1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2015-2021, Linaro Limited 4 */ 5 6 #include <arm.h> 7 #include <assert.h> 8 #include <compiler.h> 9 #include <config.h> 10 #include <console.h> 11 #include <crypto/crypto.h> 12 #include <initcall.h> 13 #include <inttypes.h> 14 #include <keep.h> 15 #include <kernel/asan.h> 16 #include <kernel/boot.h> 17 #include <kernel/linker.h> 18 #include <kernel/misc.h> 19 #include <kernel/panic.h> 20 #include <kernel/tee_misc.h> 21 #include <kernel/thread.h> 22 #include <kernel/tpm.h> 23 #include <libfdt.h> 24 #include <malloc.h> 25 #include <mm/core_memprot.h> 26 #include <mm/core_mmu.h> 27 #include <mm/fobj.h> 28 #include <mm/tee_mm.h> 29 #include <mm/tee_pager.h> 30 #include <sm/psci.h> 31 #include <stdio.h> 32 #include <trace.h> 33 #include <utee_defines.h> 34 #include <util.h> 35 36 #include <platform_config.h> 37 38 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 39 #include <sm/sm.h> 40 #endif 41 42 #if defined(CFG_WITH_VFP) 43 #include <kernel/vfp.h> 44 #endif 45 46 /* 47 * In this file we're using unsigned long to represent physical pointers as 48 * they are received in a single register when OP-TEE is initially entered. 49 * This limits 32-bit systems to only use make use of the lower 32 bits 50 * of a physical address for initial parameters. 51 * 52 * 64-bit systems on the other hand can use full 64-bit physical pointers. 53 */ 54 #define PADDR_INVALID ULONG_MAX 55 56 #if defined(CFG_BOOT_SECONDARY_REQUEST) 57 struct ns_entry_context { 58 uintptr_t entry_point; 59 uintptr_t context_id; 60 }; 61 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE]; 62 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE]; 63 #endif 64 65 #ifdef CFG_BOOT_SYNC_CPU 66 /* 67 * Array used when booting, to synchronize cpu. 68 * When 0, the cpu has not started. 69 * When 1, it has started 70 */ 71 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE]; 72 DECLARE_KEEP_PAGER(sem_cpu_sync); 73 #endif 74 75 #ifdef CFG_DT 76 struct dt_descriptor { 77 void *blob; 78 #ifdef _CFG_USE_DTB_OVERLAY 79 int frag_id; 80 #endif 81 }; 82 83 static struct dt_descriptor external_dt __nex_bss; 84 #endif 85 86 #ifdef CFG_SECONDARY_INIT_CNTFRQ 87 static uint32_t cntfrq; 88 #endif 89 90 /* May be overridden in plat-$(PLATFORM)/main.c */ 91 __weak void plat_primary_init_early(void) 92 { 93 } 94 DECLARE_KEEP_PAGER(plat_primary_init_early); 95 96 /* May be overridden in plat-$(PLATFORM)/main.c */ 97 __weak void main_init_gic(void) 98 { 99 } 100 101 /* May be overridden in plat-$(PLATFORM)/main.c */ 102 __weak void main_secondary_init_gic(void) 103 { 104 } 105 106 /* May be overridden in plat-$(PLATFORM)/main.c */ 107 __weak unsigned long plat_get_aslr_seed(void) 108 { 109 DMSG("Warning: no ASLR seed"); 110 111 return 0; 112 } 113 114 #if defined(CFG_WITH_ARM_TRUSTED_FW) 115 void init_sec_mon(unsigned long nsec_entry __maybe_unused) 116 { 117 assert(nsec_entry == PADDR_INVALID); 118 /* Do nothing as we don't have a secure monitor */ 119 } 120 #else 121 /* May be overridden in plat-$(PLATFORM)/main.c */ 122 __weak void init_sec_mon(unsigned long nsec_entry) 123 { 124 struct sm_nsec_ctx *nsec_ctx; 125 126 assert(nsec_entry != PADDR_INVALID); 127 128 /* Initialize secure monitor */ 129 nsec_ctx = sm_get_nsec_ctx(); 130 nsec_ctx->mon_lr = nsec_entry; 131 nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I; 132 if (nsec_entry & 1) 133 nsec_ctx->mon_spsr |= CPSR_T; 134 } 135 #endif 136 137 #if defined(CFG_WITH_ARM_TRUSTED_FW) 138 static void init_vfp_nsec(void) 139 { 140 } 141 #else 142 static void init_vfp_nsec(void) 143 { 144 /* Normal world can use CP10 and CP11 (SIMD/VFP) */ 145 write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11); 146 } 147 #endif 148 149 #if defined(CFG_WITH_VFP) 150 151 #ifdef ARM32 152 static void init_vfp_sec(void) 153 { 154 uint32_t cpacr = read_cpacr(); 155 156 /* 157 * Enable Advanced SIMD functionality. 