1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2015-2020, Linaro Limited 4 */ 5 6 #include <arm.h> 7 #include <assert.h> 8 #include <compiler.h> 9 #include <config.h> 10 #include <console.h> 11 #include <crypto/crypto.h> 12 #include <initcall.h> 13 #include <inttypes.h> 14 #include <keep.h> 15 #include <kernel/asan.h> 16 #include <kernel/boot.h> 17 #include <kernel/linker.h> 18 #include <kernel/misc.h> 19 #include <kernel/panic.h> 20 #include <kernel/tee_misc.h> 21 #include <kernel/thread.h> 22 #include <kernel/tpm.h> 23 #include <libfdt.h> 24 #include <malloc.h> 25 #include <mm/core_memprot.h> 26 #include <mm/core_mmu.h> 27 #include <mm/fobj.h> 28 #include <mm/tee_mm.h> 29 #include <mm/tee_pager.h> 30 #include <sm/psci.h> 31 #include <stdio.h> 32 #include <trace.h> 33 #include <utee_defines.h> 34 #include <util.h> 35 36 #include <platform_config.h> 37 38 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 39 #include <sm/sm.h> 40 #endif 41 42 #if defined(CFG_WITH_VFP) 43 #include <kernel/vfp.h> 44 #endif 45 46 /* 47 * In this file we're using unsigned long to represent physical pointers as 48 * they are received in a single register when OP-TEE is initially entered. 49 * This limits 32-bit systems to only use make use of the lower 32 bits 50 * of a physical address for initial parameters. 51 * 52 * 64-bit systems on the other hand can use full 64-bit physical pointers. 53 */ 54 #define PADDR_INVALID ULONG_MAX 55 56 #if defined(CFG_BOOT_SECONDARY_REQUEST) 57 struct ns_entry_context { 58 uintptr_t entry_point; 59 uintptr_t context_id; 60 }; 61 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE]; 62 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE]; 63 #endif 64 65 #ifdef CFG_BOOT_SYNC_CPU 66 /* 67 * Array used when booting, to synchronize cpu. 68 * When 0, the cpu has not started. 69 * When 1, it has started 70 */ 71 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE]; 72 DECLARE_KEEP_PAGER(sem_cpu_sync); 73 #endif 74 75 #ifdef CFG_DT 76 struct dt_descriptor { 77 void *blob; 78 #ifdef CFG_EXTERNAL_DTB_OVERLAY 79 int frag_id; 80 #endif 81 }; 82 83 static struct dt_descriptor external_dt __nex_bss; 84 #endif 85 86 #ifdef CFG_SECONDARY_INIT_CNTFRQ 87 static uint32_t cntfrq; 88 #endif 89 90 /* May be overridden in plat-$(PLATFORM)/main.c */ 91 __weak void plat_primary_init_early(void) 92 { 93 } 94 DECLARE_KEEP_PAGER(plat_primary_init_early); 95 96 /* May be overridden in plat-$(PLATFORM)/main.c */ 97 __weak void main_init_gic(void) 98 { 99 } 100 101 /* May be overridden in plat-$(PLATFORM)/main.c */ 102 __weak void main_secondary_init_gic(void) 103 { 104 } 105 106 #if defined(CFG_WITH_ARM_TRUSTED_FW) 107 void init_sec_mon(unsigned long nsec_entry __maybe_unused) 108 { 109 assert(nsec_entry == PADDR_INVALID); 110 /* Do nothing as we don't have a secure monitor */ 111 } 112 #else 113 /* May be overridden in plat-$(PLATFORM)/main.c */ 114 __weak void init_sec_mon(unsigned long nsec_entry) 115 { 116 struct sm_nsec_ctx *nsec_ctx; 117 118 assert(nsec_entry != PADDR_INVALID); 119 120 /* Initialize secure monitor */ 121 nsec_ctx = sm_get_nsec_ctx(); 122 nsec_ctx->mon_lr = nsec_entry; 123 nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I; 124 if (nsec_entry & 1) 125 nsec_ctx->mon_spsr |= CPSR_T; 126 } 127 #endif 128 129 #if defined(CFG_WITH_ARM_TRUSTED_FW) 130 static void init_vfp_nsec(void) 131 { 132 } 133 #else 134 static void init_vfp_nsec(void) 135 { 136 /* Normal world can use CP10 and CP11 (SIMD/VFP) */ 137 write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11); 138 } 139 #endif 140 141 #if defined(CFG_WITH_VFP) 142 143 #ifdef ARM32 144 static void init_vfp_sec(void) 145 { 146 uint32_t cpacr = read_cpacr(); 147 148 /* 149 * Enable Advanced SIMD functionality. 150 * Enable use of D16-D31 of the Floating-point Extension register 151 * file. 152 */ 153 cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS); 154 /* 155 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user 156 * mode. 157 */ 158 cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL); 159 cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL); 160 write_cpacr(cpacr); 161 } 162 #endif /* ARM32 */ 163 164 #ifdef ARM64 165 static void init_vfp_sec(void) 166 { 167 /* Not using VFP until thread_kernel_enable_vfp() */ 168 vfp_disable(); 169 } 170 #endif /* ARM64 */ 171 172 #else /* CFG_WITH_VFP */ 173 174 static void init_vfp_sec(void) 175 { 176 /* Not using VFP */ 177 } 178 #endif 179 180 #ifdef CFG_SECONDARY_INIT_CNTFRQ 181 static void primary_save_cntfrq(void) 182 { 183 assert(cntfrq == 0); 184 185 /* 186 * CNTFRQ should be initialized on the primary CPU by a 187 * previous boot stage 188 */ 