xref: /optee_os/core/arch/arm/kernel/boot.c (revision c44d734b6366cbf4d12610310e809872db65f89d)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2022, Linaro Limited
4  */
5 
6 #include <arm.h>
7 #include <assert.h>
8 #include <compiler.h>
9 #include <config.h>
10 #include <console.h>
11 #include <crypto/crypto.h>
12 #include <drivers/gic.h>
13 #include <initcall.h>
14 #include <inttypes.h>
15 #include <keep.h>
16 #include <kernel/asan.h>
17 #include <kernel/boot.h>
18 #include <kernel/linker.h>
19 #include <kernel/misc.h>
20 #include <kernel/panic.h>
21 #include <kernel/tee_misc.h>
22 #include <kernel/thread.h>
23 #include <kernel/tpm.h>
24 #include <libfdt.h>
25 #include <malloc.h>
26 #include <memtag.h>
27 #include <mm/core_memprot.h>
28 #include <mm/core_mmu.h>
29 #include <mm/fobj.h>
30 #include <mm/tee_mm.h>
31 #include <mm/tee_pager.h>
32 #include <sm/psci.h>
33 #include <stdio.h>
34 #include <trace.h>
35 #include <utee_defines.h>
36 #include <util.h>
37 
38 #include <platform_config.h>
39 
40 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
41 #include <sm/sm.h>
42 #endif
43 
44 #if defined(CFG_WITH_VFP)
45 #include <kernel/vfp.h>
46 #endif
47 
48 /*
49  * In this file we're using unsigned long to represent physical pointers as
50  * they are received in a single register when OP-TEE is initially entered.
51  * This limits 32-bit systems to only use make use of the lower 32 bits
52  * of a physical address for initial parameters.
53  *
54  * 64-bit systems on the other hand can use full 64-bit physical pointers.
55  */
56 #define PADDR_INVALID		ULONG_MAX
57 
58 #if defined(CFG_BOOT_SECONDARY_REQUEST)
59 struct ns_entry_context {
60 	uintptr_t entry_point;
61 	uintptr_t context_id;
62 };
63 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
64 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
65 #endif
66 
67 #ifdef CFG_BOOT_SYNC_CPU
68 /*
69  * Array used when booting, to synchronize cpu.
70  * When 0, the cpu has not started.
71  * When 1, it has started
72  */
73 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
74 DECLARE_KEEP_PAGER(sem_cpu_sync);
75 #endif
76 
77 #ifdef CFG_DT
78 struct dt_descriptor {
79 	void *blob;
80 #ifdef _CFG_USE_DTB_OVERLAY
81 	int frag_id;
82 #endif
83 };
84 
85 static struct dt_descriptor external_dt __nex_bss;
86 #endif
87 
88 #ifdef CFG_SECONDARY_INIT_CNTFRQ
89 static uint32_t cntfrq;
90 #endif
91 
92 /* May be overridden in plat-$(PLATFORM)/main.c */
93 __weak void plat_primary_init_early(void)
94 {
95 }
96 DECLARE_KEEP_PAGER(plat_primary_init_early);
97 
98 /* May be overridden in plat-$(PLATFORM)/main.c */
99 __weak void main_init_gic(void)
100 {
101 }
102 
103 /* May be overridden in plat-$(PLATFORM)/main.c */
104 __weak void main_secondary_init_gic(void)
105 {
106 }
107 
108 /* May be overridden in plat-$(PLATFORM)/main.c */
109 __weak unsigned long plat_get_aslr_seed(void)
110 {
111 	DMSG("Warning: no ASLR seed");
112 
113 	return 0;
114 }
115 
116 /*
117  * This function is called as a guard after each smc call which is not
118  * supposed to return.
119  */
120 void __panic_at_smc_return(void)
121 {
122 	panic();
123 }
124 
125 #if defined(CFG_WITH_ARM_TRUSTED_FW)
126 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
127 {
128 	assert(nsec_entry == PADDR_INVALID);
129 	/* Do nothing as we don't have a secure monitor */
130 }
131 #else
132 /* May be overridden in plat-$(PLATFORM)/main.c */
133 __weak void init_sec_mon(unsigned long nsec_entry)
134 {
135 	struct sm_nsec_ctx *nsec_ctx;
136 
137 	assert(nsec_entry != PADDR_INVALID);
138 
139 	/* Initialize secure monitor */
140 	nsec_ctx = sm_get_nsec_ctx();
141 	nsec_ctx->mon_lr = nsec_entry;
142 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
143 	if (nsec_entry & 1)
144 		nsec_ctx->mon_spsr |= CPSR_T;
145 }
146 #endif
147 
148 #if defined(CFG_WITH_ARM_TRUSTED_FW)
149 static void init_vfp_nsec(void)
150 {
151 }
152 #else
153 static void init_vfp_nsec(void)
154 {
155 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
156 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
157 }
158 #endif
159 
160 #if defined(CFG_WITH_VFP)
161 
162 #ifdef ARM32
163 static void init_vfp_sec(void)
164 {
165 	uint32_t cpacr = read_cpacr();
166 
167 	/*
168 	 * Enable Advanced SIMD functionality.
169 	 * Enable use of D16-D31 of the Floating-point Extension register
170 	 * file.
171 	 */
172 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
173 	/*
174 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
175 	 * mode.
