xref: /optee_os/core/arch/arm/kernel/boot.c (revision fab37ad7dc719c507661870039f7bcf91f5a6029)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2023, Linaro Limited
4  * Copyright (c) 2023, Arm Limited
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <console.h>
12 #include <crypto/crypto.h>
13 #include <drivers/gic.h>
14 #include <dt-bindings/interrupt-controller/arm-gic.h>
15 #include <ffa.h>
16 #include <initcall.h>
17 #include <inttypes.h>
18 #include <io.h>
19 #include <keep.h>
20 #include <kernel/asan.h>
21 #include <kernel/boot.h>
22 #include <kernel/dt.h>
23 #include <kernel/linker.h>
24 #include <kernel/misc.h>
25 #include <kernel/panic.h>
26 #include <kernel/tee_misc.h>
27 #include <kernel/thread.h>
28 #include <kernel/tpm.h>
29 #include <kernel/transfer_list.h>
30 #include <libfdt.h>
31 #include <malloc.h>
32 #include <memtag.h>
33 #include <mm/core_memprot.h>
34 #include <mm/core_mmu.h>
35 #include <mm/fobj.h>
36 #include <mm/tee_mm.h>
37 #include <mm/tee_pager.h>
38 #include <sm/psci.h>
39 #include <trace.h>
40 #include <utee_defines.h>
41 #include <util.h>
42 
43 #include <platform_config.h>
44 
45 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
46 #include <sm/sm.h>
47 #endif
48 
49 #if defined(CFG_WITH_VFP)
50 #include <kernel/vfp.h>
51 #endif
52 
53 /*
54  * In this file we're using unsigned long to represent physical pointers as
55  * they are received in a single register when OP-TEE is initially entered.
56  * This limits 32-bit systems to only use make use of the lower 32 bits
57  * of a physical address for initial parameters.
58  *
59  * 64-bit systems on the other hand can use full 64-bit physical pointers.
60  */
61 #define PADDR_INVALID		ULONG_MAX
62 
63 #if defined(CFG_BOOT_SECONDARY_REQUEST)
64 struct ns_entry_context {
65 	uintptr_t entry_point;
66 	uintptr_t context_id;
67 };
68 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
69 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
70 #endif
71 
72 #ifdef CFG_BOOT_SYNC_CPU
73 /*
74  * Array used when booting, to synchronize cpu.
75  * When 0, the cpu has not started.
76  * When 1, it has started
77  */
78 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
79 DECLARE_KEEP_PAGER(sem_cpu_sync);
80 #endif
81 
82 static void *manifest_dt __nex_bss;
83 static unsigned long boot_arg_fdt __nex_bss;
84 static unsigned long boot_arg_nsec_entry __nex_bss;
85 static unsigned long boot_arg_pageable_part __nex_bss;
86 static unsigned long boot_arg_transfer_list __nex_bss;
87 static struct transfer_list_header *mapped_tl __nex_bss;
88 
89 #ifdef CFG_SECONDARY_INIT_CNTFRQ
90 static uint32_t cntfrq;
91 #endif
92 
93 /* May be overridden in plat-$(PLATFORM)/main.c */
94 __weak void plat_primary_init_early(void)
95 {
96 }
97 DECLARE_KEEP_PAGER(plat_primary_init_early);
98 
99 /* May be overridden in plat-$(PLATFORM)/main.c */
100 __weak void boot_primary_init_intc(void)
101 {
102 }
103 
104 /* May be overridden in plat-$(PLATFORM)/main.c */
105 __weak void boot_secondary_init_intc(void)
106 {
107 }
108 
109 /* May be overridden in plat-$(PLATFORM)/main.c */
110 __weak unsigned long plat_get_aslr_seed(void)
111 {
112 	DMSG("Warning: no ASLR seed");
113 
114 	return 0;
115 }
116 
117 #if defined(_CFG_CORE_STACK_PROTECTOR) || defined(CFG_WITH_STACK_CANARIES)
118 /* Generate random stack canary value on boot up */
119 __weak void plat_get_random_stack_canaries(void *buf, size_t ncan, size_t size)
120 {
121 	TEE_Result ret = TEE_ERROR_GENERIC;
122 	size_t i = 0;
123 
124 	assert(buf && ncan && size);
125 
126 	/*
127 	 * With virtualization the RNG is not initialized in Nexus core.
128 	 * Need to override with platform specific implementation.
129 	 */
130 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
131 		IMSG("WARNING: Using fixed value for stack canary");
132 		memset(buf, 0xab, ncan * size);
133 		goto out;
134 	}
135 
136 	ret = crypto_rng_read(buf, ncan * size);
137 	if (ret != TEE_SUCCESS)
138 		panic("Failed to generate random stack canary");
139 
140 out:
141 	/* Leave null byte in canary to prevent string base exploit */
142 	for (i = 0; i < ncan; i++)
143 		*((uint8_t *)buf + size * i) = 0;
144 }
145 #endif /* _CFG_CORE_STACK_PROTECTOR || CFG_WITH_STACK_CANARIES */
146 
147 /*
148  * This function is called as a guard after each smc call which is not
149  * supposed to return.
150  */
151 void __panic_at_smc_return(void)
152 {
153 	panic();
154 }
155 
156 #if defined(CFG_WITH_ARM_TRUSTED_FW)
157 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
158 {
159 	assert(nsec_entry == PADDR_INVALID);
160 	/* Do nothing as we don't have a secure monitor */
161 }
162 #else
163 /* May be overridden in plat-$(PLATFORM)/main.c */
164 __weak void init_sec_mon(unsigned long nsec_entry)
165 {
166 	struct sm_nsec_ctx *nsec_ctx;
167 
168 	assert(nsec_entry != PADDR_INVALID);
169 
170 	/* Initialize secure monitor */
171 	nsec_ctx = sm_get_nsec_ctx();
172 	nsec_ctx->mon_lr = nsec_entry;
173 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
174 	if (nsec_entry & 1)
175 		nsec_ctx->mon_spsr |= CPSR_T;
176 }
177 #endif
178 
179 #if defined(CFG_WITH_ARM_TRUSTED_FW)
180 static void init_vfp_nsec(void)
181 {
182 }
183 #else
184 static void init_vfp_nsec(void)
185 {
186 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
187 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
188 }
189 #endif
190 
191 static void check_crypto_extensions(void)
192 {
193 	bool ce_supported = true;
194 
195 	if (!feat_aes_implemented() &&
196 	    IS_ENABLED(CFG_CRYPTO_AES_ARM_CE)) {
197 		EMSG("AES instructions are not supported");
198 		ce_supported = false;
199 	}
200 
201 	if (!feat_sha1_implemented() &&
202 	    IS_ENABLED(CFG_CRYPTO_SHA1_ARM_CE)) {
203 		EMSG("SHA1 instructions are not supported");
204 		ce_supported = false;
205 	}
206 
207 	if (!feat_sha256_implemented() &&
208 	    IS_ENABLED(CFG_CRYPTO_SHA256_ARM_CE)) {
209 		EMSG("SHA256 instructions are not supported");
210 		ce_supported = false;
211 	}
212 
213 	/* Check aarch64 specific instructions */
214 	if (IS_ENABLED(CFG_ARM64_core)) {
215 		if (!feat_sha512_implemented() &&
216 		    IS_ENABLED(CFG_CRYPTO_SHA512_ARM_CE)) {
217 			EMSG("SHA512 instructions are not supported");
218 			ce_supported = false;
219 		}
220 
221 		if (!feat_sha3_implemented() &&
222 		    IS_ENABLED(CFG_CRYPTO_SHA3_ARM_CE)) {
223 			EMSG("SHA3 instructions are not supported");
224 			ce_supported = false;
225 		}
226 
227 		if (!feat_sm3_implemented() &&
228 		    IS_ENABLED(CFG_CRYPTO_SM3_ARM_CE)) {
229 			EMSG("SM3 instructions are not supported");
230 			ce_supported = false;
231 		}
232 
233 		if (!feat_sm4_implemented() &&
234 		    IS_ENABLED(CFG_CRYPTO_SM4_ARM_CE)) {
235 			EMSG("SM4 instructions are not supported");
236 			ce_supported = false;
237 		}
238 	}
239 
240 	if (!ce_supported)
241 		panic("HW doesn't support CE instructions");
242 }
243 
244 #if defined(CFG_WITH_VFP)
245 
246 #ifdef ARM32
247 static void init_vfp_sec(void)
248 {
249 	uint32_t cpacr = read_cpacr();
250 
251 	/*
252 	 * Enable Advanced SIMD functionality.