189 cntfrq = read_cntfrq(); 190 } 191 192 static void secondary_init_cntfrq(void) 193 { 194 assert(cntfrq != 0); 195 write_cntfrq(cntfrq); 196 } 197 #else /* CFG_SECONDARY_INIT_CNTFRQ */ 198 static void primary_save_cntfrq(void) 199 { 200 } 201 202 static void secondary_init_cntfrq(void) 203 { 204 } 205 #endif 206 207 #ifdef CFG_CORE_SANITIZE_KADDRESS 208 static void init_run_constructors(void) 209 { 210 const vaddr_t *ctor; 211 212 for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++) 213 ((void (*)(void))(*ctor))(); 214 } 215 216 static void init_asan(void) 217 { 218 219 /* 220 * CFG_ASAN_SHADOW_OFFSET is also supplied as 221 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler. 222 * Since all the needed values to calculate the value of 223 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to 224 * calculate it in advance and hard code it into the platform 225 * conf.mk. Here where we have all the needed values we double 226 * check that the compiler is supplied the correct value. 227 */ 228 229 #define __ASAN_SHADOW_START \ 230 ROUNDUP(TEE_RAM_VA_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8) 231 assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start); 232 #define __CFG_ASAN_SHADOW_OFFSET \ 233 (__ASAN_SHADOW_START - (TEE_RAM_VA_START / 8)) 234 COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET); 235 #undef __ASAN_SHADOW_START 236 #undef __CFG_ASAN_SHADOW_OFFSET 237 238 /* 239 * Assign area covered by the shadow area, everything from start up 240 * to the beginning of the shadow area. 241 */ 242 asan_set_shadowed((void *)TEE_TEXT_VA_START, &__asan_shadow_start); 243 244 /* 245 * Add access to areas that aren't opened automatically by a 246 * constructor. 247 */ 248 asan_tag_access(&__ctor_list, &__ctor_end); 249 asan_tag_access(__rodata_start, __rodata_end); 250 #ifdef CFG_WITH_PAGER 251 asan_tag_access(__pageable_start, __pageable_end); 252 #endif /*CFG_WITH_PAGER*/ 253 asan_tag_access(__nozi_start, __nozi_end); 254 asan_tag_access(__exidx_start, __exidx_end); 255 asan_tag_access(__extab_start, __extab_end); 256 257 init_run_constructors(); 258 259 /* Everything is tagged correctly, let's start address sanitizing. */ 260 asan_start(); 261 } 262 #else /*CFG_CORE_SANITIZE_KADDRESS*/ 263 static void init_asan(void) 264 { 265 } 266 #endif /*CFG_CORE_SANITIZE_KADDRESS*/ 267 268 #ifdef CFG_WITH_PAGER 269 270 #ifdef CFG_CORE_SANITIZE_KADDRESS 271 static void carve_out_asan_mem(tee_mm_pool_t *pool) 272 { 273 const size_t s = pool->hi - pool->lo; 274 tee_mm_entry_t *mm; 275 paddr_t apa = ASAN_MAP_PA; 276 size_t asz = ASAN_MAP_SZ; 277 278 if (core_is_buffer_outside(apa, asz, pool->lo, s)) 279 return; 280 281 /* Reserve the shadow area */ 282 if (!core_is_buffer_inside(apa, asz, pool->lo, s)) { 283 if (apa < pool->lo) { 284 /* 285 * ASAN buffer is overlapping with the beginning of 286 * the pool. 287 */ 288 asz -= pool->lo - apa; 289 apa = pool->lo; 290 } else { 291 /* 292 * ASAN buffer is overlapping with the end of the 293 * pool. 294 */ 295 asz = pool->hi - apa; 296 } 297 } 298 mm = tee_mm_alloc2(pool, apa, asz); 299 assert(mm); 300 } 301 #else 302 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused) 303 { 304 } 305 #endif 306 307 static void print_pager_pool_size(void) 308 { 309 struct tee_pager_stats __maybe_unused stats; 310 311 tee_pager_get_stats(&stats); 312 IMSG("Pager pool size: %zukB", 313 stats.npages_all * SMALL_PAGE_SIZE / 1024); 314 } 315 316 static void init_vcore(tee_mm_pool_t *mm_vcore) 317 { 318 const vaddr_t begin = VCORE_START_VA; 319 vaddr_t end = begin + TEE_RAM_VA_SIZE; 320 321 #ifdef CFG_CORE_SANITIZE_KADDRESS 322 /* Carve out asan memory, flat maped after core memory */ 323 if (end > ASAN_SHADOW_PA) 324 end = ASAN_MAP_PA; 325 #endif 326 327 if (!tee_mm_init(mm_vcore, begin, end, SMALL_PAGE_SHIFT, 328 TEE_MM_POOL_NO_FLAGS)) 329 panic("tee_mm_vcore init failed"); 330 } 331 332 /* 333 * With CFG_CORE_ASLR=y the init part is relocated very early during boot. 334 * The init part is also paged just as the rest of the normal paged code, with 335 * the difference that it's preloaded during boot. When the backing store 336 * is configured the entire paged binary is copied in place and then also 337 * the init part. Since the init part has been relocated (references to 338 * addresses updated to compensate for the new load address) this has to be 339 * undone for the hashes of those pages to match with the original binary. 340 * 341 * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are 342 * unchanged. 