158 * Enable use of D16-D31 of the Floating-point Extension register 159 * file. 160 */ 161 cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS); 162 /* 163 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user 164 * mode. 165 */ 166 cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL); 167 cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL); 168 write_cpacr(cpacr); 169 } 170 #endif /* ARM32 */ 171 172 #ifdef ARM64 173 static void init_vfp_sec(void) 174 { 175 /* Not using VFP until thread_kernel_enable_vfp() */ 176 vfp_disable(); 177 } 178 #endif /* ARM64 */ 179 180 #else /* CFG_WITH_VFP */ 181 182 static void init_vfp_sec(void) 183 { 184 /* Not using VFP */ 185 } 186 #endif 187 188 #ifdef CFG_SECONDARY_INIT_CNTFRQ 189 static void primary_save_cntfrq(void) 190 { 191 assert(cntfrq == 0); 192 193 /* 194 * CNTFRQ should be initialized on the primary CPU by a 195 * previous boot stage 196 */ 197 cntfrq = read_cntfrq(); 198 } 199 200 static void secondary_init_cntfrq(void) 201 { 202 assert(cntfrq != 0); 203 write_cntfrq(cntfrq); 204 } 205 #else /* CFG_SECONDARY_INIT_CNTFRQ */ 206 static void primary_save_cntfrq(void) 207 { 208 } 209 210 static void secondary_init_cntfrq(void) 211 { 212 } 213 #endif 214 215 #ifdef CFG_CORE_SANITIZE_KADDRESS 216 static void init_run_constructors(void) 217 { 218 const vaddr_t *ctor; 219 220 for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++) 221 ((void (*)(void))(*ctor))(); 222 } 223 224 static void init_asan(void) 225 { 226 227 /* 228 * CFG_ASAN_SHADOW_OFFSET is also supplied as 229 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler. 230 * Since all the needed values to calculate the value of 231 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to 232 * calculate it in advance and hard code it into the platform 233 * conf.mk. Here where we have all the needed values we double 234 * check that the compiler is supplied the correct value. 235 */ 236 237 #define __ASAN_SHADOW_START \ 238 ROUNDUP(TEE_RAM_VA_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8) 239 assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start); 240 #define __CFG_ASAN_SHADOW_OFFSET \ 241 (__ASAN_SHADOW_START - (TEE_RAM_VA_START / 8)) 242 COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET); 243 #undef __ASAN_SHADOW_START 244 #undef __CFG_ASAN_SHADOW_OFFSET 245 246 /* 247 * Assign area covered by the shadow area, everything from start up 248 * to the beginning of the shadow area. 249 */ 250 asan_set_shadowed((void *)TEE_TEXT_VA_START, &__asan_shadow_start); 251 252 /* 253 * Add access to areas that aren't opened automatically by a 254 * constructor. 255 */ 256 asan_tag_access(&__ctor_list, &__ctor_end); 257 asan_tag_access(__rodata_start, __rodata_end); 258 #ifdef CFG_WITH_PAGER 259 asan_tag_access(__pageable_start, __pageable_end); 260 #endif /*CFG_WITH_PAGER*/ 261 asan_tag_access(__nozi_start, __nozi_end); 262 asan_tag_access(__exidx_start, __exidx_end); 263 asan_tag_access(__extab_start, __extab_end); 264 265 init_run_constructors(); 266 267 /* Everything is tagged correctly, let's start address sanitizing. */ 268 asan_start(); 269 } 270 #else /*CFG_CORE_SANITIZE_KADDRESS*/ 271 static void init_asan(void) 272 { 273 } 274 #endif /*CFG_CORE_SANITIZE_KADDRESS*/ 275 276 #ifdef CFG_WITH_PAGER 277 278 #ifdef