176 	 */
177 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
178 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
179 	write_cpacr(cpacr);
180 }
181 #endif /* ARM32 */
182 
183 #ifdef ARM64
184 static void init_vfp_sec(void)
185 {
186 	/* Not using VFP until thread_kernel_enable_vfp() */
187 	vfp_disable();
188 }
189 #endif /* ARM64 */
190 
191 #else /* CFG_WITH_VFP */
192 
193 static void init_vfp_sec(void)
194 {
195 	/* Not using VFP */
196 }
197 #endif
198 
199 #ifdef CFG_SECONDARY_INIT_CNTFRQ
200 static void primary_save_cntfrq(void)
201 {
202 	assert(cntfrq == 0);
203 
204 	/*
205 	 * CNTFRQ should be initialized on the primary CPU by a
206 	 * previous boot stage
207 	 */
208 	cntfrq = read_cntfrq();
209 }
210 
211 static void secondary_init_cntfrq(void)
212 {
213 	assert(cntfrq != 0);
214 	write_cntfrq(cntfrq);
215 }
216 #else /* CFG_SECONDARY_INIT_CNTFRQ */
217 static void primary_save_cntfrq(void)
218 {
219 }
220 
221 static void secondary_init_cntfrq(void)
222 {
223 }
224 #endif
225 
226 #ifdef CFG_CORE_SANITIZE_KADDRESS
227 static void init_run_constructors(void)
228 {
229 	const vaddr_t *ctor;
230 
231 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
232 		((void (*)(void))(*ctor))();
233 }
234 
235 static void init_asan(void)
236 {
237 
238 	/*
239 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
240 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
241 	 * Since all the needed values to calculate the value of
242 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
243 	 * calculate it in advance and hard code it into the platform
244 	 * conf.mk. Here where we have all the needed values we double
245 	 * check that the compiler is supplied the correct value.
246 	 */
247 
248 #define __ASAN_SHADOW_START \
249 	ROUNDUP(TEE_RAM_VA_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
250 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
251 #define __CFG_ASAN_SHADOW_OFFSET \
252 	(__ASAN_SHADOW_START - (TEE_RAM_VA_START / 8))
253 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
254 #undef __ASAN_SHADOW_START
255 #undef __CFG_ASAN_SHADOW_OFFSET
256 
257 	/*
258 	 * Assign area covered by the shadow area, everything from start up
259 	 * to the beginning of the shadow area.
260 	 */
261 	asan_set_shadowed((void *)TEE_TEXT_VA_START, &__asan_shadow_start);
262 
263 	/*
264 	 * Add access to areas that aren't opened automatically by a
265 	 * constructor.
266 	 */
267 	asan_tag_access(&__ctor_list, &__ctor_end);
268 	asan_tag_access(__rodata_start, __rodata_end);
269 #ifdef CFG_WITH_PAGER
270 	asan_tag_access(__pageable_start, __pageable_end);
271 #endif /*CFG_WITH_PAGER*/
272 	asan_tag_access(__nozi_start, __nozi_end);
273 	asan_tag_access(__exidx_start, __exidx_end);
274 	asan_tag_access(__extab_start, __extab_end);
275 
276 	init_run_constructors();
277 
278 	/* Everything is tagged correctly, let's start address sanitizing. */
279 	asan_start();
280 }
281 #else /*CFG_CORE_SANITIZE_KADDRESS*/
282 static void init_asan(void)
283 {
284 }
285 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
286 
287 #if defined(CFG_MEMTAG)
288 /* Called from entry_a64.S only when MEMTAG is configured */
289 void boot_init_memtag(void)
290 {
291 	memtag_init_ops(feat_mte_implemented());
292 	memtag_set_tags((void *)TEE_RAM_START, TEE_RAM_PH_SIZE, 0);
293 }
294 #endif
295 
296 #ifdef CFG_WITH_PAGER
297 
298 #ifdef CFG_CORE_SANITIZE_KADDRESS
299 static void carve_out_asan_mem(tee_mm_pool_t *pool)
300 {
301 	const size_t s = pool->hi - pool->lo;
302 	tee_mm_entry_t *mm;
303 	paddr_t apa = ASAN_MAP_PA;
304 	size_t asz = ASAN_MAP_SZ;
305 
306 	if (core_is_buffer_outside(apa, asz, pool->lo, s))
307 		return;
308 
309 	/* Reserve the shadow area */
310 	if (!core_is_buffer_inside(apa, asz, pool->lo, s)) {
311 		if (apa < pool->lo) {
312 			/*
313 			 * ASAN buffer is overlapping with the beginning of
314 			 * the pool.
315 			 */
316 			asz -= pool->lo - apa;
317 			apa = pool->lo;
318 		} else {
319 			/*
320 			 * ASAN buffer is overlapping with the end of the
321 			 * pool.
322 			 */
323 			asz = pool->hi - apa;
324 		}
325 	}
326 	mm = tee_mm_alloc2(pool, apa, asz);
327 	assert(mm);
328 }
329 #else
330 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused)
331 {
332 }
333 #endif
334 
335 static void print_pager_pool_size(void)
336 {
337 	struct tee_pager_stats __maybe_unused stats;
338 
339 	tee_pager_get_stats(&stats);
340 	IMSG("Pager pool size: %zukB",
341 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
342 }
343 
344 static void init_vcore(tee_mm_pool_t *mm_vcore)
345 {
346 	const vaddr_t begin = VCORE_START_VA;
347 	size_t size = TEE_RAM_VA_SIZE;
348 
349 #ifdef CFG_CORE_SANITIZE_KADDRESS
350 	/* Carve out asan memory, flat maped after core memory */
351 	if (begin + size > ASAN_SHADOW_PA)
352 		size = ASAN_MAP_PA - begin;
353 #endif
354 
355 	if (!tee_mm_init(mm_vcore, begin, size, SMALL_PAGE_SHIFT,
356 			 TEE_MM_POOL_NO_FLAGS))
357 		panic("tee_mm_vcore init failed");
358 }
359 
360 /*
361  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
362  * The init part is also paged just as the rest of the normal paged code, with
363  * the difference that it's preloaded during boot. When the backing store
364  * is configured the entire paged binary is copied in place and then also
365  * the init part. Since the init part has been relocated (references to
366  * addresses updated to compensate for the new load address) this has to be
367  * undone for the hashes of those pages to match with the original binary.