343 */ 344 static void undo_init_relocation(uint8_t *paged_store __maybe_unused) 345 { 346 #ifdef CFG_CORE_ASLR 347 unsigned long *ptr = NULL; 348 const uint32_t *reloc = NULL; 349 const uint32_t *reloc_end = NULL; 350 unsigned long offs = boot_mmu_config.load_offset; 351 const struct boot_embdata *embdata = (const void *)__init_end; 352 vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_RAM_START; 353 vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_RAM_START; 354 355 reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset); 356 reloc_end = reloc + embdata->reloc_len / sizeof(*reloc); 357 358 for (; reloc < reloc_end; reloc++) { 359 if (*reloc < addr_start) 360 continue; 361 if (*reloc >= addr_end) 362 break; 363 ptr = (void *)(paged_store + *reloc - addr_start); 364 *ptr -= offs; 365 } 366 #endif 367 } 368 369 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes, 370 void *store) 371 { 372 const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE; 373 #ifdef CFG_CORE_ASLR 374 unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA; 375 const struct boot_embdata *embdata = (const void *)__init_end; 376 const void *reloc = __init_end + embdata->reloc_offset; 377 378 return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs, 379 reloc, embdata->reloc_len, store); 380 #else 381 return fobj_ro_paged_alloc(num_pages, hashes, store); 382 #endif 383 } 384 385 static void init_runtime(unsigned long pageable_part) 386 { 387 size_t n; 388 size_t init_size = (size_t)(__init_end - __init_start); 389 size_t pageable_start = (size_t)__pageable_start; 390 size_t pageable_end = (size_t)__pageable_end; 391 size_t pageable_size = pageable_end - pageable_start; 392 size_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE; 393 size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) * 394 TEE_SHA256_HASH_SIZE; 395 const struct boot_embdata *embdata = (const void *)__init_end; 396 const void *tmp_hashes = NULL; 397 tee_mm_entry_t *mm = NULL; 398 struct fobj *fobj = NULL; 399 uint8_t *paged_store = NULL; 400 uint8_t *hashes = NULL; 401 402 assert(pageable_size % SMALL_PAGE_SIZE == 0); 403 assert(embdata->total_len >= embdata->hashes_offset + 404 embdata->hashes_len); 405 assert(hash_size == embdata->hashes_len); 406 407 tmp_hashes = __init_end + embdata->hashes_offset; 408 409 init_asan(); 410 411 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 412 malloc_add_pool(__heap2_start, __heap2_end - __heap2_start); 413 414 /* 415 * This needs to be initialized early to support address lookup 416 * in MEM_AREA_TEE_RAM 417 */ 418 tee_pager_early_init(); 419 420 hashes = malloc(hash_size); 421 IMSG_RAW("\n"); 422 IMSG("Pager is enabled. Hashes: %zu bytes", hash_size); 423 assert(hashes); 424 asan_memcpy_unchecked(hashes, tmp_hashes, hash_size); 425 426 /* 427 * Need tee_mm_sec_ddr initialized to be able to allocate secure 428 * DDR below. 429 */ 430 core_mmu_init_ta_ram(); 431 432 carve_out_asan_mem(&tee_mm_sec_ddr); 433 434 mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size); 435 assert(mm); 436 paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM); 437 /* 438 * Load pageable part in the dedicated allocated area: 439 * - Move pageable non-init part into pageable area. Note bootloader 440 * may have loaded it anywhere in TA RAM hence use memmove(). 441 * - Copy pageable init part from current location into pageable area. 442 */ 443 memmove(paged_store + init_size, 444 phys_to_virt(pageable_part, 445 core_mmu_get_type_by_pa(pageable_part)), 446 __pageable_part_end - __pageable_part_start); 447 asan_memcpy_unchecked(paged_store, __init_start, init_size); 448 /* 449 * Undo eventual relocation for the init part so the hash checks 450 * can pass. 451 */ 452 undo_init_relocation(paged_store); 453 454 /* Check that hashes of what's in pageable area is OK */ 455 DMSG("Checking hashes of pageable area"); 456 for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) { 457 const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE; 458 const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE; 459 TEE_Result res; 460 461 DMSG("hash pg_idx %zu hash %p page %p", n, hash, page); 462 res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE); 463 if (res != TEE_SUCCESS) { 464 EMSG("Hash failed for page %zu at %p: res 0x%x", 465 n, (void *)page, res); 466 panic(); 467 } 468 } 469 470 /* 471 * Assert prepaged init sections are page aligned so that nothing 472 * trails uninited at the end of the premapped init area. 473 */ 474 assert(!(init_size & SMALL_PAGE_MASK)); 475 476 /* 477 * Initialize the virtual memory pool used for main_mmu_l2_ttb which 478 * is supplied to tee_pager_init() below. 