CFG_CORE_SANITIZE_KADDRESS 279 static void carve_out_asan_mem(tee_mm_pool_t *pool) 280 { 281 const size_t s = pool->hi - pool->lo; 282 tee_mm_entry_t *mm; 283 paddr_t apa = ASAN_MAP_PA; 284 size_t asz = ASAN_MAP_SZ; 285 286 if (core_is_buffer_outside(apa, asz, pool->lo, s)) 287 return; 288 289 /* Reserve the shadow area */ 290 if (!core_is_buffer_inside(apa, asz, pool->lo, s)) { 291 if (apa < pool->lo) { 292 /* 293 * ASAN buffer is overlapping with the beginning of 294 * the pool. 295 */ 296 asz -= pool->lo - apa; 297 apa = pool->lo; 298 } else { 299 /* 300 * ASAN buffer is overlapping with the end of the 301 * pool. 302 */ 303 asz = pool->hi - apa; 304 } 305 } 306 mm = tee_mm_alloc2(pool, apa, asz); 307 assert(mm); 308 } 309 #else 310 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused) 311 { 312 } 313 #endif 314 315 static void print_pager_pool_size(void) 316 { 317 struct tee_pager_stats __maybe_unused stats; 318 319 tee_pager_get_stats(&stats); 320 IMSG("Pager pool size: %zukB", 321 stats.npages_all * SMALL_PAGE_SIZE / 1024); 322 } 323 324 static void init_vcore(tee_mm_pool_t *mm_vcore) 325 { 326 const vaddr_t begin = VCORE_START_VA; 327 vaddr_t end = begin + TEE_RAM_VA_SIZE; 328 329 #ifdef CFG_CORE_SANITIZE_KADDRESS 330 /* Carve out asan memory, flat maped after core memory */ 331 if (end > ASAN_SHADOW_PA) 332 end = ASAN_MAP_PA; 333 #endif 334 335 if (!tee_mm_init(mm_vcore, begin, end, SMALL_PAGE_SHIFT, 336 TEE_MM_POOL_NO_FLAGS)) 337 panic("tee_mm_vcore init failed"); 338 } 339 340 /* 341 * With CFG_CORE_ASLR=y the init part is relocated very early during boot. 342 * The init part is also paged just as the rest of the normal paged code, with 343 * the difference that it's preloaded during boot. When the backing store 344 * is configured the entire paged binary is copied in place and then also 345 * the init part. Since the init part has been relocated (references to 346 * addresses updated to compensate for the new load address) this has to be 347 * undone for the hashes of those pages to match with the original binary. 348 * 349 * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are 350 * unchanged. 351 */ 352 static void undo_init_relocation(uint8_t *paged_store __maybe_unused) 353 { 354 #ifdef CFG_CORE_ASLR 355 unsigned long *ptr = NULL; 356 const uint32_t *reloc = NULL; 357 const uint32_t *reloc_end = NULL; 358 unsigned long offs = boot_mmu_config.load_offset; 359 const struct boot_embdata *embdata = (const void *)__init_end; 360 vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_RAM_START; 361 vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_RAM_START; 362 363 reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset); 364 reloc_end = reloc + embdata->reloc_len / sizeof(*reloc); 365 366 for (; reloc < reloc_end; reloc++) { 367 if (*reloc < addr_start) 368 continue; 369 if (*reloc >= addr_end) 370 break; 371 ptr = (void *)(paged_store + *reloc - addr_start); 372 *ptr -= offs; 373 } 374 #endif 375 } 376 377 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes, 378 void *store) 379 { 380 const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE; 381 #ifdef CFG_CORE_ASLR 382 unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA; 383 const struct boot_embdata *embdata = (const void *)__init_end; 384 const void *reloc = __init_end + embdata->reloc_offset; 385 386 return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs, 387 reloc, embdata->reloc_len, store); 388 #else 389 return fobj_ro_paged_alloc(num_pages, hashes, store); 390 #endif 391 } 392 393 static void init_runtime(unsigned long pageable_part) 394 { 395 size_t n; 