368  *
369  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
370  * unchanged.
371  */
372 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
373 {
374 #ifdef CFG_CORE_ASLR
375 	unsigned long *ptr = NULL;
376 	const uint32_t *reloc = NULL;
377 	const uint32_t *reloc_end = NULL;
378 	unsigned long offs = boot_mmu_config.load_offset;
379 	const struct boot_embdata *embdata = (const void *)__init_end;
380 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_RAM_START;
381 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_RAM_START;
382 
383 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
384 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
385 
386 	for (; reloc < reloc_end; reloc++) {
387 		if (*reloc < addr_start)
388 			continue;
389 		if (*reloc >= addr_end)
390 			break;
391 		ptr = (void *)(paged_store + *reloc - addr_start);
392 		*ptr -= offs;
393 	}
394 #endif
395 }
396 
397 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
398 				   void *store)
399 {
400 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
401 #ifdef CFG_CORE_ASLR
402 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
403 	const struct boot_embdata *embdata = (const void *)__init_end;
404 	const void *reloc = __init_end + embdata->reloc_offset;
405 
406 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
407 					 reloc, embdata->reloc_len, store);
408 #else
409 	return fobj_ro_paged_alloc(num_pages, hashes, store);
410 #endif
411 }
412 
413 static void init_runtime(unsigned long pageable_part)
414 {
415 	size_t n;
416 	size_t init_size = (size_t)(__init_end - __init_start);
417 	size_t pageable_start = (size_t)__pageable_start;
418 	size_t pageable_end = (size_t)__pageable_end;
419 	size_t pageable_size = pageable_end - pageable_start;
420 	size_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE;
421 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
422 			   TEE_SHA256_HASH_SIZE;
423 	const struct boot_embdata *embdata = (const void *)__init_end;
424 	const void *tmp_hashes = NULL;
425 	tee_mm_entry_t *mm = NULL;
426 	struct fobj *fobj = NULL;
427 	uint8_t *paged_store = NULL;
428 	uint8_t *hashes = NULL;
429 
430 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
431 	assert(embdata->total_len >= embdata->hashes_offset +
432 				     embdata->hashes_len);
433 	assert(hash_size == embdata->hashes_len);
434 
435 	tmp_hashes = __init_end + embdata->hashes_offset;
436 
437 	init_asan();
438 
439 	/* Add heap2 first as heap1 may be too small as initial bget pool */
440 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
441 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
442 
443 	/*
444 	 * This needs to be initialized early to support address lookup
445 	 * in MEM_AREA_TEE_RAM
446 	 */
447 	tee_pager_early_init();
448 
449 	hashes = malloc(hash_size);
450 	IMSG_RAW("\n");
451 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
452 	assert(hashes);
453 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
454 
455 	/*
456 	 * Need tee_mm_sec_ddr initialized to be able to allocate secure
457 	 * DDR below.
458 	 */
459 	core_mmu_init_ta_ram();
460 
461 	carve_out_asan_mem(&tee_mm_sec_ddr);
462 
463 	mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size);
464 	assert(mm);
465 	paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
466 				   pageable_size);
467 	/*
468 	 * Load pageable part in the dedicated allocated area:
469 	 * - Move pageable non-init part into pageable area. Note bootloader
470 	 *   may have loaded it anywhere in TA RAM hence use memmove().
471 	 * - Copy pageable init part from current location into pageable area.
472 	 */
473 	memmove(paged_store + init_size,
474 		phys_to_virt(pageable_part,
475 			     core_mmu_get_type_by_pa(pageable_part),
476 			     __pageable_part_end - __pageable_part_start),
477 		__pageable_part_end - __pageable_part_start);
478 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
479 	/*
480 	 * Undo eventual relocation for the init part so the hash checks
481 	 * can pass.
482 	 */
483 	undo_init_relocation(paged_store);
484 
485 	/* Check that hashes of what's in pageable area is OK */
486 	DMSG("Checking hashes of pageable area");
487 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
488 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
489 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
490 		TEE_Result res;
491 
492 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
493 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
494 		if (res != TEE_SUCCESS) {
495 			EMSG("Hash failed for page %zu at %p: res 0x%x",
496 			     n, (void *)page, res);
497 			panic();
498 		}
499 	}
500 
501 	/*
502 	 * Assert prepaged init sections are page aligned so that nothing
503 	 * trails uninited at the end of the premapped init area.
504 	 */
505 	assert(!(init_size & SMALL_PAGE_MASK));
506 
507 	/*
508 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
509 	 * is supplied to tee_pager_init() below.
510 	 */
511 	init_vcore(&tee_mm_vcore);
512 
513 	/*
514 	 * Assign alias area for pager end of the small page block the rest
515 	 * of the binary is loaded into. We're taking more than needed, but
516 	 * we're guaranteed to not need more than the physical amount of
517 	 * TZSRAM.
518 	 */
519 	mm = tee_mm_alloc2(&tee_mm_vcore,
520 			   (vaddr_t)tee_mm_vcore.lo +
521 			   tee_mm_vcore.size - TZSRAM_SIZE,
522 			   TZSRAM_SIZE);
523 	assert(mm);
524 	tee_pager_set_alias_area(mm);
525 
526 	/*
527 	 * Claim virtual memory which isn't paged.
528 	 * Linear memory (flat map core memory) ends there.
529 	 */
530 	mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA,
531 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
532 	assert(mm);
533 
534 	/*
535 	 * Allocate virtual memory for the pageable area and let the pager
536 	 * take charge of all the pages already assigned to that memory.
537 	 */
538 	mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start,
539 			   pageable_size);
540 	assert(mm);
541 	fobj = ro_paged_alloc(mm, hashes, paged_store);
542 	assert(fobj);
543 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
544 				  fobj);
545 	fobj_put(fobj);
546 
547 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
548 	tee_pager_add_pages(pageable_start + init_size,
549 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
550 			    true);
551 	if (pageable_end < tzsram_end)
552 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
553 						   SMALL_PAGE_SIZE, true);
554 
555 	/*
556 	 * There may be physical pages in TZSRAM before the core load address.