253 	 * Enable use of D16-D31 of the Floating-point Extension register
254 	 * file.
255 	 */
256 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
257 	/*
258 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
259 	 * mode.
260 	 */
261 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
262 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
263 	write_cpacr(cpacr);
264 }
265 #endif /* ARM32 */
266 
267 #ifdef ARM64
268 static void init_vfp_sec(void)
269 {
270 	/* Not using VFP until thread_kernel_enable_vfp() */
271 	vfp_disable();
272 }
273 #endif /* ARM64 */
274 
275 #else /* CFG_WITH_VFP */
276 
277 static void init_vfp_sec(void)
278 {
279 	/* Not using VFP */
280 }
281 #endif
282 
283 #ifdef CFG_SECONDARY_INIT_CNTFRQ
284 static void primary_save_cntfrq(void)
285 {
286 	assert(cntfrq == 0);
287 
288 	/*
289 	 * CNTFRQ should be initialized on the primary CPU by a
290 	 * previous boot stage
291 	 */
292 	cntfrq = read_cntfrq();
293 }
294 
295 static void secondary_init_cntfrq(void)
296 {
297 	assert(cntfrq != 0);
298 	write_cntfrq(cntfrq);
299 }
300 #else /* CFG_SECONDARY_INIT_CNTFRQ */
301 static void primary_save_cntfrq(void)
302 {
303 }
304 
305 static void secondary_init_cntfrq(void)
306 {
307 }
308 #endif
309 
310 #ifdef CFG_CORE_SANITIZE_KADDRESS
311 static void init_run_constructors(void)
312 {
313 	const vaddr_t *ctor;
314 
315 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
316 		((void (*)(void))(*ctor))();
317 }
318 
319 static void init_asan(void)
320 {
321 
322 	/*
323 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
324 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
325 	 * Since all the needed values to calculate the value of
326 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
327 	 * calculate it in advance and hard code it into the platform
328 	 * conf.mk. Here where we have all the needed values we double
329 	 * check that the compiler is supplied the correct value.
330 	 */
331 
332 #define __ASAN_SHADOW_START \
333 	ROUNDUP(TEE_RAM_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
334 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
335 #define __CFG_ASAN_SHADOW_OFFSET \
336 	(__ASAN_SHADOW_START - (TEE_RAM_START / 8))
337 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
338 #undef __ASAN_SHADOW_START
339 #undef __CFG_ASAN_SHADOW_OFFSET
340 
341 	/*
342 	 * Assign area covered by the shadow area, everything from start up
343 	 * to the beginning of the shadow area.
344 	 */
345 	asan_set_shadowed((void *)TEE_LOAD_ADDR, &__asan_shadow_start);
346 
347 	/*
348 	 * Add access to areas that aren't opened automatically by a
349 	 * constructor.
350 	 */
351 	asan_tag_access(&__ctor_list, &__ctor_end);
352 	asan_tag_access(__rodata_start, __rodata_end);
353 #ifdef CFG_WITH_PAGER
354 	asan_tag_access(__pageable_start, __pageable_end);
355 #endif /*CFG_WITH_PAGER*/
356 	asan_tag_access(__nozi_start, __nozi_end);
357 #ifdef ARM32
358 	asan_tag_access(__exidx_start, __exidx_end);
359 	asan_tag_access(__extab_start, __extab_end);
360 #endif
361 
362 	init_run_constructors();
363 
364 	/* Everything is tagged correctly, let's start address sanitizing. */
365 	asan_start();
366 }
367 #else /*CFG_CORE_SANITIZE_KADDRESS*/
368 static void init_asan(void)
369 {
370 }
371 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
372 
373 #if defined(CFG_MEMTAG)
374 /* Called from entry_a64.S only when MEMTAG is configured */
375 void boot_init_memtag(void)
376 {
377 	paddr_t base = 0;
378 	paddr_size_t size = 0;
379 
380 	memtag_init_ops(feat_mte_implemented());
381 	core_mmu_get_secure_memory(&base, &size);
382 	memtag_set_tags((void *)(vaddr_t)base, size, 0);
383 }
384 #endif
385 
386 #ifdef CFG_WITH_PAGER
387 
388 #ifdef CFG_CORE_SANITIZE_KADDRESS
389 static void carve_out_asan_mem(tee_mm_pool_t *pool)
390 {
391 	const size_t s = pool->hi - pool->lo;
392 	tee_mm_entry_t *mm;
393 	paddr_t apa = ASAN_MAP_PA;
394 	size_t asz = ASAN_MAP_SZ;
395 
396 	if (core_is_buffer_outside(apa, asz, pool->lo, s))
397 		return;
398 
399 	/* Reserve the shadow area */
400 	if (!core_is_buffer_inside(apa, asz, pool->lo, s)) {
401 		if (apa < pool->lo) {
402 			/*
403 			 * ASAN buffer is overlapping with the beginning of
404 			 * the pool.
405 			 */
406 			asz -= pool->lo - apa;
407 			apa = pool->lo;
408 		} else {
409 			/*
410 			 * ASAN buffer is overlapping with the end of the
411 			 * pool.
412 			 */
413 			asz = pool->hi - apa;
414 		}
415 	}
416 	mm = tee_mm_alloc2(pool, apa, asz);
417 	assert(mm);
418 }
419 #else
420 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused)
421 {
422 }
423 #endif
424 
425 static void print_pager_pool_size(void)
426 {
427 	struct tee_pager_stats __maybe_unused stats;
428 
429 	tee_pager_get_stats(&stats);
430 	IMSG("Pager pool size: %zukB",
431 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
432 }
433 
434 static void init_vcore(tee_mm_pool_t *mm_vcore)
435 {
436 	const vaddr_t begin = VCORE_START_VA;
437 	size_t size = TEE_RAM_VA_SIZE;
438 
439 #ifdef CFG_CORE_SANITIZE_KADDRESS
440 	/* Carve out asan memory, flat maped after core memory */
441 	if (begin + size > ASAN_SHADOW_PA)
442 		size = ASAN_MAP_PA - begin;
443 #endif
444 
445 	if (!tee_mm_init(mm_vcore, begin, size, SMALL_PAGE_SHIFT,
446 			 TEE_MM_POOL_NO_FLAGS))
447 		panic("tee_mm_vcore init failed");
448 }
449 
450 /*
451  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
452  * The init part is also paged just as the rest of the normal paged code, with
453  * the difference that it's preloaded during boot. When the backing store
454  * is configured the entire paged binary is copied in place and then also
455  * the init part. Since the init part has been relocated (references to
456  * addresses updated to compensate for the new load address) this has to be
457  * undone for the hashes of those pages to match with the original binary.