396 size_t init_size = (size_t)(__init_end - __init_start); 397 size_t pageable_start = (size_t)__pageable_start; 398 size_t pageable_end = (size_t)__pageable_end; 399 size_t pageable_size = pageable_end - pageable_start; 400 size_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE; 401 size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) * 402 TEE_SHA256_HASH_SIZE; 403 const struct boot_embdata *embdata = (const void *)__init_end; 404 const void *tmp_hashes = NULL; 405 tee_mm_entry_t *mm = NULL; 406 struct fobj *fobj = NULL; 407 uint8_t *paged_store = NULL; 408 uint8_t *hashes = NULL; 409 410 assert(pageable_size % SMALL_PAGE_SIZE == 0); 411 assert(embdata->total_len >= embdata->hashes_offset + 412 embdata->hashes_len); 413 assert(hash_size == embdata->hashes_len); 414 415 tmp_hashes = __init_end + embdata->hashes_offset; 416 417 init_asan(); 418 419 /* Add heap2 first as heap1 may be too small as initial bget pool */ 420 malloc_add_pool(__heap2_start, __heap2_end - __heap2_start); 421 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 422 423 /* 424 * This needs to be initialized early to support address lookup 425 * in MEM_AREA_TEE_RAM 426 */ 427 tee_pager_early_init(); 428 429 hashes = malloc(hash_size); 430 IMSG_RAW("\n"); 431 IMSG("Pager is enabled. Hashes: %zu bytes", hash_size); 432 assert(hashes); 433 asan_memcpy_unchecked(hashes, tmp_hashes, hash_size); 434 435 /* 436 * Need tee_mm_sec_ddr initialized to be able to allocate secure 437 * DDR below. 438 */ 439 core_mmu_init_ta_ram(); 440 441 carve_out_asan_mem(&tee_mm_sec_ddr); 442 443 mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size); 444 assert(mm); 445 paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM, 446 pageable_size); 447 /* 448 * Load pageable part in the dedicated allocated area: 449 * - Move pageable non-init part into pageable area. Note bootloader 450 * may have loaded it anywhere in TA RAM hence use memmove(). 451 * - Copy pageable init part from current location into pageable area. 452 */ 453 memmove(paged_store + init_size, 454 phys_to_virt(pageable_part, 455 core_mmu_get_type_by_pa(pageable_part), 456 __pageable_part_end - __pageable_part_start), 457 __pageable_part_end - __pageable_part_start); 458 asan_memcpy_unchecked(paged_store, __init_start, init_size); 459 /* 460 * Undo eventual relocation for the init part so the hash checks 461 * can pass. 462 */ 463 undo_init_relocation(paged_store); 464 465 /* Check that hashes of what's in pageable area is OK */ 466 DMSG("Checking hashes of pageable area"); 467 for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) { 468 const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE; 469 const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE; 470 TEE_Result res; 471 472 DMSG("hash pg_idx %zu hash %p page %p", n, hash, page); 473 res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE); 474 if (res != TEE_SUCCESS) { 475 EMSG("Hash failed for page %zu at %p: res 0x%x", 476 n, (void *)page, res); 477 panic(); 478 } 479 } 480 481 /* 482 * Assert prepaged init sections are page aligned so that nothing 483 * trails uninited at the end of the premapped init area. 484 */ 485 assert(!(init_size & SMALL_PAGE_MASK)); 486 487 /* 488 * Initialize the virtual memory pool used for main_mmu_l2_ttb which 489 * is supplied to tee_pager_init() below. 490 */ 491 init_vcore(&tee_mm_vcore); 492 493 /* 494 * Assign alias area for pager end of the small page block the rest 495 * of the binary is loaded into. We're taking more than needed, but 496 * we're guaranteed to not need more than the physical amount of 497 * TZSRAM. 