area.
1094  */
1095 void __weak boot_init_primary_early(void)
1096 {
1097 	unsigned long pageable_part = 0;
1098 	unsigned long e = PADDR_INVALID;
1099 	struct transfer_list_entry *tl_e = NULL;
1100 
1101 	if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW))
1102 		e = boot_arg_nsec_entry;
1103 
1104 	if (IS_ENABLED(CFG_TRANSFER_LIST) && boot_arg_transfer_list) {
1105 		/* map and save the TL */
1106 		mapped_tl = transfer_list_map(boot_arg_transfer_list);
1107 		if (!mapped_tl)
1108 			panic("Failed to map transfer list");
1109 
1110 		transfer_list_dump(mapped_tl);
1111 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1112 		if (tl_e) {
1113 			/*
1114 			 * Expand the data size of the DTB entry to the maximum
1115 			 * allocable mapped memory to reserve sufficient space
1116 			 * for inserting new nodes, avoid potentially corrupting
1117 			 * next entries.
1118 			 */
1119 			uint32_t dtb_max_sz = mapped_tl->max_size -
1120 					      mapped_tl->size + tl_e->data_size;
1121 
1122 			if (!transfer_list_set_data_size(mapped_tl, tl_e,
1123 							 dtb_max_sz)) {
1124 				EMSG("Failed to extend DTB size to %#"PRIx32,
1125 				     dtb_max_sz);
1126 				panic();
1127 			}
1128 		}
1129 		tl_e = transfer_list_find(mapped_tl, TL_TAG_OPTEE_PAGABLE_PART);
1130 	}
1131 
1132 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1133 		if (IS_ENABLED(CFG_TRANSFER_LIST) && tl_e)
1134 			pageable_part =
1135 				get_le64(transfer_list_entry_data(tl_e));
1136 		else
1137 			pageable_part = boot_arg_pageable_part;
1138 	}
1139 
1140 	init_primary(pageable_part, e);
1141 }
1142 
1143 static void boot_save_transfer_list(unsigned long zero_reg,
1144 				    unsigned long transfer_list,
1145 				    unsigned long fdt)
1146 {
1147 	struct transfer_list_header *tl = (void *)transfer_list;
1148 	struct transfer_list_entry *tl_e = NULL;
1149 
1150 	if (zero_reg != 0)
1151 		panic("Incorrect transfer list register convention");
1152 
1153 	if (!IS_ALIGNED_WITH_TYPE(transfer_list, struct transfer_list_header) ||
1154 	    !IS_ALIGNED(transfer_list, TL_ALIGNMENT_FROM_ORDER(tl->alignment)))
1155 		panic("Transfer list base address is not aligned");
1156 
1157 	if (transfer_list_check_header(tl) == TL_OPS_NONE)
1158 		panic("Invalid transfer list");
1159 
1160 	tl_e = transfer_list_find(tl, TL_TAG_FDT);
1161 	if (fdt != (unsigned long)transfer_list_entry_data(tl_e))
1162 		panic("DT does not match to the DT entry of the TL");
1163 
1164 	boot_arg_transfer_list = transfer_list;
1165 }
1166 
1167 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1168 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1169 				  unsigned long a1 __unused)
1170 {
1171 	init_secondary_helper(PADDR_INVALID);
1172 	return 0;
1173 }
1174 #else
1175 void boot_init_secondary(unsigned long nsec_entry)
1176 {
1177 	init_secondary_helper(nsec_entry);
1178 }
1179 #endif
1180 
1181 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1182 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1183 			    uintptr_t context_id)
1184 {
1185 	ns_entry_contexts[core_idx].entry_point = entry;
1186 	ns_entry_contexts[core_idx].context_id = context_id;
1187 	dsb_ishst();
1188 }
1189 
1190 int boot_core_release(size_t core_idx, paddr_t entry)
1191 {
1192 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1193 		return -1;
1194 
1195 	ns_entry_contexts[core_idx].entry_point = entry;
1196 	dmb();
1197 	spin_table[core_idx] = 1;
1198 	dsb();
1199 	sev();
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * spin until secondary boot request, then returns with
1206  * the secondary core entry address.