458  *
459  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
460  * unchanged.
461  */
462 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
463 {
464 #ifdef CFG_CORE_ASLR
465 	unsigned long *ptr = NULL;
466 	const uint32_t *reloc = NULL;
467 	const uint32_t *reloc_end = NULL;
468 	unsigned long offs = boot_mmu_config.map_offset;
469 	const struct boot_embdata *embdata = (const void *)__init_end;
470 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_LOAD_ADDR;
471 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_LOAD_ADDR;
472 
473 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
474 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
475 
476 	for (; reloc < reloc_end; reloc++) {
477 		if (*reloc < addr_start)
478 			continue;
479 		if (*reloc >= addr_end)
480 			break;
481 		ptr = (void *)(paged_store + *reloc - addr_start);
482 		*ptr -= offs;
483 	}
484 #endif
485 }
486 
487 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
488 				   void *store)
489 {
490 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
491 #ifdef CFG_CORE_ASLR
492 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
493 	const struct boot_embdata *embdata = (const void *)__init_end;
494 	const void *reloc = __init_end + embdata->reloc_offset;
495 
496 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
497 					 reloc, embdata->reloc_len, store);
498 #else
499 	return fobj_ro_paged_alloc(num_pages, hashes, store);
500 #endif
501 }
502 
503 static void init_runtime(unsigned long pageable_part)
504 {
505 	size_t n;
506 	size_t init_size = (size_t)(__init_end - __init_start);
507 	size_t pageable_start = (size_t)__pageable_start;
508 	size_t pageable_end = (size_t)__pageable_end;
509 	size_t pageable_size = pageable_end - pageable_start;
510 	vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR +
511 			     VCORE_START_VA;
512 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
513 			   TEE_SHA256_HASH_SIZE;
514 	const struct boot_embdata *embdata = (const void *)__init_end;
515 	const void *tmp_hashes = NULL;
516 	tee_mm_entry_t *mm = NULL;
517 	struct fobj *fobj = NULL;
518 	uint8_t *paged_store = NULL;
519 	uint8_t *hashes = NULL;
520 
521 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
522 	assert(embdata->total_len >= embdata->hashes_offset +
523 				     embdata->hashes_len);
524 	assert(hash_size == embdata->hashes_len);
525 
526 	tmp_hashes = __init_end + embdata->hashes_offset;
527 
528 	init_asan();
529 
530 	/* Add heap2 first as heap1 may be too small as initial bget pool */
531 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
532 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
533 
534 	/*
535 	 * This needs to be initialized early to support address lookup
536 	 * in MEM_AREA_TEE_RAM
537 	 */
538 	tee_pager_early_init();
539 
540 	hashes = malloc(hash_size);
541 	IMSG_RAW("\n");
542 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
543 	assert(hashes);
544 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
545 
546 	/*
547 	 * Need tee_mm_sec_ddr initialized to be able to allocate secure
548 	 * DDR below.
549 	 */
550 	core_mmu_init_ta_ram();
551 
552 	carve_out_asan_mem(&tee_mm_sec_ddr);
553 
554 	mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size);
555 	assert(mm);
556 	paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
557 				   pageable_size);
558 	/*
559 	 * Load pageable part in the dedicated allocated area:
560 	 * - Move pageable non-init part into pageable area. Note bootloader
561 	 *   may have loaded it anywhere in TA RAM hence use memmove().
562 	 * - Copy pageable init part from current location into pageable area.
563 	 */
564 	memmove(paged_store + init_size,
565 		phys_to_virt(pageable_part,
566 			     core_mmu_get_type_by_pa(pageable_part),
567 			     __pageable_part_end - __pageable_part_start),
568 		__pageable_part_end - __pageable_part_start);
569 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
570 	/*
571 	 * Undo eventual relocation for the init part so the hash checks
572 	 * can pass.
573 	 */
574 	undo_init_relocation(paged_store);
575 
576 	/* Check that hashes of what's in pageable area is OK */
577 	DMSG("Checking hashes of pageable area");
578 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
579 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
580 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
581 		TEE_Result res;
582 
583 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
584 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
585 		if (res != TEE_SUCCESS) {
586 			EMSG("Hash failed for page %zu at %p: res 0x%x",
587 			     n, (void *)page, res);
588 			panic();
589 		}
590 	}
591 
592 	/*
593 	 * Assert prepaged init sections are page aligned so that nothing
594 	 * trails uninited at the end of the premapped init area.
595 	 */
596 	assert(!(init_size & SMALL_PAGE_MASK));
597 
598 	/*
599 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
600 	 * is supplied to tee_pager_init() below.
601 	 */
602 	init_vcore(&tee_mm_vcore);
603 
604 	/*
605 	 * Assign alias area for pager end of the small page block the rest
606 	 * of the binary is loaded into. We're taking more than needed, but
607 	 * we're guaranteed to not need more than the physical amount of
608 	 * TZSRAM.
609 	 */
610 	mm = tee_mm_alloc2(&tee_mm_vcore,
611 			   (vaddr_t)tee_mm_vcore.lo +
612 			   tee_mm_vcore.size - TZSRAM_SIZE,
613 			   TZSRAM_SIZE);
614 	assert(mm);
615 	tee_pager_set_alias_area(mm);
616 
617 	/*
618 	 * Claim virtual memory which isn't paged.
619 	 * Linear memory (flat map core memory) ends there.
620 	 */
621 	mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA,
622 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
623 	assert(mm);
624 
625 	/*
626 	 * Allocate virtual memory for the pageable area and let the pager
627 	 * take charge of all the pages already assigned to that memory.
628 	 */
629 	mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start,
630 			   pageable_size);
631 	assert(mm);
632 	fobj = ro_paged_alloc(mm, hashes, paged_store);
633 	assert(fobj);
634 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
635 				  fobj);
636 	fobj_put(fobj);
637 
638 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
639 	tee_pager_add_pages(pageable_start + init_size,
640 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
641 			    true);
642 	if (pageable_end < tzsram_end)
643 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
644 						   SMALL_PAGE_SIZE, true);
645 
646 	/*
647 	 * There may be physical pages in TZSRAM before the core load address.
648 	 * These pages can be added to the physical pages pool of the pager.
649 	 * This setup may happen when a the secure bootloader runs in TZRAM
650 	 * and its memory can be reused by OP-TEE once boot stages complete.