479 */ 480 init_vcore(&tee_mm_vcore); 481 482 /* 483 * Assign alias area for pager end of the small page block the rest 484 * of the binary is loaded into. We're taking more than needed, but 485 * we're guaranteed to not need more than the physical amount of 486 * TZSRAM. 487 */ 488 mm = tee_mm_alloc2(&tee_mm_vcore, 489 (vaddr_t)tee_mm_vcore.hi - TZSRAM_SIZE, TZSRAM_SIZE); 490 assert(mm); 491 tee_pager_set_alias_area(mm); 492 493 /* 494 * Claim virtual memory which isn't paged. 495 * Linear memory (flat map core memory) ends there. 496 */ 497 mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA, 498 (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA)); 499 assert(mm); 500 501 /* 502 * Allocate virtual memory for the pageable area and let the pager 503 * take charge of all the pages already assigned to that memory. 504 */ 505 mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start, 506 pageable_size); 507 assert(mm); 508 fobj = ro_paged_alloc(mm, hashes, paged_store); 509 assert(fobj); 510 tee_pager_add_core_area(tee_mm_get_smem(mm), PAGER_AREA_TYPE_RO, fobj); 511 fobj_put(fobj); 512 513 tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false); 514 tee_pager_add_pages(pageable_start + init_size, 515 (pageable_size - init_size) / SMALL_PAGE_SIZE, 516 true); 517 if (pageable_end < tzsram_end) 518 tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) / 519 SMALL_PAGE_SIZE, true); 520 521 /* 522 * There may be physical pages in TZSRAM before the core load address. 523 * These pages can be added to the physical pages pool of the pager. 524 * This setup may happen when a the secure bootloader runs in TZRAM 525 * and its memory can be reused by OP-TEE once boot stages complete. 526 */ 527 tee_pager_add_pages(tee_mm_vcore.lo, 528 (VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE, 529 true); 530 531 print_pager_pool_size(); 532 } 533 #else 534 535 static void init_runtime(unsigned long pageable_part __unused) 536 { 537 init_asan(); 538 539 /* 540 * By default whole OP-TEE uses malloc, so we need to initialize 541 * it early. But, when virtualization is enabled, malloc is used 542 * only by TEE runtime, so malloc should be initialized later, for 543 * every virtual partition separately. Core code uses nex_malloc 544 * instead. 545 */ 546 #ifdef CFG_VIRTUALIZATION 547 nex_malloc_add_pool(__nex_heap_start, __nex_heap_end - 548 __nex_heap_start); 549 #else 550 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 551 #endif 552 553 IMSG_RAW("\n"); 554 } 555 #endif 556 557 void *get_dt(void) 558 { 559 void *fdt = get_embedded_dt(); 560 561 if (!fdt) 562 fdt = get_external_dt(); 563 564 return fdt; 565 } 566 567 #if defined(CFG_EMBED_DTB) 568 void *get_embedded_dt(void) 569 { 570 static bool checked; 571 572 assert(cpu_mmu_enabled()); 573 574 if (!checked) { 575 IMSG("Embedded DTB found"); 576 577 if (fdt_check_header(embedded_secure_dtb)) 578 panic("Invalid embedded DTB"); 579 580 checked = true; 581 } 582 583 return embedded_secure_dtb; 584 } 585 #else 586 void *get_embedded_dt(void) 587 { 588 return NULL; 589 } 590 #endif /*CFG_EMBED_DTB*/ 591 592 #if defined(CFG_DT) 593 void *get_external_dt(void) 594 { 595 assert(cpu_mmu_enabled()); 596 return external_dt.blob; 597 } 598 599 static TEE_Result release_external_dt(void) 600 { 601 int ret = 0; 602 603 if (!external_dt.blob) 604 return TEE_SUCCESS; 605 606 ret = fdt_pack(external_dt.blob); 607 if (ret < 0) { 608 EMSG("Failed to pack Device Tree at 0x%" PRIxPA ": error %d", 609 virt_to_phys(external_dt.blob), ret); 610 panic(); 611 } 612 613 if (core_mmu_remove_mapping(MEM_AREA_EXT_DT, external_dt.blob, 614 CFG_DTB_MAX_SIZE)) 615 panic("Failed to remove temporary Device Tree mapping"); 616 617 /* External DTB no more reached, reset pointer to invalid */ 618 external_dt.blob = NULL; 619 620 return TEE_SUCCESS; 621 } 622 boot_final(release_external_dt); 623 624 #ifdef CFG_EXTERNAL_DTB_OVERLAY 625 static int add_dt_overlay_fragment(struct dt_descriptor *dt, int ioffs) 626 { 627 char frag[32]; 628 int offs; 629 int ret; 630 631 snprintf(frag, sizeof(frag), "fragment@%d", dt->frag_id); 632 offs = fdt_add_subnode(dt->blob, ioffs, frag); 633 if (offs < 0) 634 return offs; 635 636 dt->frag_id += 1; 637 638 ret = fdt_setprop_string(dt->blob, offs, "target-path", "/"); 639 if (ret < 0) 640 return -1; 641 642 return fdt_add_subnode(dt->blob, offs, "__overlay__"); 643 } 644 645 static int init_dt_overlay(struct dt_descriptor *dt, int __maybe_unused dt_size) 646 { 647 int fragment; 648 int ret; 649 650 ret = fdt_check_header(dt->blob); 651 if (!ret) { 652 fdt_for_each_subnode(fragment, dt->blob, 0) 653 dt->frag_id += 1; 654 return ret; 655 } 656 657 #ifdef CFG_DT_ADDR 658 return fdt_create_empty_tree(dt->blob, dt_size); 659 #else 660 return -1; 661 #endif 662 } 