557 	 * These pages can be added to the physical pages pool of the pager.
558 	 * This setup may happen when a the secure bootloader runs in TZRAM
559 	 * and its memory can be reused by OP-TEE once boot stages complete.
560 	 */
561 	tee_pager_add_pages(tee_mm_vcore.lo,
562 			(VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE,
563 			true);
564 
565 	print_pager_pool_size();
566 }
567 #else
568 
569 static void init_runtime(unsigned long pageable_part __unused)
570 {
571 	init_asan();
572 
573 	/*
574 	 * By default whole OP-TEE uses malloc, so we need to initialize
575 	 * it early. But, when virtualization is enabled, malloc is used
576 	 * only by TEE runtime, so malloc should be initialized later, for
577 	 * every virtual partition separately. Core code uses nex_malloc
578 	 * instead.
579 	 */
580 #ifdef CFG_VIRTUALIZATION
581 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
582 					      __nex_heap_start);
583 #else
584 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
585 #endif
586 
587 	IMSG_RAW("\n");
588 }
589 #endif
590 
591 void *get_dt(void)
592 {
593 	void *fdt = get_embedded_dt();
594 
595 	if (!fdt)
596 		fdt = get_external_dt();
597 
598 	return fdt;
599 }
600 
601 #if defined(CFG_EMBED_DTB)
602 void *get_embedded_dt(void)
603 {
604 	static bool checked;
605 
606 	assert(cpu_mmu_enabled());
607 
608 	if (!checked) {
609 		IMSG("Embedded DTB found");
610 
611 		if (fdt_check_header(embedded_secure_dtb))
612 			panic("Invalid embedded DTB");
613 
614 		checked = true;
615 	}
616 
617 	return embedded_secure_dtb;
618 }
619 #else
620 void *get_embedded_dt(void)
621 {
622 	return NULL;
623 }
624 #endif /*CFG_EMBED_DTB*/
625 
626 #if defined(CFG_DT)
627 void *get_external_dt(void)
628 {
629 	assert(cpu_mmu_enabled());
630 	return external_dt.blob;
631 }
632 
633 static TEE_Result release_external_dt(void)
634 {
635 	int ret = 0;
636 
637 	if (!external_dt.blob)
638 		return TEE_SUCCESS;
639 
640 	ret = fdt_pack(external_dt.blob);
641 	if (ret < 0) {
642 		EMSG("Failed to pack Device Tree at 0x%" PRIxPA ": error %d",
643 		     virt_to_phys(external_dt.blob), ret);
644 		panic();
645 	}
646 
647 	if (core_mmu_remove_mapping(MEM_AREA_EXT_DT, external_dt.blob,
648 				    CFG_DTB_MAX_SIZE))
649 		panic("Failed to remove temporary Device Tree mapping");
650 
651 	/* External DTB no more reached, reset pointer to invalid */
652 	external_dt.blob = NULL;
653 
654 	return TEE_SUCCESS;
655 }
656 boot_final(release_external_dt);
657 
658 #ifdef _CFG_USE_DTB_OVERLAY
659 static int add_dt_overlay_fragment(struct dt_descriptor *dt, int ioffs)
660 {
661 	char frag[32];
662 	int offs;
663 	int ret;
664 
665 	snprintf(frag, sizeof(frag), "fragment@%d", dt->frag_id);
666 	offs = fdt_add_subnode(dt->blob, ioffs, frag);
667 	if (offs < 0)
668 		return offs;
669 
670 	dt->frag_id += 1;
671 
672 	ret = fdt_setprop_string(dt->blob, offs, "target-path", "/");
673 	if (ret < 0)
674 		return -1;
675 
676 	return fdt_add_subnode(dt->blob, offs, "__overlay__");
677 }
678 
679 static int init_dt_overlay(struct dt_descriptor *dt, int __maybe_unused dt_size)
680 {
681 	int fragment;
682 
683 	if (IS_ENABLED(CFG_EXTERNAL_DTB_OVERLAY)) {
684 		if (!fdt_check_header(dt->blob)) {
685 			fdt_for_each_subnode(fragment, dt->blob, 0)
686 				dt->frag_id += 1;
687 			return 0;
688 		}
689 	}
690 
691 	return fdt_create_empty_tree(dt->blob, dt_size);
692 }
693 #else
694 static int add_dt_overlay_fragment(struct dt_descriptor *dt __unused, int offs)
695 {
696 	return offs;
697 }
698 
699 static int init_dt_overlay(struct dt_descriptor *dt __unused,
700 			   int dt_size __unused)
701 {
702 	return 0;
703 }
704 #endif /* _CFG_USE_DTB_OVERLAY */
705 
706 static int add_dt_path_subnode(struct dt_descriptor *dt, const char *path,
707 			       const char *subnode)
708 {
709 	int offs;
710 
711 	offs = fdt_path_offset(dt->blob, path);
712 	if (offs < 0)
713 		return -1;
714 	offs = add_dt_overlay_fragment(dt, offs);
715 	if (offs < 0)
716 		return -1;
717 	offs = fdt_add_subnode(dt->blob, offs, subnode);
718 	if (offs < 0)
719 		return -1;
720 	return offs;
721 }
722 
723 static int add_optee_dt_node(struct dt_descriptor *dt)
724 {
725 	int offs;
726 	int ret;
727 
728 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
729 		DMSG("OP-TEE Device Tree node already exists!");
730 		return 0;
731 	}
732 
733 	offs = fdt_path_offset(dt->blob, "/firmware");
734 	if (offs < 0) {
735 		offs = add_dt_path_subnode(dt, "/", "firmware");
736 		if (offs < 0)
737 			return -1;
738 	}
739 
740 	offs = fdt_add_subnode(dt->blob, offs, "optee");
741 	if (offs < 0)
742 		return -1;
743 
744 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
745 				 "linaro,optee-tz");
746 	if (ret < 0)
747 		return -1;
748 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
749 	if (ret < 0)
750 		return -1;
751 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
752 		/*
753 		 * The format of the interrupt property is defined by the
754 		 * binding of the interrupt domain root. In this case it's
755 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
756 		 * these.