651 	 */
652 	tee_pager_add_pages(tee_mm_vcore.lo,
653 			(VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE,
654 			true);
655 
656 	print_pager_pool_size();
657 }
658 #else
659 
660 static void init_runtime(unsigned long pageable_part __unused)
661 {
662 	init_asan();
663 
664 	/*
665 	 * By default whole OP-TEE uses malloc, so we need to initialize
666 	 * it early. But, when virtualization is enabled, malloc is used
667 	 * only by TEE runtime, so malloc should be initialized later, for
668 	 * every virtual partition separately. Core code uses nex_malloc
669 	 * instead.
670 	 */
671 #ifdef CFG_NS_VIRTUALIZATION
672 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
673 					      __nex_heap_start);
674 #else
675 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
676 #endif
677 
678 	IMSG_RAW("\n");
679 }
680 #endif
681 
682 #if defined(CFG_DT)
683 static int add_optee_dt_node(struct dt_descriptor *dt)
684 {
685 	int offs;
686 	int ret;
687 
688 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
689 		DMSG("OP-TEE Device Tree node already exists!");
690 		return 0;
691 	}
692 
693 	offs = fdt_path_offset(dt->blob, "/firmware");
694 	if (offs < 0) {
695 		offs = add_dt_path_subnode(dt, "/", "firmware");
696 		if (offs < 0)
697 			return -1;
698 	}
699 
700 	offs = fdt_add_subnode(dt->blob, offs, "optee");
701 	if (offs < 0)
702 		return -1;
703 
704 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
705 				 "linaro,optee-tz");
706 	if (ret < 0)
707 		return -1;
708 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
709 	if (ret < 0)
710 		return -1;
711 
712 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
713 		/*
714 		 * The format of the interrupt property is defined by the
715 		 * binding of the interrupt domain root. In this case it's
716 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
717 		 * these.
718 		 *
719 		 * An SPI type of interrupt is indicated with a 0 in the
720 		 * first cell. A PPI type is indicated with value 1.
721 		 *
722 		 * The interrupt number goes in the second cell where
723 		 * SPIs ranges from 0 to 987 and PPI ranges from 0 to 15.
724 		 *
725 		 * Flags are passed in the third cells.
726 		 */
727 		uint32_t itr_trigger = 0;
728 		uint32_t itr_type = 0;
729 		uint32_t itr_id = 0;
730 		uint32_t val[3] = { };
731 
732 		/* PPI are visible only in current CPU cluster */
733 		static_assert(IS_ENABLED(CFG_CORE_FFA) ||
734 			      !CFG_CORE_ASYNC_NOTIF_GIC_INTID ||
735 			      (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
736 			       GIC_SPI_BASE) ||
737 			      ((CFG_TEE_CORE_NB_CORE <= 8) &&
738 			       (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
739 				GIC_PPI_BASE)));
740 
741 		if (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= GIC_SPI_BASE) {
742 			itr_type = GIC_SPI;
743 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_SPI_BASE;
744 			itr_trigger = IRQ_TYPE_EDGE_RISING;
745 		} else {
746 			itr_type = GIC_PPI;
747 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_PPI_BASE;
748 			itr_trigger = IRQ_TYPE_EDGE_RISING |
749 				      GIC_CPU_MASK_SIMPLE(CFG_TEE_CORE_NB_CORE);
750 		}
751 
752 		val[0] = TEE_U32_TO_BIG_ENDIAN(itr_type);
753 		val[1] = TEE_U32_TO_BIG_ENDIAN(itr_id);
754 		val[2] = TEE_U32_TO_BIG_ENDIAN(itr_trigger);
755 
756 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
757 				  sizeof(val));
758 		if (ret < 0)
759 			return -1;
760 	}
761 	return 0;
762 }
763 
764 #ifdef CFG_PSCI_ARM32
765 static int append_psci_compatible(void *fdt, int offs, const char *str)
766 {
767 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
768 }
769 
770 static int dt_add_psci_node(struct dt_descriptor *dt)
771 {
772 	int offs;
773 
774 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
775 		DMSG("PSCI Device Tree node already exists!");
776 		return 0;
777 	}
778 
779 	offs = add_dt_path_subnode(dt, "/", "psci");
780 	if (offs < 0)
781 		return -1;
782 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
783 		return -1;
784 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
785 		return -1;
786 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
787 		return -1;
788 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
789 		return -1;
790 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
791 		return -1;
792 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
793 		return -1;
794 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
795 		return -1;
796 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
797 		return -1;
798 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
799 		return -1;
800 	return 0;
801 }
802 
803 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
804 				    const char *prefix)
805 {
806 	const size_t prefix_len = strlen(prefix);
807 	size_t l;
808 	int plen;
809 	const char *prop;
810 
811 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
812 	if (!prop)
813 		return -1;
814 
815 	while (plen > 0) {
816 		if (memcmp(prop, prefix, prefix_len) == 0)
817 			return 0; /* match */
818 
819 		l = strlen(prop) + 1;
820 		prop += l;
821 		plen -= l;
822 	}
823 
824 	return -1;
825 }
826 
827 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
828 {
829 	int offs = 0;
830 
831 	while (1) {
832 		offs = fdt_next_node(dt->blob, offs, NULL);
833 		if (offs < 0)
834 			break;
835 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
836 			continue; /* already set */
837 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
838 			continue; /* no compatible */
839 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
840 			return -1;
841 		/* Need to restart scanning as offsets may have changed */
842 		offs = 0;
843 	}
844 	return 0;
845 }
846 
847 static int config_psci(struct dt_descriptor *dt)
848 {
849 	if (dt_add_psci_node(dt))
850 		return -1;
851 	return dt_add_psci_cpu_enable_methods(dt);
852 }
853 #else
854 static int config_psci(struct dt_descriptor *dt __unused)
855 {
856 	return 0;
857 }
858 #endif /*CFG_PSCI_ARM32*/
859 
860 #ifdef CFG_CORE_DYN_SHM
861 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs,
862 				       uint32_t cell_size)
863 {
864 	uint64_t rv = 0;
865 
866 	if (cell_size == 1) {
867 		uint32_t v;
868 
869 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
870 		*offs += sizeof(v);
871 		rv = fdt32_to_cpu(v);
872 	} else {
873 		uint64_t v;
874 
875 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
876 		*offs += sizeof(v);
877 		rv = fdt64_to_cpu(v);
878 	}
879 
880 	return rv;
881 }
882 
883 /*
884  * Find all non-secure memory from DT. Memory marked inaccessible by Secure
885  * World is ignored since it could not be mapped to be used as dynamic shared
886  * memory.