1207  */
1208 struct ns_entry_context *boot_core_hpen(void)
1209 {
1210 #ifdef CFG_PSCI_ARM32
1211 	return &ns_entry_contexts[get_core_pos()];
1212 #else
1213 	do {
1214 		wfe();
1215 	} while (!spin_table[get_core_pos()]);
1216 	dmb();
1217 	return &ns_entry_contexts[get_core_pos()];
1218 #endif
1219 }
1220 #endif
1221 
1222 #if defined(CFG_CORE_ASLR)
1223 #if defined(CFG_DT)
1224 unsigned long __weak get_aslr_seed(void)
1225 {
1226 	void *fdt = NULL;
1227 	int rc = 0;
1228 	const uint64_t *seed = NULL;
1229 	int offs = 0;
1230 	int len = 0;
1231 
1232 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC))
1233 		fdt = (void *)boot_arg_fdt;
1234 
1235 	if (!fdt) {
1236 		DMSG("No fdt");
1237 		goto err;
1238 	}
1239 
1240 	rc = fdt_check_header(fdt);
1241 	if (rc) {
1242 		DMSG("Bad fdt: %d", rc);
1243 		goto err;
1244 	}
1245 
1246 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1247 	if (offs < 0) {
1248 		DMSG("Cannot find /secure-chosen");
1249 		goto err;
1250 	}
1251 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1252 	if (!seed || len != sizeof(*seed)) {
1253 		DMSG("Cannot find valid kaslr-seed");
1254 		goto err;
1255 	}
1256 
1257 	return fdt64_to_cpu(fdt64_ld(seed));
1258 
1259 err:
1260 	/* Try platform implementation */
1261 	return plat_get_aslr_seed();
1262 }
1263 #else /*!CFG_DT*/
1264 unsigned long __weak get_aslr_seed(void)
1265 {
1266 	/* Try platform implementation */
1267 	return plat_get_aslr_seed();
1268 }
1269 #endif /*!CFG_DT*/
1270 #endif /*CFG_CORE_ASLR*/
1271 
1272 static void *get_fdt_from_boot_info(struct ffa_boot_info_header_1_1 *hdr)
1273 {
1274 	struct ffa_boot_info_1_1 *desc = NULL;
1275 	uint8_t content_fmt = 0;
1276 	uint8_t name_fmt = 0;
1277 	void *fdt = NULL;
1278 	int ret = 0;
1279 
1280 	if (hdr->signature != FFA_BOOT_INFO_SIGNATURE) {
1281 		EMSG("Bad boot info signature %#"PRIx32, hdr->signature);
1282 		panic();
1283 	}
1284 	if (hdr->version != FFA_BOOT_INFO_VERSION) {
1285 		EMSG("Bad boot info version %#"PRIx32, hdr->version);
1286 		panic();
1287 	}
1288 	if (hdr->desc_count != 1) {
1289 		EMSG("Bad boot info descriptor count %#"PRIx32,
1290 		     hdr->desc_count);
1291 		panic();
1292 	}
1293 	desc = (void *)((vaddr_t)hdr + hdr->desc_offset);
1294 	name_fmt = desc->flags & FFA_BOOT_INFO_FLAG_NAME_FORMAT_MASK;
1295 	if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_STRING)
1296 		DMSG("Boot info descriptor name \"%16s\"", desc->name);
1297 	else if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_UUID)
1298 		DMSG("Boot info descriptor UUID %pUl", (void *)desc->name);
1299 	else
1300 		DMSG("Boot info descriptor: unknown name format %"PRIu8,
1301 		     name_fmt);
1302 
1303 	content_fmt = (desc->flags & FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_MASK) >>
1304 		      FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
1305 	if (content_fmt != FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR) {
1306 		EMSG("Bad boot info content format %"PRIu8", expected %u (address)",
1307 		     content_fmt, FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR);
1308 		panic();
1309 	}
1310 
1311 	fdt = (void *)(vaddr_t)desc->contents;
1312 	ret = fdt_check_full(fdt, desc->size);
1313 	if (ret < 0) {
1314 		EMSG("Invalid Device Tree at %p: error %d", fdt, ret);
1315 		panic();
1316 	}
1317 	return fdt;
1318 }
1319 
1320 static void get_sec_mem_from_manifest(void *fdt, paddr_t *base, size_t *size)
1321 {
1322 	int ret = 0;
1323 	uint64_t num = 0;
1324 
1325 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
1326 	if (ret < 0) {
1327 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
1328 		panic();
1329 	}
1330 	ret = dt_getprop_as_number(fdt, 0, "load-address", &num);
1331 	if (ret < 0) {
1332 		EMSG("Can't read \"load-address\" from FF-A manifest at %p: error %d",
1333 		     fdt, ret);
1334 		panic();
1335 	}
1336 	*base = num;
1337 	/* "mem-size" is currently an undocumented extension to the spec. */
1338 	ret = dt_getprop_as_number(fdt, 0, "mem-size", &num);
1339 	if (ret < 0) {
1340 		EMSG("Can't read \"mem-size\" from FF-A manifest at %p: error %d",
1341 		     fdt, ret);
1342 		panic();
1343 	}
1344 	*size = num;
1345 }
1346 
1347 void __weak boot_save_args(unsigned long a0, unsigned long a1,
1348 			   unsigned long a2, unsigned long a3,
1349 			   unsigned long a4 __maybe_unused)
1350 {
1351 	/*
1352 	 * Register use:
1353 	 *
1354 	 * Scenario A: Default arguments
1355 	 * a0   - CFG_CORE_FFA=y && CFG_CORE_SEL2_SPMC=n:
1356 	 *        if non-NULL holds the TOS FW config [1] address
1357 	 *      - CFG_CORE_FFA=y &&
1358 		  (CFG_CORE_SEL2_SPMC=y || CFG_CORE_EL3_SPMC=y):
1359 	 *        address of FF-A Boot Information Blob
1360 	 *      - CFG_CORE_FFA=n:
1361 	 *        if non-NULL holds the pagable part address
1362 	 * a1	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1363 	 *	  Armv7 standard bootarg #1 (kept track of in entry_a32.S)
1364 	 * a2   - CFG_CORE_SEL2_SPMC=n:
1365 	 *        if non-NULL holds the system DTB address
1366 	 *	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1367 	 *	  Armv7 standard bootarg #2 (system DTB address, kept track
1368 	 *	  of in entry_a32.S)
1369 	 * a3	- Not used
1370 	 * a4	- CFG_WITH_ARM_TRUSTED_FW=n:
1371 	 *	  Non-secure entry address
1372 	 *
1373 	 * [1] A TF-A concept: TOS_FW_CONFIG - Trusted OS Firmware
1374 	 * configuration file. Used by Trusted OS (BL32), that is, OP-TEE
1375 	 * here. This is also called Manifest DT, related to the Manifest DT
1376 	 * passed in the FF-A Boot Information Blob, but with a different
1377 	 * compatible string.