757 		 *
758 		 * An SPI type of interrupt is indicated with a 0 in the
759 		 * first cell.
760 		 *
761 		 * The interrupt number goes in the second cell where
762 		 * SPIs ranges from 0 to 987.
763 		 *
764 		 * Flags are passed in the third cell where a 1 means edge
765 		 * triggered.
766 		 */
767 		const uint32_t gic_spi = 0;
768 		const uint32_t irq_type_edge = 1;
769 		uint32_t val[] = {
770 			TEE_U32_TO_BIG_ENDIAN(gic_spi),
771 			TEE_U32_TO_BIG_ENDIAN(CFG_CORE_ASYNC_NOTIF_GIC_INTID -
772 					      GIC_SPI_BASE),
773 			TEE_U32_TO_BIG_ENDIAN(irq_type_edge),
774 		};
775 
776 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
777 				  sizeof(val));
778 		if (ret < 0)
779 			return -1;
780 	}
781 	return 0;
782 }
783 
784 #ifdef CFG_PSCI_ARM32
785 static int append_psci_compatible(void *fdt, int offs, const char *str)
786 {
787 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
788 }
789 
790 static int dt_add_psci_node(struct dt_descriptor *dt)
791 {
792 	int offs;
793 
794 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
795 		DMSG("PSCI Device Tree node already exists!");
796 		return 0;
797 	}
798 
799 	offs = add_dt_path_subnode(dt, "/", "psci");
800 	if (offs < 0)
801 		return -1;
802 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
803 		return -1;
804 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
805 		return -1;
806 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
807 		return -1;
808 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
809 		return -1;
810 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
811 		return -1;
812 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
813 		return -1;
814 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
815 		return -1;
816 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
817 		return -1;
818 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
819 		return -1;
820 	return 0;
821 }
822 
823 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
824 				    const char *prefix)
825 {
826 	const size_t prefix_len = strlen(prefix);
827 	size_t l;
828 	int plen;
829 	const char *prop;
830 
831 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
832 	if (!prop)
833 		return -1;
834 
835 	while (plen > 0) {
836 		if (memcmp(prop, prefix, prefix_len) == 0)
837 			return 0; /* match */
838 
839 		l = strlen(prop) + 1;
840 		prop += l;
841 		plen -= l;
842 	}
843 
844 	return -1;
845 }
846 
847 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
848 {
849 	int offs = 0;
850 
851 	while (1) {
852 		offs = fdt_next_node(dt->blob, offs, NULL);
853 		if (offs < 0)
854 			break;
855 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
856 			continue; /* already set */
857 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
858 			continue; /* no compatible */
859 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
860 			return -1;
861 		/* Need to restart scanning as offsets may have changed */
862 		offs = 0;
863 	}
864 	return 0;
865 }
866 
867 static int config_psci(struct dt_descriptor *dt)
868 {
869 	if (dt_add_psci_node(dt))
870 		return -1;
871 	return dt_add_psci_cpu_enable_methods(dt);
872 }
873 #else
874 static int config_psci(struct dt_descriptor *dt __unused)
875 {
876 	return 0;
877 }
878 #endif /*CFG_PSCI_ARM32*/
879 
880 static void set_dt_val(void *data, uint32_t cell_size, uint64_t val)
881 {
882 	if (cell_size == 1) {
883 		fdt32_t v = cpu_to_fdt32((uint32_t)val);
884 
885 		memcpy(data, &v, sizeof(v));
886 	} else {
887 		fdt64_t v = cpu_to_fdt64(val);
888 
889 		memcpy(data, &v, sizeof(v));
890 	}
891 }
892 
893 static int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name,
894 			       paddr_t pa, size_t size)
895 {
896 	int offs = 0;
897 	int ret = 0;
898 	int addr_size = -1;
899 	int len_size = -1;
900 	bool found = true;
901 	char subnode_name[80] = { 0 };
902 
903 	offs = fdt_path_offset(dt->blob, "/reserved-memory");
904 
905 	if (offs < 0) {
906 		found = false;
907 		offs = 0;
908 	}
909 
910 	if (IS_ENABLED(_CFG_USE_DTB_OVERLAY)) {
911 		len_size = sizeof(paddr_t) / sizeof(uint32_t);
912 		addr_size = sizeof(paddr_t) / sizeof(uint32_t);
913 	} else {
914 		len_size = fdt_size_cells(dt->blob, offs);
915 		if (len_size < 0)
916 			return -1;
917 		addr_size = fdt_address_cells(dt->blob, offs);
918 		if (addr_size < 0)
919 			return -1;
920 	}
921 
922 	if (!found) {
923 		offs = add_dt_path_subnode(dt, "/", "reserved-memory");
924 		if (offs < 0)
925 			return -1;
926 		ret = fdt_setprop_cell(dt->blob, offs, "#address-cells",
927 				       addr_size);
928 		if (ret < 0)
929 			return -1;
930 		ret = fdt_setprop_cell(dt->blob, offs, "#size-cells", len_size);
931 		if (ret < 0)
932 			return -1;
933 		ret = fdt_setprop(dt->blob, offs, "ranges", NULL, 0);
934 		if (ret < 0)
935 			return -1;
936 	}
937 
938 	ret = snprintf(subnode_name, sizeof(subnode_name),
939 		       "%s@%" PRIxPA, name, pa);
940 	if (ret < 0 || ret >= (int)sizeof(subnode_name))
941 		DMSG("truncated node \"%s@%" PRIxPA"\"", name, pa);
942 	offs = fdt_add_subnode(dt->blob, offs, subnode_name);
943 	if (offs >= 0) {
944 		uint32_t data[FDT_MAX_NCELLS * 2];
945 
946 		set_dt_val(data, addr_size, pa);
947 		set_dt_val(data + addr_size, len_size, size);
948 		ret = fdt_setprop(dt->blob, offs, "reg", data,
949 				  sizeof(uint32_t) * (addr_size + len_size));
950 		if (ret < 0)
951 			return -1;
952 		ret = fdt_setprop(dt->blob, offs, "no-map", NULL, 0);
953 		if (ret < 0)
954 			return -1;
955 	} else {
956 		return -1;
957 	}
958 	return 0;
959 }
960 
961 #ifdef CFG_CORE_DYN_SHM
962 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs,
963 				       uint32_t cell_size)
964 {
965 	uint64_t rv = 0;
966 
967 	if (cell_size == 1) {
968 		uint32_t v;
969 
970 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
971 		*offs += sizeof(v);
972 		rv = fdt32_to_cpu(v);
973 	} else {
974 		uint64_t v;
975 
976 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
977 		*offs += sizeof(v);
978 		rv = fdt64_to_cpu(v);
979 	}
980 
981 	return rv;
982 }
983 
984 /*
985  * Find all non-secure memory from DT. Memory marked inaccessible by Secure
986  * World is ignored since it could not be mapped to be used as dynamic shared
987  * memory.