887  */
888 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem)
889 {
890 	const uint8_t *prop = NULL;
891 	uint64_t a = 0;
892 	uint64_t l = 0;
893 	size_t prop_offs = 0;
894 	size_t prop_len = 0;
895 	int elems_total = 0;
896 	int addr_size = 0;
897 	int len_size = 0;
898 	int offs = 0;
899 	size_t n = 0;
900 	int len = 0;
901 
902 	addr_size = fdt_address_cells(fdt, 0);
903 	if (addr_size < 0)
904 		return 0;
905 
906 	len_size = fdt_size_cells(fdt, 0);
907 	if (len_size < 0)
908 		return 0;
909 
910 	while (true) {
911 		offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type",
912 						     "memory",
913 						     sizeof("memory"));
914 		if (offs < 0)
915 			break;
916 
917 		if (fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC |
918 						   DT_STATUS_OK_SEC))
919 			continue;
920 
921 		prop = fdt_getprop(fdt, offs, "reg", &len);
922 		if (!prop)
923 			continue;
924 
925 		prop_len = len;
926 		for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) {
927 			a = get_dt_val_and_advance(prop, &prop_offs, addr_size);
928 			if (prop_offs >= prop_len) {
929 				n--;
930 				break;
931 			}
932 
933 			l = get_dt_val_and_advance(prop, &prop_offs, len_size);
934 			if (mem) {
935 				mem->type = MEM_AREA_DDR_OVERALL;
936 				mem->addr = a;
937 				mem->size = l;
938 				mem++;
939 			}
940 		}
941 
942 		elems_total += n;
943 	}
944 
945 	return elems_total;
946 }
947 
948 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems)
949 {
950 	struct core_mmu_phys_mem *mem = NULL;
951 	int elems_total = 0;
952 
953 	elems_total = get_nsec_memory_helper(fdt, NULL);
954 	if (elems_total <= 0)
955 		return NULL;
956 
957 	mem = nex_calloc(elems_total, sizeof(*mem));
958 	if (!mem)
959 		panic();
960 
961 	elems_total = get_nsec_memory_helper(fdt, mem);
962 	assert(elems_total > 0);
963 
964 	*nelems = elems_total;
965 
966 	return mem;
967 }
968 #endif /*CFG_CORE_DYN_SHM*/
969 
970 #ifdef CFG_CORE_RESERVED_SHM
971 static int mark_static_shm_as_reserved(struct dt_descriptor *dt)
972 {
973 	vaddr_t shm_start;
974 	vaddr_t shm_end;
975 
976 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end);
977 	if (shm_start != shm_end)
978 		return add_res_mem_dt_node(dt, "optee_shm",
979 					   virt_to_phys((void *)shm_start),
980 					   shm_end - shm_start);
981 
982 	DMSG("No SHM configured");
983 	return -1;
984 }
985 #endif /*CFG_CORE_RESERVED_SHM*/
986 
987 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
988 {
989 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
990 				   CFG_TZDRAM_SIZE);
991 }
992 
993 static void update_external_dt(void)
994 {
995 	struct dt_descriptor *dt = get_external_dt_desc();
996 
997 	if (!dt || !dt->blob)
998 		return;
999 
1000 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
1001 		panic("Failed to add OP-TEE Device Tree node");
1002 
1003 	if (config_psci(dt))
1004 		panic("Failed to config PSCI");
1005 
1006 #ifdef CFG_CORE_RESERVED_SHM
1007 	if (mark_static_shm_as_reserved(dt))
1008 		panic("Failed to config non-secure memory");
1009 #endif
1010 
1011 	if (mark_tzdram_as_reserved(dt))
1012 		panic("Failed to config secure memory");
1013 }
1014 #else /*CFG_DT*/
1015 static void update_external_dt(void)
1016 {
1017 }
1018 
1019 #ifdef CFG_CORE_DYN_SHM
1020 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused,
1021 						 size_t *nelems __unused)
1022 {
1023 	return NULL;
1024 }
1025 #endif /*CFG_CORE_DYN_SHM*/
1026 #endif /*!CFG_DT*/
1027 
1028 #if defined(CFG_CORE_FFA)
1029 void *get_manifest_dt(void)
1030 {
1031 	return manifest_dt;
1032 }
1033 
1034 static void reinit_manifest_dt(void)
1035 {
1036 	paddr_t pa = (unsigned long)manifest_dt;
1037 	void *fdt = NULL;
1038 	int ret = 0;
1039 
1040 	if (!pa) {
1041 		EMSG("No manifest DT found");
1042 		return;
1043 	}
1044 
1045 	fdt = core_mmu_add_mapping(MEM_AREA_MANIFEST_DT, pa, CFG_DTB_MAX_SIZE);
1046 	if (!fdt)
1047 		panic("Failed to map manifest DT");
1048 
1049 	manifest_dt = fdt;
1050 
1051 	ret = fdt_check_full(fdt, CFG_DTB_MAX_SIZE);
1052 	if (ret < 0) {
1053 		EMSG("Invalid manifest Device Tree at %#lx: error %d", pa, ret);
1054 		panic();
1055 	}
1056 
1057 	IMSG("manifest DT found");
1058 }
1059 
1060 static TEE_Result release_manifest_dt(void)
1061 {
1062 	if (!manifest_dt)
1063 		return TEE_SUCCESS;
1064 
1065 	if (core_mmu_remove_mapping(MEM_AREA_MANIFEST_DT, manifest_dt,
1066 				    CFG_DTB_MAX_SIZE))
1067 		panic("Failed to remove temporary manifest DT mapping");
1068 	manifest_dt = NULL;
1069 
1070 	return TEE_SUCCESS;
1071 }
1072 
1073 boot_final(release_manifest_dt);
1074 #else
1075 void *get_manifest_dt(void)
1076 {
1077 	return NULL;
1078 }
1079 
1080 static void reinit_manifest_dt(void)
1081 {
1082 }
1083 #endif /*CFG_CORE_FFA*/
1084 
1085 #ifdef CFG_CORE_DYN_SHM
1086 static void discover_nsec_memory(void)
1087 {
1088 	struct core_mmu_phys_mem *mem;
1089 	const struct core_mmu_phys_mem *mem_begin = NULL;
1090 	const struct core_mmu_phys_mem *mem_end = NULL;
1091 	size_t nelems;
1092 	void *fdt = get_external_dt();
1093 
1094 	if (fdt) {
1095 		mem = get_nsec_memory(fdt, &nelems);
1096 		if (mem) {
1097 			core_mmu_set_discovered_nsec_ddr(mem, nelems);
1098 			return;
1099 		}
1100 
1101 		DMSG("No non-secure memory found in external DT");
1102 	}
1103 
1104 	fdt = get_embedded_dt();
1105 	if (fdt) {
1106 		mem = get_nsec_memory(fdt, &nelems);
1107 		if (mem) {
1108 			core_mmu_set_discovered_nsec_ddr(mem, nelems);
1109 			return;
1110 		}
1111 
1112 		DMSG("No non-secure memory found in embedded DT");
1113 	}
1114 
1115 	mem_begin = phys_ddr_overall_begin;
1116 	mem_end = phys_ddr_overall_end;
1117 	nelems = mem_end - mem_begin;
1118 	if (nelems) {
1119 		/*
1120 		 * Platform cannot use both register_ddr() and the now
1121 		 * deprecated register_dynamic_shm().