663 #else 664 static int add_dt_overlay_fragment(struct dt_descriptor *dt __unused, int offs) 665 { 666 return offs; 667 } 668 669 static int init_dt_overlay(struct dt_descriptor *dt __unused, 670 int dt_size __unused) 671 { 672 return 0; 673 } 674 #endif /* CFG_EXTERNAL_DTB_OVERLAY */ 675 676 static int add_dt_path_subnode(struct dt_descriptor *dt, const char *path, 677 const char *subnode) 678 { 679 int offs; 680 681 offs = fdt_path_offset(dt->blob, path); 682 if (offs < 0) 683 return -1; 684 offs = add_dt_overlay_fragment(dt, offs); 685 if (offs < 0) 686 return -1; 687 offs = fdt_add_subnode(dt->blob, offs, subnode); 688 if (offs < 0) 689 return -1; 690 return offs; 691 } 692 693 static int add_optee_dt_node(struct dt_descriptor *dt) 694 { 695 int offs; 696 int ret; 697 698 if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) { 699 DMSG("OP-TEE Device Tree node already exists!"); 700 return 0; 701 } 702 703 offs = fdt_path_offset(dt->blob, "/firmware"); 704 if (offs < 0) { 705 offs = add_dt_path_subnode(dt, "/", "firmware"); 706 if (offs < 0) 707 return -1; 708 } 709 710 offs = fdt_add_subnode(dt->blob, offs, "optee"); 711 if (offs < 0) 712 return -1; 713 714 ret = fdt_setprop_string(dt->blob, offs, "compatible", 715 "linaro,optee-tz"); 716 if (ret < 0) 717 return -1; 718 ret = fdt_setprop_string(dt->blob, offs, "method", "smc"); 719 if (ret < 0) 720 return -1; 721 return 0; 722 } 723 724 #ifdef CFG_PSCI_ARM32 725 static int append_psci_compatible(void *fdt, int offs, const char *str) 726 { 727 return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1); 728 } 729 730 static int dt_add_psci_node(struct dt_descriptor *dt) 731 { 732 int offs; 733 734 if (fdt_path_offset(dt->blob, "/psci") >= 0) { 735 DMSG("PSCI Device Tree node already exists!"); 736 return 0; 737 } 738 739 offs = add_dt_path_subnode(dt, "/", "psci"); 740 if (offs < 0) 741 return -1; 742 if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0")) 743 return -1; 744 if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2")) 745 return -1; 746 if (append_psci_compatible(dt->blob, offs, "arm,psci")) 747 return -1; 748 if (fdt_setprop_string(dt->blob, offs, "method", "smc")) 749 return -1; 750 if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND)) 751 return -1; 752 if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF)) 753 return -1; 754 if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON)) 755 return -1; 756 if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF)) 757 return -1; 758 if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET)) 759 return -1; 760 return 0; 761 } 762 763 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs, 764 const char *prefix) 765 { 766 const size_t prefix_len = strlen(prefix); 767 size_t l; 768 int plen; 769 const char *prop; 770 771 prop = fdt_getprop(dt->blob, offs, "compatible", &plen); 772 if (!prop) 773 return -1; 774 775 while (plen > 0) { 776 if (memcmp(prop, prefix, prefix_len) == 0) 777 return 0; /* match */ 778 779 l = strlen(prop) + 1; 780 prop += l; 781 plen -= l; 782 } 783 784 return -1; 785 } 786 787 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt) 788 { 789 int offs = 0; 790 791 while (1) { 792 offs = fdt_next_node(dt->blob, offs, NULL); 793 if (offs < 0) 794 break; 795 if (fdt_getprop(dt->blob, offs, "enable-method", NULL)) 796 continue; /* already set */ 797 if (check_node_compat_prefix(dt, offs, "arm,cortex-a")) 798 continue; /* no compatible */ 799 if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci")) 800 return -1; 801 /* Need to restart scanning as offsets may have changed */ 802 offs = 0; 803 } 804 return 0; 805 } 806 807 static int config_psci(struct dt_descriptor *dt) 808 { 809 if (dt_add_psci_node(dt)) 810 return -1; 811 return dt_add_psci_cpu_enable_methods(dt); 812 } 813 #else 814 static int config_psci(struct dt_descriptor *dt __unused) 815 { 816 return 0; 817 } 818 #endif /*CFG_PSCI_ARM32*/ 819 820 static void set_dt_val(void *data, uint32_t cell_size, uint64_t val) 821 { 822 if (cell_size == 1) { 823 fdt32_t v = cpu_to_fdt32((uint32_t)val); 824 825 memcpy(data, &v, sizeof(v)); 826 } else { 827 fdt64_t v = cpu_to_fdt64(val); 828 829 memcpy(data, &v, sizeof(v)); 830 } 831 } 832 833 static int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name, 834 paddr_t pa, size_t size) 835 { 836 int offs = 0; 837 int ret = 0; 838 int addr_size = -1; 839 int len_size = -1; 840 bool found = true; 841 char subnode_name[80] = { 0 }; 842 843 offs = fdt_path_offset(dt->blob, "/reserved-memory"); 844 845 if (offs < 0) { 846 found = false; 847 offs = 0; 848 } 849 850 if (IS_ENABLED(CFG_EXTERNAL_DTB_OVERLAY)) { 851 len_size = sizeof(paddr_t) / sizeof(uint32_t); 852 addr_size = sizeof(paddr_t) / sizeof(uint32_t); 853 } else { 854 len_size = fdt_size_cells(dt->blob, offs); 855 if (len_size < 0) 856 return -1; 857 addr_size = fdt_address_cells(dt->blob, offs); 858 if (addr_size < 0) 859 return -1; 860 } 861 862 if (!found) { 863 offs = add_dt_path_subnode(dt, "/", "reserved-memory"); 864 if (offs < 0) 865 return -1; 866 ret = fdt_setprop_cell(dt->blob, offs, "#address-cells", 867 addr_size); 868 if (ret < 0) 869 return -1; 870 ret = fdt_setprop_cell(dt->blob, offs, "#size-cells", len_size); 871 if (ret < 0) 872 return -1; 873 ret = fdt_setprop(dt->blob, offs, "ranges", NULL, 0); 874 if (ret < 0) 875 return -1; 876 } 877 878 snprintf(subnode_name, sizeof(subnode_name), 879 "%s@0x%" PRIxPA, name, pa); 880 offs = fdt_add_subnode(dt->blob, offs, subnode_name); 881 if (offs >= 0) { 882 uint32_t data[FDT_MAX_NCELLS * 2]; 883 884 set_dt_val(data, addr_size, pa); 885 set_dt_val(data + addr_size, len_size, size); 886 ret = fdt_setprop(dt->blob, offs, "reg", data, 887 sizeof(uint32_t) * (addr_size + len_size)); 888 if (ret < 0) 889 return -1; 890 ret = fdt_setprop(dt->blob, offs, "no-map", NULL, 0); 891 if (ret < 0) 892 return -1; 893 } else { 894 return -1; 895 } 896 return 0; 897 } 898 899 #ifdef CFG_CORE_DYN_SHM 900 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs, 901 uint32_t cell_size) 902 { 903 uint64_t rv = 0; 904 905 if (cell_size == 1) { 906 uint32_t v; 907 908 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v)); 909 *offs += sizeof(v); 910 rv = fdt32_to_cpu(v); 911 } else { 912 uint64_t v; 913 914 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v)); 915 *offs += sizeof(v); 916 rv = fdt64_to_cpu(v); 917 } 918 919 return rv; 920 } 921 922 /* 923 * Find all non-secure memory from DT. Memory marked inaccessible by Secure 924 * World is ignored since it could not be mapped to be used as dynamic shared 925 * memory. 926 */ 927 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem) 928 { 929 const uint8_t *prop = NULL; 930 uint64_t a = 0; 931 uint64_t l = 0; 932 size_t prop_offs = 0; 933 size_t prop_len = 0; 934 int elems_total = 0; 935 int addr_size = 0; 936 int len_size = 0; 937 int offs = 0; 938 size_t n = 0; 939 int len = 0; 940 941 addr_size = fdt_address_cells(fdt, 0); 942 if (addr_size < 0) 943 return 0; 944 945 len_size = fdt_size_cells(fdt, 0); 946 if (len_size < 0) 947 return 0; 948 949 while (true) { 950 offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type", 951 "memory", 952 sizeof("memory")); 953 if (offs < 0) 954 break; 955 956 if (_fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC | 957 DT_STATUS_OK_SEC)) 958 continue; 959 960 prop = fdt_getprop(fdt, offs, "reg", &len); 961 if (!prop) 962 continue; 963 964 prop_len = len; 965 for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) { 966 a = get_dt_val_and_advance(prop, &prop_offs, addr_size); 967 if (prop_offs >= prop_len) { 968 n--; 969 break; 970 } 971 972 l = get_dt_val_and_advance(prop, &prop_offs, len_size); 973 if (mem) { 974 mem->type = MEM_AREA_DDR_OVERALL; 975 mem->addr = a; 976 mem->size = l; 977 mem++; 978 } 979 } 980 981 elems_total += n; 982 } 983 984 return elems_total; 985 } 986 987 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems) 988 { 989 struct core_mmu_phys_mem *mem = NULL; 990 int elems_total = 0; 991 992 elems_total = get_nsec_memory_helper(fdt, NULL); 993 if (elems_total <= 0) 994 return NULL; 995 996 mem = nex_calloc(elems_total, sizeof(*mem)); 997 if (!mem) 998 panic(); 999 1000 elems_total = get_nsec_memory_helper(fdt, mem); 1001 assert(elems_total > 0); 1002 1003 *nelems = elems_total; 1004 1005 return mem; 1006 } 1007 #endif /*CFG_CORE_DYN_SHM*/ 1008 1009 #ifdef CFG_CORE_RESERVED_SHM 1010 static int mark_static_shm_as_reserved(struct dt_descriptor *dt) 1011 { 1012 vaddr_t shm_start; 1013 vaddr_t shm_end; 1014 1015 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end); 1016 if (shm_start != shm_end) 1017 return add_res_mem_dt_node(dt, "optee_shm", 1018 virt_to_phys((void *)shm_start), 1019 shm_end - shm_start); 1020 1021 DMSG("No SHM configured"); 1022 return -1; 1023 } 1024 #endif /*CFG_CORE_RESERVED_SHM*/ 1025 1026 static void init_external_dt(unsigned long phys_dt) 1027 { 1028 struct dt_descriptor *dt = &external_dt; 1029 void *fdt; 1030 int ret; 1031 1032 if (!phys_dt) { 1033 /* 1034 * No need to panic as we're not using the DT in OP-TEE 1035 * yet, we're only adding some nodes for normal world use. 1036 * This makes the switch to using DT easier as we can boot 1037 * a newer OP-TEE with older boot loaders. Once we start to 1038 * initialize devices based on DT we'll likely panic 1039 * instead of returning here. 1040 */ 1041 IMSG("No non-secure external DT"); 1042 return; 1043 } 1044 1045 if (!core_mmu_add_mapping(MEM_AREA_EXT_DT, phys_dt, CFG_DTB_MAX_SIZE)) 1046 panic("Failed to map external DTB"); 1047 1048 fdt = phys_to_virt(phys_dt, MEM_AREA_EXT_DT); 1049 if (!fdt) 1050 panic(); 1051 1052 dt->blob = fdt; 1053 1054 ret = init_dt_overlay(dt, CFG_DTB_MAX_SIZE); 1055 if (ret < 0) { 1056 EMSG("Device Tree Overlay init fail @ %#lx: error %d", phys_dt, 1057 ret); 1058 panic(); 1059 } 1060 1061 ret = fdt_open_into(fdt, fdt, CFG_DTB_MAX_SIZE); 1062 if (ret < 0) { 1063 EMSG("Invalid Device Tree at %#lx: error %d", phys_dt, ret); 1064 panic(); 1065 } 1066 1067 IMSG("Non-secure external DT found"); 1068 } 1069 1070 static int mark_tzdram_as_reserved(struct dt_descriptor *dt) 1071 { 1072 return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START, 1073 CFG_TZDRAM_SIZE); 1074 } 1075 1076 static void update_external_dt(void) 1077 { 1078 struct dt_descriptor *dt = &external_dt; 1079 1080 if (!dt->blob) 1081 return; 1082 1083 if (add_optee_dt_node(dt)) 1084 panic("Failed to add OP-TEE Device Tree node"); 1085 1086 if (config_psci(dt)) 1087 panic("Failed to config PSCI"); 1088 1089 #ifdef CFG_CORE_RESERVED_SHM 1090 if (mark_static_shm_as_reserved(dt)) 1091 panic("Failed to config non-secure memory"); 1092 #endif 1093 1094 if (mark_tzdram_as_reserved(dt)) 1095 panic("Failed to config secure memory"); 1096 } 1097 #else /*CFG_DT*/ 1098 void *get_external_dt(void) 1099 { 1100 return NULL; 1101 } 1102 1103 static void init_external_dt(unsigned long phys_dt __unused) 1104 { 1105 } 1106 1107 static void update_external_dt(void) 1108 { 1109 } 1110 1111 #ifdef CFG_CORE_DYN_SHM 1112 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused, 1113 size_t *nelems __unused) 1114 { 1115 return NULL; 1116 } 1117 #endif /*CFG_CORE_DYN_SHM*/ 1118 #endif /*!CFG_DT*/ 1119 1120 #ifdef CFG_CORE_DYN_SHM 1121 static void discover_nsec_memory(void) 1122 { 1123 struct core_mmu_phys_mem *mem; 1124 const struct core_mmu_phys_mem *mem_begin = NULL; 1125 const struct core_mmu_phys_mem *mem_end = NULL; 1126 size_t nelems; 1127 void *fdt = get_external_dt(); 1128 1129 if (fdt) { 1130 mem = get_nsec_memory(fdt, &nelems); 1131 if (mem) { 1132 core_mmu_set_discovered_nsec_ddr(mem, nelems); 1133 return; 1134 } 1135 1136 DMSG("No non-secure memory found in FDT"); 1137 } 1138 1139 mem_begin = phys_ddr_overall_begin; 1140 mem_end = phys_ddr_overall_end; 1141 nelems = mem_end - mem_begin; 1142 if (nelems) { 1143 /* 1144 * Platform cannot use both register_ddr() and the now 1145 * deprecated register_dynamic_shm(). 1146 */ 1147 assert(phys_ddr_overall_compat_begin == 1148 phys_ddr_overall_compat_end); 1149 } else { 1150 mem_begin = phys_ddr_overall_compat_begin; 1151 mem_end = phys_ddr_overall_compat_end; 1152 nelems = mem_end - mem_begin; 1153 if (!nelems) 1154 return; 1155 DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead"); 1156 } 1157 1158 mem = nex_calloc(nelems, sizeof(*mem)); 1159 if (!mem) 1160 panic(); 1161 1162 memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems); 1163 core_mmu_set_discovered_nsec_ddr(mem, nelems); 1164 } 1165 #else /*CFG_CORE_DYN_SHM*/ 1166 static void discover_nsec_memory(void) 1167 { 1168 } 1169 #endif /*!CFG_CORE_DYN_SHM*/ 1170 1171 void init_tee_runtime(void) 1172 { 1173 #ifdef CFG_VIRTUALIZATION 1174 /* We need to initialize pool for every virtual guest partition */ 1175 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 1176 #endif 1177 1178 #ifndef CFG_WITH_PAGER 1179 /* Pager initializes TA RAM early */ 1180 core_mmu_init_ta_ram(); 1181 #endif 1182 call_initcalls(); 1183 } 1184 1185 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry) 1186 { 1187 /* 1188 * Mask asynchronous exceptions before switch to the thread vector 1189 * as the thread handler requires those to be masked while 1190 * executing with the temporary stack. The thread subsystem also 1191 * asserts that the foreign interrupts are blocked when using most of 1192 * its functions. 1193 */ 1194 thread_set_exceptions(THREAD_EXCP_ALL); 1195 primary_save_cntfrq(); 1196 init_vfp_sec(); 1197 /* 1198 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must 1199 * set a current thread right now to avoid a chicken-and-egg problem 1200 * (thread_init_boot_thread() sets the current thread but needs 1201 * things set by init_runtime()). 