1378 
1379 	 * Scenario B: FW Handoff via Transfer List
1380 	 * Note: FF-A and non-secure entry are not yet supported with
1381 	 *       Transfer List
1382 	 * a0	- DTB address or 0 (AArch64)
1383 	 *	- must be 0 (AArch32)
1384 	 * a1	- TRANSFER_LIST_SIGNATURE | REG_CONVENTION_VER_MASK
1385 	 * a2	- must be 0 (AArch64)
1386 	 *	- DTB address or 0 (AArch32)
1387 	 * a3	- Transfer list base address
1388 	 * a4	- Not used
1389 	 */
1390 
1391 	if (IS_ENABLED(CFG_TRANSFER_LIST) &&
1392 	    a1 == (TRANSFER_LIST_SIGNATURE | REG_CONVENTION_VER_MASK)) {
1393 		if (IS_ENABLED(CFG_ARM64_core)) {
1394 			boot_save_transfer_list(a2, a3, a0);
1395 			boot_arg_fdt = a0;
1396 		} else {
1397 			boot_save_transfer_list(a0, a3, a2);
1398 			boot_arg_fdt = a2;
1399 		}
1400 		return;
1401 	}
1402 
1403 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC)) {
1404 #if defined(CFG_DT_ADDR)
1405 		boot_arg_fdt = CFG_DT_ADDR;
1406 #else
1407 		boot_arg_fdt = a2;
1408 #endif
1409 	}
1410 
1411 	if (IS_ENABLED(CFG_CORE_FFA)) {
1412 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) ||
1413 		    IS_ENABLED(CFG_CORE_EL3_SPMC))
1414 			init_manifest_dt(get_fdt_from_boot_info((void *)a0));
1415 		else
1416 			init_manifest_dt((void *)a0);
1417 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) &&
1418 		    IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)) {
1419 			paddr_t base = 0;
1420 			size_t size = 0;
1421 
1422 			get_sec_mem_from_manifest(get_manifest_dt(),
1423 						  &base, &size);
1424 			core_mmu_set_secure_memory(base, size);
1425 		}
1426 	} else {
1427 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1428 #if defined(CFG_PAGEABLE_ADDR)
1429 			boot_arg_pageable_part = CFG_PAGEABLE_ADDR;
1430 #else
1431 			boot_arg_pageable_part = a0;
1432 #endif
1433 		}
1434 		if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW)) {
1435 #if defined(CFG_NS_ENTRY_ADDR)
1436 			boot_arg_nsec_entry = CFG_NS_ENTRY_ADDR;
1437 #else
1438 			boot_arg_nsec_entry = a4;
1439 #endif
1440 		}
1441 	}
1442 }
1443 
1444 #if defined(CFG_TRANSFER_LIST)
1445 static TEE_Result release_transfer_list(void)
1446 {
1447 	struct dt_descriptor *dt = get_external_dt_desc();
1448 
1449 	if (!mapped_tl)
1450 		return TEE_SUCCESS;
1451 
1452 	if (dt) {
1453 		int ret = 0;
1454 		struct transfer_list_entry *tl_e = NULL;
1455 
1456 		/*
1457 		 * Pack the DTB and update the transfer list before un-mapping
1458 		 */
1459 		ret = fdt_pack(dt->blob);
1460 		if (ret < 0) {
1461 			EMSG("Failed to pack Device Tree at 0x%" PRIxPA
1462 			     ": error %d", virt_to_phys(dt->blob), ret);
1463 			panic();
1464 		}
1465 
1466 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1467 		assert(dt->blob == transfer_list_entry_data(tl_e));
1468 		transfer_list_set_data_size(mapped_tl, tl_e,
1469 					    fdt_totalsize(dt->blob));
1470 		dt->blob = NULL;
1471 	}
1472 
1473 	transfer_list_unmap_sync(mapped_tl);
1474 	mapped_tl = NULL;
1475 
1476 	return TEE_SUCCESS;
1477 }
1478 
1479 boot_final(release_transfer_list);
1480 #endif
1481