1122 		 */
1123 		assert(phys_ddr_overall_compat_begin ==
1124 		       phys_ddr_overall_compat_end);
1125 	} else {
1126 		mem_begin = phys_ddr_overall_compat_begin;
1127 		mem_end = phys_ddr_overall_compat_end;
1128 		nelems = mem_end - mem_begin;
1129 		if (!nelems)
1130 			return;
1131 		DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead");
1132 	}
1133 
1134 	mem = nex_calloc(nelems, sizeof(*mem));
1135 	if (!mem)
1136 		panic();
1137 
1138 	memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems);
1139 	core_mmu_set_discovered_nsec_ddr(mem, nelems);
1140 }
1141 #else /*CFG_CORE_DYN_SHM*/
1142 static void discover_nsec_memory(void)
1143 {
1144 }
1145 #endif /*!CFG_CORE_DYN_SHM*/
1146 
1147 #ifdef CFG_NS_VIRTUALIZATION
1148 static TEE_Result virt_init_heap(void)
1149 {
1150 	/* We need to initialize pool for every virtual guest partition */
1151 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
1152 
1153 	return TEE_SUCCESS;
1154 }
1155 preinit_early(virt_init_heap);
1156 #endif
1157 
1158 void init_tee_runtime(void)
1159 {
1160 #ifndef CFG_WITH_PAGER
1161 	/* Pager initializes TA RAM early */
1162 	core_mmu_init_ta_ram();
1163 #endif
1164 	/*
1165 	 * With virtualization we call this function when creating the
1166 	 * OP-TEE partition instead.
1167 	 */
1168 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1169 		call_preinitcalls();
1170 	call_initcalls();
1171 
1172 	/*
1173 	 * These two functions uses crypto_rng_read() to initialize the
1174 	 * pauth keys. Once call_initcalls() returns we're guaranteed that
1175 	 * crypto_rng_read() is ready to be used.
1176 	 */
1177 	thread_init_core_local_pauth_keys();
1178 	thread_init_thread_pauth_keys();
1179 
1180 	/*
1181 	 * Reinitialize canaries around the stacks with crypto_rng_read().
1182 	 *
1183 	 * TODO: Updating canaries when CFG_NS_VIRTUALIZATION is enabled will
1184 	 * require synchronization between thread_check_canaries() and
1185 	 * thread_update_canaries().
1186 	 */
1187 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1188 		thread_update_canaries();
1189 }
1190 
1191 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
1192 {
1193 	thread_init_core_local_stacks();
1194 	/*
1195 	 * Mask asynchronous exceptions before switch to the thread vector
1196 	 * as the thread handler requires those to be masked while
1197 	 * executing with the temporary stack. The thread subsystem also
1198 	 * asserts that the foreign interrupts are blocked when using most of
1199 	 * its functions.
1200 	 */
1201 	thread_set_exceptions(THREAD_EXCP_ALL);
1202 	primary_save_cntfrq();
1203 	init_vfp_sec();
1204 
1205 	if (IS_ENABLED(CFG_CRYPTO_WITH_CE))
1206 		check_crypto_extensions();
1207 
1208 	/*
1209 	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
1210 	 * set a current thread right now to avoid a chicken-and-egg problem
1211 	 * (thread_init_boot_thread() sets the current thread but needs
1212 	 * things set by init_runtime()).
1213 	 */
1214 	thread_get_core_local()->curr_thread = 0;
1215 	init_runtime(pageable_part);
1216 
1217 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1218 		/*
1219 		 * Virtualization: We can't initialize threads right now because
1220 		 * threads belong to "tee" part and will be initialized
1221 		 * separately per each new virtual guest. So, we'll clear
1222 		 * "curr_thread" and call it done.
1223 		 */
1224 		thread_get_core_local()->curr_thread = -1;
1225 	} else {
1226 		thread_init_boot_thread();
1227 	}
1228 	thread_init_primary();
1229 	thread_init_per_cpu();
1230 	init_sec_mon(nsec_entry);
1231 }
1232 
1233 static bool cpu_nmfi_enabled(void)
1234 {
1235 #if defined(ARM32)
1236 	return read_sctlr() & SCTLR_NMFI;
1237 #else
1238 	/* Note: ARM64 does not feature non-maskable FIQ support. */
1239 	return false;
1240 #endif
1241 }
1242 
1243 /*
1244  * Note: this function is weak just to make it possible to exclude it from
1245  * the unpaged area.
1246  */
1247 void __weak boot_init_primary_late(unsigned long fdt __unused,
1248 				   unsigned long manifest __unused)
1249 {
1250 	size_t fdt_size = CFG_DTB_MAX_SIZE;
1251 
1252 	if (IS_ENABLED(CFG_TRANSFER_LIST) && mapped_tl) {
1253 		struct transfer_list_entry *tl_e = NULL;
1254 
1255 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1256 		if (tl_e)
1257 			fdt_size = tl_e->data_size;
1258 	}
1259 
1260 	init_external_dt(boot_arg_fdt, fdt_size);
1261 	reinit_manifest_dt();
1262 #ifdef CFG_CORE_SEL1_SPMC
1263 	tpm_map_log_area(get_manifest_dt());
1264 #else
1265 	tpm_map_log_area(get_external_dt());
1266 #endif
1267 	discover_nsec_memory();
1268 	update_external_dt();
1269 	configure_console_from_dt();
1270 
1271 	IMSG("OP-TEE version: %s", core_v_str);
1272 	if (IS_ENABLED(CFG_INSECURE)) {
1273 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1274 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1275 	}
1276 	IMSG("Primary CPU initializing");
1277 #ifdef CFG_CORE_ASLR
1278 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1279 	     (unsigned long)boot_mmu_config.map_offset, VCORE_START_VA);
1280 #endif
1281 	if (IS_ENABLED(CFG_MEMTAG))
1282 		DMSG("Memory tagging %s",
1283 		     memtag_is_enabled() ?  "enabled" : "disabled");
1284 
1285 	/* Check if platform needs NMFI workaround */
1286 	if (cpu_nmfi_enabled())	{
1287 		if (!IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1288 			IMSG("WARNING: This ARM core has NMFI enabled, please apply workaround!");
1289 	} else {
1290 		if (IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1291 			IMSG("WARNING: This ARM core does not have NMFI enabled, no need for workaround");
1292 	}
1293 
1294 	boot_primary_init_intc();
1295 	init_vfp_nsec();
1296 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1297 		IMSG("Initializing virtualization support");
1298 		core_mmu_init_virtualization();
1299 	} else {
1300 		init_tee_runtime();
1301 	}
1302 	call_finalcalls();
1303 	IMSG("Primary CPU switching to normal world boot");
1304 }
1305 
1306 static void init_secondary_helper(unsigned long nsec_entry)
1307 {
1308 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1309 
1310 	/*
1311 	 * Mask asynchronous exceptions before switch to the thread vector
1312 	 * as the thread handler requires those to be masked while
1313 	 * executing with the temporary stack. The thread subsystem also
1314 	 * asserts that the foreign interrupts are blocked when using most of
1315 	 * its functions.
1316 	 */
1317 	thread_set_exceptions(THREAD_EXCP_ALL);
1318 
1319 	secondary_init_cntfrq();
1320 	thread_init_per_cpu();
1321 	init_sec_mon(nsec_entry);
1322 	boot_secondary_init_intc();
1323 	init_vfp_sec();
1324 	init_vfp_nsec();
1325 
1326 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1327 }
1328 
1329 /*
1330  * Note: this function is weak just to make it possible to exclude it from
1331  * the unpaged area so that it lies in the init area.