1202 */ 1203 thread_get_core_local()->curr_thread = 0; 1204 init_runtime(pageable_part); 1205 1206 if (IS_ENABLED(CFG_VIRTUALIZATION)) { 1207 /* 1208 * Virtualization: We can't initialize threads right now because 1209 * threads belong to "tee" part and will be initialized 1210 * separately per each new virtual guest. So, we'll clear 1211 * "curr_thread" and call it done. 1212 */ 1213 thread_get_core_local()->curr_thread = -1; 1214 } else { 1215 thread_init_boot_thread(); 1216 } 1217 thread_init_primary(); 1218 thread_init_per_cpu(); 1219 init_sec_mon(nsec_entry); 1220 } 1221 1222 /* 1223 * Note: this function is weak just to make it possible to exclude it from 1224 * the unpaged area. 1225 */ 1226 void __weak boot_init_primary_late(unsigned long fdt) 1227 { 1228 init_external_dt(fdt); 1229 tpm_map_log_area(get_external_dt()); 1230 discover_nsec_memory(); 1231 update_external_dt(); 1232 configure_console_from_dt(); 1233 1234 IMSG("OP-TEE version: %s", core_v_str); 1235 IMSG("Primary CPU initializing"); 1236 #ifdef CFG_CORE_ASLR 1237 DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA, 1238 (unsigned long)boot_mmu_config.load_offset, VCORE_START_VA); 1239 #endif 1240 1241 main_init_gic(); 1242 init_vfp_nsec(); 1243 #ifndef CFG_VIRTUALIZATION 1244 init_tee_runtime(); 1245 #endif 1246 #ifdef CFG_VIRTUALIZATION 1247 IMSG("Initializing virtualization support"); 1248 core_mmu_init_virtualization(); 1249 #endif 1250 call_finalcalls(); 1251 IMSG("Primary CPU switching to normal world boot"); 1252 } 1253 1254 static void init_secondary_helper(unsigned long nsec_entry) 1255 { 1256 IMSG("Secondary CPU %zu initializing", get_core_pos()); 1257 1258 /* 1259 * Mask asynchronous exceptions before switch to the thread vector 1260 * as the thread handler requires those to be masked while 1261 * executing with the temporary stack. The thread subsystem also 1262 * asserts that the foreign interrupts are blocked when using most of 1263 * its functions. 1264 */ 1265 thread_set_exceptions(THREAD_EXCP_ALL); 1266 1267 secondary_init_cntfrq(); 1268 thread_init_per_cpu(); 1269 init_sec_mon(nsec_entry); 1270 main_secondary_init_gic(); 1271 init_vfp_sec(); 1272 init_vfp_nsec(); 1273 1274 IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos()); 1275 } 1276 1277 /* 1278 * Note: this function is weak just to make it possible to exclude it from 1279 * the unpaged area so that it lies in the init area. 1280 */ 1281 void __weak boot_init_primary_early(unsigned long pageable_part, 1282 unsigned long nsec_entry __maybe_unused) 1283 { 1284 unsigned long e = PADDR_INVALID; 1285 1286 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 1287 e = nsec_entry; 1288 #endif 1289 1290 init_primary(pageable_part, e); 1291 } 1292 1293 #if defined(CFG_WITH_ARM_TRUSTED_FW) 1294 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused, 1295 unsigned long a1 __unused) 1296 { 1297 init_secondary_helper(PADDR_INVALID); 1298 return 0; 1299 } 1300 #else 1301 void boot_init_secondary(unsigned long nsec_entry) 1302 { 1303 init_secondary_helper(nsec_entry); 1304 } 1305 #endif 1306 1307 #if defined(CFG_BOOT_SECONDARY_REQUEST) 1308 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry, 1309 uintptr_t context_id) 1310 { 1311 ns_entry_contexts[core_idx].entry_point = entry; 1312 ns_entry_contexts[core_idx].context_id = context_id; 1313 dsb_ishst(); 1314 } 1315 1316 int boot_core_release(size_t core_idx, paddr_t entry) 1317 { 1318 if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE) 1319 return -1; 1320 1321 ns_entry_contexts[core_idx].entry_point = entry; 1322 dmb(); 1323 spin_table[core_idx] = 1; 1324 dsb(); 1325 sev(); 1326 1327 return 0; 1328 } 1329 1330 /* 1331 * spin until secondary boot request, then returns with 1332 * the secondary core entry address. 1333 */ 1334 struct ns_entry_context *boot_core_hpen(void) 1335 { 1336 #ifdef CFG_PSCI_ARM32 1337 return &ns_entry_contexts[get_core_pos()]; 1338 #else 1339 do { 1340 wfe(); 1341 } while (!spin_table[get_core_pos()]); 1342 dmb(); 1343 return &ns_entry_contexts[get_core_pos()]; 1344 #endif 1345 } 1346 #endif 1347 1348 #if defined(CFG_CORE_ASLR) 1349 #if defined(CFG_DT) 1350 unsigned long __weak get_aslr_seed(void *fdt) 1351 { 1352 int rc = fdt_check_header(fdt); 1353 const uint64_t *seed = NULL; 1354 int offs = 0; 1355 int len = 0; 1356 1357 if (rc) { 1358 DMSG("Bad fdt: %d", rc); 1359 return 0; 1360 } 1361 1362 offs = fdt_path_offset(fdt, "/secure-chosen"); 1363 if (offs < 0) { 1364 DMSG("Cannot find /secure-chosen"); 1365 return 0; 1366 } 1367 seed = fdt_getprop(fdt, offs, "kaslr-seed", &len); 1368 if (!seed || len != sizeof(*seed)) { 1369 DMSG("Cannot find valid kaslr-seed"); 1370 return 0; 1371 } 1372 1373 return fdt64_to_cpu(*seed); 1374 } 1375 #else /*!CFG_DT*/ 1376 unsigned long __weak get_aslr_seed(void *fdt __unused) 1377 { 1378 DMSG("Warning: no ASLR seed"); 1379 return 0; 1380 } 1381 #endif /*!CFG_DT*/ 1382 #endif /*CFG_CORE_ASLR*/ 1383