988  */
989 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem)
990 {
991 	const uint8_t *prop = NULL;
992 	uint64_t a = 0;
993 	uint64_t l = 0;
994 	size_t prop_offs = 0;
995 	size_t prop_len = 0;
996 	int elems_total = 0;
997 	int addr_size = 0;
998 	int len_size = 0;
999 	int offs = 0;
1000 	size_t n = 0;
1001 	int len = 0;
1002 
1003 	addr_size = fdt_address_cells(fdt, 0);
1004 	if (addr_size < 0)
1005 		return 0;
1006 
1007 	len_size = fdt_size_cells(fdt, 0);
1008 	if (len_size < 0)
1009 		return 0;
1010 
1011 	while (true) {
1012 		offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type",
1013 						     "memory",
1014 						     sizeof("memory"));
1015 		if (offs < 0)
1016 			break;
1017 
1018 		if (_fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC |
1019 						   DT_STATUS_OK_SEC))
1020 			continue;
1021 
1022 		prop = fdt_getprop(fdt, offs, "reg", &len);
1023 		if (!prop)
1024 			continue;
1025 
1026 		prop_len = len;
1027 		for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) {
1028 			a = get_dt_val_and_advance(prop, &prop_offs, addr_size);
1029 			if (prop_offs >= prop_len) {
1030 				n--;
1031 				break;
1032 			}
1033 
1034 			l = get_dt_val_and_advance(prop, &prop_offs, len_size);
1035 			if (mem) {
1036 				mem->type = MEM_AREA_DDR_OVERALL;
1037 				mem->addr = a;
1038 				mem->size = l;
1039 				mem++;
1040 			}
1041 		}
1042 
1043 		elems_total += n;
1044 	}
1045 
1046 	return elems_total;
1047 }
1048 
1049 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems)
1050 {
1051 	struct core_mmu_phys_mem *mem = NULL;
1052 	int elems_total = 0;
1053 
1054 	elems_total = get_nsec_memory_helper(fdt, NULL);
1055 	if (elems_total <= 0)
1056 		return NULL;
1057 
1058 	mem = nex_calloc(elems_total, sizeof(*mem));
1059 	if (!mem)
1060 		panic();
1061 
1062 	elems_total = get_nsec_memory_helper(fdt, mem);
1063 	assert(elems_total > 0);
1064 
1065 	*nelems = elems_total;
1066 
1067 	return mem;
1068 }
1069 #endif /*CFG_CORE_DYN_SHM*/
1070 
1071 #ifdef CFG_CORE_RESERVED_SHM
1072 static int mark_static_shm_as_reserved(struct dt_descriptor *dt)
1073 {
1074 	vaddr_t shm_start;
1075 	vaddr_t shm_end;
1076 
1077 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end);
1078 	if (shm_start != shm_end)
1079 		return add_res_mem_dt_node(dt, "optee_shm",
1080 					   virt_to_phys((void *)shm_start),
1081 					   shm_end - shm_start);
1082 
1083 	DMSG("No SHM configured");
1084 	return -1;
1085 }
1086 #endif /*CFG_CORE_RESERVED_SHM*/
1087 
1088 static void init_external_dt(unsigned long phys_dt)
1089 {
1090 	struct dt_descriptor *dt = &external_dt;
1091 	void *fdt;
1092 	int ret;
1093 
1094 	if (!phys_dt) {
1095 		/*
1096 		 * No need to panic as we're not using the DT in OP-TEE
1097 		 * yet, we're only adding some nodes for normal world use.
1098 		 * This makes the switch to using DT easier as we can boot
1099 		 * a newer OP-TEE with older boot loaders. Once we start to
1100 		 * initialize devices based on DT we'll likely panic
1101 		 * instead of returning here.