1332  */
1333 void __weak boot_init_primary_early(void)
1334 {
1335 	unsigned long pageable_part = 0;
1336 	unsigned long e = PADDR_INVALID;
1337 	struct transfer_list_entry *tl_e = NULL;
1338 
1339 	if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW))
1340 		e = boot_arg_nsec_entry;
1341 
1342 	if (IS_ENABLED(CFG_TRANSFER_LIST) && boot_arg_transfer_list) {
1343 		/* map and save the TL */
1344 		mapped_tl = transfer_list_map(boot_arg_transfer_list);
1345 		if (!mapped_tl)
1346 			panic("Failed to map transfer list");
1347 
1348 		transfer_list_dump(mapped_tl);
1349 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1350 		if (tl_e) {
1351 			/*
1352 			 * Expand the data size of the DTB entry to the maximum
1353 			 * allocable mapped memory to reserve sufficient space
1354 			 * for inserting new nodes, avoid potentially corrupting
1355 			 * next entries.
1356 			 */
1357 			uint32_t dtb_max_sz = mapped_tl->max_size -
1358 					      mapped_tl->size + tl_e->data_size;
1359 
1360 			if (!transfer_list_set_data_size(mapped_tl, tl_e,
1361 							 dtb_max_sz)) {
1362 				EMSG("Failed to extend DTB size to %#"PRIx32,
1363 				     dtb_max_sz);
1364 				panic();
1365 			}
1366 		}
1367 		tl_e = transfer_list_find(mapped_tl, TL_TAG_OPTEE_PAGABLE_PART);
1368 	}
1369 
1370 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1371 		if (IS_ENABLED(CFG_TRANSFER_LIST) && tl_e)
1372 			pageable_part =
1373 				get_le64(transfer_list_entry_data(tl_e));
1374 		else
1375 			pageable_part = boot_arg_pageable_part;
1376 	}
1377 
1378 	init_primary(pageable_part, e);
1379 }
1380 
1381 static void boot_save_transfer_list(unsigned long zero_reg,
1382 				    unsigned long transfer_list,
1383 				    unsigned long fdt)
1384 {
1385 	struct transfer_list_header *tl = (void *)transfer_list;
1386 	struct transfer_list_entry *tl_e = NULL;
1387 
1388 	if (zero_reg != 0)
1389 		panic("Incorrect transfer list register convention");
1390 
1391 	if (!IS_ALIGNED_WITH_TYPE(transfer_list, struct transfer_list_header) ||
1392 	    !IS_ALIGNED(transfer_list, TL_ALIGNMENT_FROM_ORDER(tl->alignment)))
1393 		panic("Transfer list base address is not aligned");
1394 
1395 	if (transfer_list_check_header(tl) == TL_OPS_NONE)
1396 		panic("Invalid transfer list");
1397 
1398 	tl_e = transfer_list_find(tl, TL_TAG_FDT);
1399 	if (fdt != (unsigned long)transfer_list_entry_data(tl_e))
1400 		panic("DT does not match to the DT entry of the TL");
1401 
1402 	boot_arg_transfer_list = transfer_list;
1403 }
1404 
1405 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1406 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1407 				  unsigned long a1 __unused)
1408 {
1409 	init_secondary_helper(PADDR_INVALID);
1410 	return 0;
1411 }
1412 #else
1413 void boot_init_secondary(unsigned long nsec_entry)
1414 {
1415 	init_secondary_helper(nsec_entry);
1416 }
1417 #endif
1418 
1419 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1420 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1421 			    uintptr_t context_id)
1422 {
1423 	ns_entry_contexts[core_idx].entry_point = entry;
1424 	ns_entry_contexts[core_idx].context_id = context_id;
1425 	dsb_ishst();
1426 }
1427 
1428 int boot_core_release(size_t core_idx, paddr_t entry)
1429 {
1430 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1431 		return -1;
1432 
1433 	ns_entry_contexts[core_idx].entry_point = entry;
1434 	dmb();
1435 	spin_table[core_idx] = 1;
1436 	dsb();
1437 	sev();
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * spin until secondary boot request, then returns with
1444  * the secondary core entry address.
1445  */
1446 struct ns_entry_context *boot_core_hpen(void)
1447 {
1448 #ifdef CFG_PSCI_ARM32
1449 	return &ns_entry_contexts[get_core_pos()];
1450 #else
1451 	do {
1452 		wfe();
1453 	} while (!spin_table[get_core_pos()]);
1454 	dmb();
1455 	return &ns_entry_contexts[get_core_pos()];
1456 #endif
1457 }
1458 #endif
1459 
1460 #if defined(CFG_CORE_ASLR)
1461 #if defined(CFG_DT)
1462 unsigned long __weak get_aslr_seed(void)
1463 {
1464 	void *fdt = NULL;
1465 	int rc = 0;
1466 	const uint64_t *seed = NULL;
1467 	int offs = 0;
1468 	int len = 0;
1469 
1470 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC))
1471 		fdt = (void *)boot_arg_fdt;
1472 
1473 	if (!fdt) {
1474 		DMSG("No fdt");
1475 		goto err;
1476 	}
1477 
1478 	rc = fdt_check_header(fdt);
1479 	if (rc) {
1480 		DMSG("Bad fdt: %d", rc);
1481 		goto err;
1482 	}
1483 
1484 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1485 	if (offs < 0) {
1486 		DMSG("Cannot find /secure-chosen");
1487 		goto err;
1488 	}
1489 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1490 	if (!seed || len != sizeof(*seed)) {
1491 		DMSG("Cannot find valid kaslr-seed");
1492 		goto err;
1493 	}
1494 
1495 	return fdt64_to_cpu(*seed);
1496 
1497 err:
1498 	/* Try platform implementation */
1499 	return plat_get_aslr_seed();
1500 }
1501 #else /*!CFG_DT*/
1502 unsigned long __weak get_aslr_seed(void)
1503 {
1504 	/* Try platform implementation */
1505 	return plat_get_aslr_seed();
1506 }
1507 #endif /*!CFG_DT*/
1508 #endif /*CFG_CORE_ASLR*/
1509 
1510 static void *get_fdt_from_boot_info(struct ffa_boot_info_header_1_1 *hdr)
1511 {
1512 	struct ffa_boot_info_1_1 *desc = NULL;
1513 	uint8_t content_fmt = 0;
1514 	uint8_t name_fmt = 0;
1515 	void *fdt = NULL;
1516 	int ret = 0;
1517 
1518 	if (hdr->signature != FFA_BOOT_INFO_SIGNATURE) {
1519 		EMSG("Bad boot info signature %#"PRIx32, hdr->signature);
1520 		panic();
1521 	}
1522 	if (hdr->version != FFA_BOOT_INFO_VERSION) {
1523 		EMSG("Bad boot info version %#"PRIx32, hdr->version);
1524 		panic();
1525 	}
1526 	if (hdr->desc_count != 1) {
1527 		EMSG("Bad boot info descriptor count %#"PRIx32,
1528 		     hdr->desc_count);
1529 		panic();
1530 	}
1531 	desc = (void *)((vaddr_t)hdr + hdr->desc_offset);
1532 	name_fmt = desc->flags & FFA_BOOT_INFO_FLAG_NAME_FORMAT_MASK;
1533 	if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_STRING)
1534 		DMSG("Boot info descriptor name \"%16s\"", desc->name);
1535 	else if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_UUID)
1536 		DMSG("Boot info descriptor UUID %pUl", (void *)desc->name);
1537 	else
1538 		DMSG("Boot info descriptor: unknown name format %"PRIu8,
1539 		     name_fmt);
1540 
1541 	content_fmt = (desc->flags & FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_MASK) >>
1542 		      FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
1543 	if (content_fmt != FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR) {
1544 		EMSG("Bad boot info content format %"PRIu8", expected %u (address)",
1545 		     content_fmt, FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR);
1546 		panic();
1547 	}
1548 
1549 	fdt = (void *)(vaddr_t)desc->contents;
1550 	ret = fdt_check_full(fdt, desc->size);
1551 	if (ret < 0) {
1552 		EMSG("Invalid Device Tree at %p: error %d", fdt, ret);
1553 		panic();
1554 	}
1555 	return fdt;
1556 }
1557 
1558 static void get_sec_mem_from_manifest(void *fdt, paddr_t *base, size_t *size)
1559 {
1560 	int ret = 0;
1561 	uint64_t num = 0;
1562 
1563 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
1564 	if (ret < 0) {
1565 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
1566 		panic();
1567 	}
1568 	ret = dt_getprop_as_number(fdt, 0, "load-address", &num);
1569 	if (ret < 0) {
1570 		EMSG("Can't read \"load-address\" from FF-A manifest at %p: error %d",
1571 		     fdt, ret);
1572 		panic();
1573 	}
1574 	*base = num;
1575 	/* "mem-size" is currently an undocumented extension to the spec. */
1576 	ret = dt_getprop_as_number(fdt, 0, "mem-size", &num);
1577 	if (ret < 0) {
1578 		EMSG("Can't read \"mem-size\" from FF-A manifest at %p: error %d",
1579 		     fdt, ret);
1580 		panic();
1581 	}
1582 	*size = num;
1583 }
1584 
1585 void __weak boot_save_args(unsigned long a0, unsigned long a1,
1586 			   unsigned long a2, unsigned long a3,
1587 			   unsigned long a4 __maybe_unused)
1588 {
1589 	/*
1590 	 * Register use:
1591 	 *
1592 	 * Scenario A: Default arguments
1593 	 * a0   - CFG_CORE_FFA=y && CFG_CORE_SEL2_SPMC=n:
1594 	 *        if non-NULL holds the TOS FW config [1] address
1595 	 *      - CFG_CORE_FFA=y &&
1596 		  (CFG_CORE_SEL2_SPMC=y || CFG_CORE_EL3_SPMC=y):
1597 	 *        address of FF-A Boot Information Blob
1598 	 *      - CFG_CORE_FFA=n:
1599 	 *        if non-NULL holds the pagable part address
1600 	 * a1	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1601 	 *	  Armv7 standard bootarg #1 (kept track of in entry_a32.S)
1602 	 * a2   - CFG_CORE_SEL2_SPMC=n:
1603 	 *        if non-NULL holds the system DTB address
1604 	 *	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1605 	 *	  Armv7 standard bootarg #2 (system DTB address, kept track
1606 	 *	  of in entry_a32.S)
1607 	 * a3	- Not used
1608 	 * a4	- CFG_WITH_ARM_TRUSTED_FW=n:
1609 	 *	  Non-secure entry address
1610 	 *
1611 	 * [1] A TF-A concept: TOS_FW_CONFIG - Trusted OS Firmware
1612 	 * configuration file. Used by Trusted OS (BL32), that is, OP-TEE
1613 	 * here. This is also called Manifest DT, related to the Manifest DT
1614 	 * passed in the FF-A Boot Information Blob, but with a different
1615 	 * compatible string.
1616 
1617 	 * Scenario B: FW Handoff via Transfer List
1618 	 * Note: FF-A and non-secure entry are not yet supported with
1619 	 *       Transfer List
1620 	 * a0	- DTB address or 0 (AArch64)
1621 	 *	- must be 0 (AArch32)
1622 	 * a1	- TRANSFER_LIST_SIGNATURE | REG_CONVENTION_VER_MASK
1623 	 * a2	- must be 0 (AArch64)
1624 	 *	- DTB address or 0 (AArch32)
1625 	 * a3	- Transfer list base address
1626 	 * a4	- Not used
1627 	 */
1628 
1629 	if (IS_ENABLED(CFG_TRANSFER_LIST) &&
1630 	    a1 == (TRANSFER_LIST_SIGNATURE | REG_CONVENTION_VER_MASK)) {
1631 		if (IS_ENABLED(CFG_ARM64_core)) {
1632 			boot_save_transfer_list(a2, a3, a0);
1633 			boot_arg_fdt = a0;
1634 		} else {
1635 			boot_save_transfer_list(a0, a3, a2);
1636 			boot_arg_fdt = a2;
1637 		}
1638 		return;
1639 	}
1640 
1641 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC)) {
1642 #if defined(CFG_DT_ADDR)
1643 		boot_arg_fdt = CFG_DT_ADDR;
1644 #else
1645 		boot_arg_fdt = a2;
1646 #endif
1647 	}
1648 
1649 	if (IS_ENABLED(CFG_CORE_FFA)) {
1650 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) ||
1651 		    IS_ENABLED(CFG_CORE_EL3_SPMC))
1652 			manifest_dt = get_fdt_from_boot_info((void *)a0);
1653 		else
1654 			manifest_dt = (void *)a0;
1655 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) &&
1656 		    IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)) {
1657 			paddr_t base = 0;
1658 			size_t size = 0;
1659 
1660 			get_sec_mem_from_manifest(manifest_dt, &base, &size);
1661 			core_mmu_set_secure_memory(base, size);
1662 		}
1663 	} else {
1664 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1665 #if defined(CFG_PAGEABLE_ADDR)
1666 			boot_arg_pageable_part = CFG_PAGEABLE_ADDR;
1667 #else
1668 			boot_arg_pageable_part = a0;
1669 #endif
1670 		}
1671 		if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW)) {
1672 #if defined(CFG_NS_ENTRY_ADDR)
1673 			boot_arg_nsec_entry = CFG_NS_ENTRY_ADDR;
1674 #else
1675 			boot_arg_nsec_entry = a4;
1676 #endif
1677 		}
1678 	}
1679 }
1680 
1681 #if defined(CFG_TRANSFER_LIST)
1682 static TEE_Result release_transfer_list(void)
1683 {
1684 	struct dt_descriptor *dt = get_external_dt_desc();
1685 
1686 	if (!mapped_tl)
1687 		return TEE_SUCCESS;
1688 
1689 	if (dt) {
1690 		int ret = 0;
1691 		struct transfer_list_entry *tl_e = NULL;
1692 
1693 		/*
1694 		 * Pack the DTB and update the transfer list before un-mapping
1695 		 */
1696 		ret = fdt_pack(dt->blob);
1697 		if (ret < 0) {
1698 			EMSG("Failed to pack Device Tree at 0x%" PRIxPA
1699 			     ": error %d", virt_to_phys(dt->blob), ret);
1700 			panic();
1701 		}
1702 
1703 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1704 		assert(dt->blob == transfer_list_entry_data(tl_e));
1705 		transfer_list_set_data_size(mapped_tl, tl_e,
1706 					    fdt_totalsize(dt->blob));
1707 		dt->blob = NULL;
1708 	}
1709 
1710 	transfer_list_unmap_sync(mapped_tl);
1711 	mapped_tl = NULL;
1712 
1713 	return TEE_SUCCESS;
1714 }
1715 
1716 boot_final(release_transfer_list);
1717 #endif
1718