1102 		 */
1103 		IMSG("No non-secure external DT");
1104 		return;
1105 	}
1106 
1107 	fdt = core_mmu_add_mapping(MEM_AREA_EXT_DT, phys_dt, CFG_DTB_MAX_SIZE);
1108 	if (!fdt)
1109 		panic("Failed to map external DTB");
1110 
1111 	dt->blob = fdt;
1112 
1113 	ret = init_dt_overlay(dt, CFG_DTB_MAX_SIZE);
1114 	if (ret < 0) {
1115 		EMSG("Device Tree Overlay init fail @ %#lx: error %d", phys_dt,
1116 		     ret);
1117 		panic();
1118 	}
1119 
1120 	ret = fdt_open_into(fdt, fdt, CFG_DTB_MAX_SIZE);
1121 	if (ret < 0) {
1122 		EMSG("Invalid Device Tree at %#lx: error %d", phys_dt, ret);
1123 		panic();
1124 	}
1125 
1126 	IMSG("Non-secure external DT found");
1127 }
1128 
1129 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
1130 {
1131 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
1132 				   CFG_TZDRAM_SIZE);
1133 }
1134 
1135 static void update_external_dt(void)
1136 {
1137 	struct dt_descriptor *dt = &external_dt;
1138 
1139 	if (!dt->blob)
1140 		return;
1141 
1142 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
1143 		panic("Failed to add OP-TEE Device Tree node");
1144 
1145 	if (config_psci(dt))
1146 		panic("Failed to config PSCI");
1147 
1148 #ifdef CFG_CORE_RESERVED_SHM
1149 	if (mark_static_shm_as_reserved(dt))
1150 		panic("Failed to config non-secure memory");
1151 #endif
1152 
1153 	if (mark_tzdram_as_reserved(dt))
1154 		panic("Failed to config secure memory");
1155 }
1156 #else /*CFG_DT*/
1157 void *get_external_dt(void)
1158 {
1159 	return NULL;
1160 }
1161 
1162 static void init_external_dt(unsigned long phys_dt __unused)
1163 {
1164 }
1165 
1166 static void update_external_dt(void)
1167 {
1168 }
1169 
1170 #ifdef CFG_CORE_DYN_SHM
1171 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused,
1172 						 size_t *nelems __unused)
1173 {
1174 	return NULL;
1175 }
1176 #endif /*CFG_CORE_DYN_SHM*/
1177 #endif /*!CFG_DT*/
1178 
1179 #ifdef CFG_CORE_DYN_SHM
1180 static void discover_nsec_memory(void)
1181 {
1182 	struct core_mmu_phys_mem *mem;
1183 	const struct core_mmu_phys_mem *mem_begin = NULL;
1184 	const struct core_mmu_phys_mem *mem_end = NULL;
1185 	size_t nelems;
1186 	void *fdt = get_external_dt();
1187 
1188 	if (fdt) {
1189 		mem = get_nsec_memory(fdt, &nelems);
1190 		if (mem) {
1191 			core_mmu_set_discovered_nsec_ddr(mem, nelems);
1192 			return;
1193 		}
1194 
1195 		DMSG("No non-secure memory found in FDT");
1196 	}
1197 
1198 	mem_begin = phys_ddr_overall_begin;
1199 	mem_end = phys_ddr_overall_end;
1200 	nelems = mem_end - mem_begin;
1201 	if (nelems) {
1202 		/*
1203 		 * Platform cannot use both register_ddr() and the now
1204 		 * deprecated register_dynamic_shm().
1205 		 */
1206 		assert(phys_ddr_overall_compat_begin ==
1207 		       phys_ddr_overall_compat_end);
1208 	} else {
1209 		mem_begin = phys_ddr_overall_compat_begin;
1210 		mem_end = phys_ddr_overall_compat_end;
1211 		nelems = mem_end - mem_begin;
1212 		if (!nelems)
1213 			return;
1214 		DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead");
1215 	}
1216 
1217 	mem = nex_calloc(nelems, sizeof(*mem));
1218 	if (!mem)
1219 		panic();
1220 
1221 	memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems);
1222 	core_mmu_set_discovered_nsec_ddr(mem, nelems);
1223 }
1224 #else /*CFG_CORE_DYN_SHM*/
1225 static void discover_nsec_memory(void)
1226 {
1227 }
1228 #endif /*!CFG_CORE_DYN_SHM*/
1229 
1230 #ifdef CFG_VIRTUALIZATION
1231 static TEE_Result virt_init_heap(void)
1232 {
1233 	/* We need to initialize pool for every virtual guest partition */
1234 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
1235 
1236 	return TEE_SUCCESS;
1237 }
1238 preinit_early(virt_init_heap);
1239 #endif
1240 
1241 void init_tee_runtime(void)
1242 {
1243 #ifndef CFG_WITH_PAGER
1244 	/* Pager initializes TA RAM early */
1245 	core_mmu_init_ta_ram();
1246 #endif
1247 	/*
1248 	 * With virtualization we call this function when creating the
1249 	 * OP-TEE partition instead.
1250 	 */
1251 	if (!IS_ENABLED(CFG_VIRTUALIZATION))
1252 		call_preinitcalls();
1253 	call_initcalls();
1254 }
1255 
1256 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
1257 {
1258 	thread_init_core_local_stacks();
1259 	/*
1260 	 * Mask asynchronous exceptions before switch to the thread vector
1261 	 * as the thread handler requires those to be masked while
1262 	 * executing with the temporary stack. The thread subsystem also
1263 	 * asserts that the foreign interrupts are blocked when using most of
1264 	 * its functions.
1265 	 */
1266 	thread_set_exceptions(THREAD_EXCP_ALL);
1267 	primary_save_cntfrq();
1268 	init_vfp_sec();
1269 	/*
1270 	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
1271 	 * set a current thread right now to avoid a chicken-and-egg problem
1272 	 * (thread_init_boot_thread() sets the current thread but needs
1273 	 * things set by init_runtime()).
1274 	 */
1275 	thread_get_core_local()->curr_thread = 0;
1276 	init_runtime(pageable_part);
1277 
1278 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
1279 		/*
1280 		 * Virtualization: We can't initialize threads right now because
1281 		 * threads belong to "tee" part and will be initialized
1282 		 * separately per each new virtual guest. So, we'll clear
1283 		 * "curr_thread" and call it done.
1284 		 */
1285 		thread_get_core_local()->curr_thread = -1;
1286 	} else {
1287 		thread_init_boot_thread();
1288 	}
1289 	thread_init_primary();
1290 	thread_init_per_cpu();
1291 	init_sec_mon(nsec_entry);
1292 }
1293 
1294 /*
1295  * Note: this function is weak just to make it possible to exclude it from
1296  * the unpaged area.
1297  */
1298 void __weak boot_init_primary_late(unsigned long fdt)
1299 {
1300 	init_external_dt(fdt);
1301 	tpm_map_log_area(get_external_dt());
1302 	discover_nsec_memory();
1303 	update_external_dt();
1304 	configure_console_from_dt();
1305 
1306 	IMSG("OP-TEE version: %s", core_v_str);
1307 	if (IS_ENABLED(CFG_WARN_INSECURE)) {
1308 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1309 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1310 	}
1311 	IMSG("Primary CPU initializing");
1312 #ifdef CFG_CORE_ASLR
1313 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1314 	     (unsigned long)boot_mmu_config.load_offset, VCORE_START_VA);
1315 #endif
1316 	if (IS_ENABLED(CFG_MEMTAG))
1317 		DMSG("Memory tagging %s",
1318 		     memtag_is_enabled() ?  "enabled" : "disabled");
1319 
1320 	main_init_gic();
1321 	init_vfp_nsec();
1322 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
1323 		IMSG("Initializing virtualization support");
1324 		core_mmu_init_virtualization();
1325 	} else {
1326 		init_tee_runtime();
1327 	}
1328 	call_finalcalls();
1329 	IMSG("Primary CPU switching to normal world boot");
1330 }
1331 
1332 static void init_secondary_helper(unsigned long nsec_entry)
1333 {
1334 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1335 
1336 	/*
1337 	 * Mask asynchronous exceptions before switch to the thread vector
1338 	 * as the thread handler requires those to be masked while
1339 	 * executing with the temporary stack. The thread subsystem also
1340 	 * asserts that the foreign interrupts are blocked when using most of
1341 	 * its functions.
1342 	 */
1343 	thread_set_exceptions(THREAD_EXCP_ALL);
1344 
1345 	secondary_init_cntfrq();
1346 	thread_init_per_cpu();
1347 	init_sec_mon(nsec_entry);
1348 	main_secondary_init_gic();
1349 	init_vfp_sec();
1350 	init_vfp_nsec();
1351 
1352 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1353 }
1354 
1355 /*
1356  * Note: this function is weak just to make it possible to exclude it from
1357  * the unpaged area so that it lies in the init area.
1358  */
1359 void __weak boot_init_primary_early(unsigned long pageable_part,
1360 				    unsigned long nsec_entry __maybe_unused)
1361 {
1362 	unsigned long e = PADDR_INVALID;
1363 
1364 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
1365 	e = nsec_entry;
1366 #endif
1367 
1368 	init_primary(pageable_part, e);
1369 }
1370 
1371 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1372 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1373 				  unsigned long a1 __unused)
1374 {
1375 	init_secondary_helper(PADDR_INVALID);
1376 	return 0;
1377 }
1378 #else
1379 void boot_init_secondary(unsigned long nsec_entry)
1380 {
1381 	init_secondary_helper(nsec_entry);
1382 }
1383 #endif
1384 
1385 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1386 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1387 			    uintptr_t context_id)
1388 {
1389 	ns_entry_contexts[core_idx].entry_point = entry;
1390 	ns_entry_contexts[core_idx].context_id = context_id;
1391 	dsb_ishst();
1392 }
1393 
1394 int boot_core_release(size_t core_idx, paddr_t entry)
1395 {
1396 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1397 		return -1;
1398 
1399 	ns_entry_contexts[core_idx].entry_point = entry;
1400 	dmb();
1401 	spin_table[core_idx] = 1;
1402 	dsb();
1403 	sev();
1404 
1405 	return 0;
1406 }
1407 
1408 /*
1409  * spin until secondary boot request, then returns with
1410  * the secondary core entry address.
1411  */
1412 struct ns_entry_context *boot_core_hpen(void)
1413 {
1414 #ifdef CFG_PSCI_ARM32
1415 	return &ns_entry_contexts[get_core_pos()];
1416 #else
1417 	do {
1418 		wfe();
1419 	} while (!spin_table[get_core_pos()]);
1420 	dmb();
1421 	return &ns_entry_contexts[get_core_pos()];
1422 #endif
1423 }
1424 #endif
1425 
1426 #if defined(CFG_CORE_ASLR)
1427 #if defined(CFG_DT)
1428 unsigned long __weak get_aslr_seed(void *fdt)
1429 {
1430 	int rc = fdt_check_header(fdt);
1431 	const uint64_t *seed = NULL;
1432 	int offs = 0;
1433 	int len = 0;
1434 
1435 	if (rc) {
1436 		DMSG("Bad fdt: %d", rc);
1437 		goto err;
1438 	}
1439 
1440 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1441 	if (offs < 0) {
1442 		DMSG("Cannot find /secure-chosen");
1443 		goto err;
1444 	}
1445 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1446 	if (!seed || len != sizeof(*seed)) {
1447 		DMSG("Cannot find valid kaslr-seed");
1448 		goto err;
1449 	}
1450 
1451 	return fdt64_to_cpu(*seed);
1452 
1453 err:
1454 	/* Try platform implementation */
1455 	return plat_get_aslr_seed();
1456 }
1457 #else /*!CFG_DT*/
1458 unsigned long __weak get_aslr_seed(void *fdt __unused)
1459 {
1460 	/* Try platform implementation */
1461 	return plat_get_aslr_seed();
1462 }
1463 #endif /*!CFG_DT*/
1464 #endif /*CFG_CORE_ASLR*/
1465