498 */ 499 mm = tee_mm_alloc2(&tee_mm_vcore, 500 (vaddr_t)tee_mm_vcore.hi - TZSRAM_SIZE, TZSRAM_SIZE); 501 assert(mm); 502 tee_pager_set_alias_area(mm); 503 504 /* 505 * Claim virtual memory which isn't paged. 506 * Linear memory (flat map core memory) ends there. 507 */ 508 mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA, 509 (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA)); 510 assert(mm); 511 512 /* 513 * Allocate virtual memory for the pageable area and let the pager 514 * take charge of all the pages already assigned to that memory. 515 */ 516 mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start, 517 pageable_size); 518 assert(mm); 519 fobj = ro_paged_alloc(mm, hashes, paged_store); 520 assert(fobj); 521 tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO, 522 fobj); 523 fobj_put(fobj); 524 525 tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false); 526 tee_pager_add_pages(pageable_start + init_size, 527 (pageable_size - init_size) / SMALL_PAGE_SIZE, 528 true); 529 if (pageable_end < tzsram_end) 530 tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) / 531 SMALL_PAGE_SIZE, true); 532 533 /* 534 * There may be physical pages in TZSRAM before the core load address. 535 * These pages can be added to the physical pages pool of the pager. 536 * This setup may happen when a the secure bootloader runs in TZRAM 537 * and its memory can be reused by OP-TEE once boot stages complete. 538 */ 539 tee_pager_add_pages(tee_mm_vcore.lo, 540 (VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE, 541 true); 542 543 print_pager_pool_size(); 544 } 545 #else 546 547 static void init_runtime(unsigned long pageable_part __unused) 548 { 549 init_asan(); 550 551 /* 552 * By default whole OP-TEE uses malloc, so we need to initialize 553 * it early. But, when virtualization is enabled, malloc is used 554 * only by TEE runtime, so malloc should be initialized later, for 555 * every virtual partition separately. Core code uses nex_malloc 556 * instead. 557 */ 558 #ifdef CFG_VIRTUALIZATION 559 nex_malloc_add_pool(__nex_heap_start, __nex_heap_end - 560 __nex_heap_start); 561 #else 562 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 563 #endif 564 565 IMSG_RAW("\n"); 566 } 567 #endif 568 569 void *get_dt(void) 570 { 571 void *fdt = get_embedded_dt(); 572 573 if (!fdt) 574 fdt = get_external_dt(); 575 576 return fdt; 577 } 578 579 #if defined(CFG_EMBED_DTB) 580 void *get_embedded_dt(void) 581 { 582 static bool checked; 583 584 assert(cpu_mmu_enabled()); 585 586 if (!checked) { 587 IMSG("Embedded DTB found"); 588 589 if (fdt_check_header(embedded_secure_dtb)) 590 panic("Invalid embedded DTB"); 591 592 checked = true; 593 } 594 595 return embedded_secure_dtb; 596 } 597 #else 598 void *get_embedded_dt(void) 599 { 600 return NULL; 601 } 602 #endif /*CFG_EMBED_DTB*/ 603 604 #if defined(CFG_DT) 605 void *get_external_dt(void) 606 { 607 assert(cpu_mmu_enabled()); 608 return external_dt.blob; 609 } 610 611 static TEE_Result release_external_dt(void) 612 { 613 int ret = 0; 614 615 if (!external_dt.blob) 616 return TEE_SUCCESS; 617 618 ret = fdt_pack(external_dt.blob); 619 if (ret < 0) { 620 EMSG("Failed to pack Device Tree at 0x%" PRIxPA ": error %d", 621 virt_to_phys(external_dt.blob), ret); 622 panic(); 623 } 624 625 if (core_mmu_remove_mapping(MEM_AREA_EXT_DT, external_dt.blob, 626 CFG_DTB_MAX_SIZE)) 627 panic("Failed to remove temporary Device Tree mapping"); 628 629 /* External DTB no more reached, reset pointer to invalid */ 630 external_dt.blob = NULL; 631 632 return TEE_SUCCESS; 633 } 634 boot_final(release_external_dt); 635 636 #ifdef _CFG_USE_DTB_OVERLAY 637 static int add_dt_overlay_fragment(struct dt_descriptor *dt, int ioffs) 638 { 639 char frag[32]; 640 int offs; 641 int ret; 642 643 snprintf(frag, sizeof(frag), "fragment@%d", dt->frag_id); 644 offs = fdt_add_subnode(dt->blob, ioffs, frag); 645 if (offs < 0) 646 return offs; 647 648 dt->frag_id += 1; 649 650 ret = fdt_setprop_string(dt->blob, offs, "target-path", "/"); 651 if (ret < 0) 652 return -1; 653 654 return fdt_add_subnode(dt->blob, offs, "__overlay__"); 655 } 656 657 static int init_dt_overlay(struct dt_descriptor *dt, int __maybe_unused dt_size) 658 { 659 int fragment; 660 661 if (IS_ENABLED(CFG_EXTERNAL_DTB_OVERLAY)) { 662 if (!fdt_check_header(dt->blob)) { 663 fdt_for_each_subnode(fragment, dt->blob, 0) 664 dt->frag_id += 1; 665 return 0; 666 } 667 } 668 669 return fdt_create_empty_tree(dt->blob, dt_size); 670 } 671 #else 672 static int add_dt_overlay_fragment(struct dt_descriptor *dt __unused, int offs) 673 { 674 return offs; 675 } 676 677 static int init_dt_overlay(struct dt_descriptor *dt __unused, 678 int dt_size __unused) 679 { 680 return 0; 681 } 682 #endif /* _CFG_USE_DTB_OVERLAY */ 683 684 static int add_dt_path_subnode(struct dt_descriptor *dt, const char *path, 685 const char *subnode) 686 { 687 int offs; 688 689 offs = fdt_path_offset(dt->blob, path); 690 if (offs < 0) 691 return -1; 692 offs = add_dt_overlay_fragment(dt, offs); 693 if (offs < 0) 694 return -1; 695 offs = fdt_add_subnode(dt->blob, offs, subnode); 696 if (offs < 0) 697 return -1; 698 return offs; 699 } 700 701 static int add_optee_dt_node(struct dt_descriptor *dt) 702 { 703 int offs; 704 int ret; 705 706 if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) { 707 DMSG("OP-TEE Device Tree node already exists!"); 708 return 0; 709 } 710 711 offs = fdt_path_offset(dt->blob, "/firmware"); 712 if (offs < 0) { 713 offs = add_dt_path_subnode(dt, "/", "firmware"); 714 if (offs < 0) 715 return -1; 716 } 717 718 offs = fdt_add_subnode(dt->blob, offs, "optee"); 719 if (offs < 0) 720 return -1; 721 722 ret = fdt_setprop_string(dt->blob, offs, "compatible", 723 "linaro,optee-tz"); 724 if (ret < 0) 725 return -1; 726 ret = fdt_setprop_string(dt->blob, offs, "method", "smc"); 727 if (ret < 0) 728 return -1; 729 return 0; 730 } 731 732 #ifdef CFG_PSCI_ARM32 733 static int append_psci_compatible(void *fdt, int offs, const char *str) 734 { 735 return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1); 736 } 737 738 static int dt_add_psci_node(struct dt_descriptor *dt) 739 { 740 int offs; 741 742 if (fdt_path_offset(dt->blob, "/psci") >= 0) { 743 DMSG("PSCI Device Tree node already exists!"); 744 return 0; 745 } 746 747 offs = add_dt_path_subnode(dt, "/", "psci"); 748 if (offs < 0) 749 return -1; 750 if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0")) 751 return -1; 752 if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2")) 753 return -1; 754 if (append_psci_compatible(dt->blob, offs, "arm,psci")) 755 return -1; 756 if (fdt_setprop_string(dt->blob, offs, "method", "smc")) 757 return -1; 758 if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND)) 759 return -1; 760 if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF)) 761 return -1; 762 if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON)) 763 return -1; 764 if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF)) 765 return -1; 766 if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET)) 767 return -1; 768 return 0; 769 } 770 771 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs, 772 const char *prefix) 773 { 774 const size_t prefix_len = strlen(prefix); 775 size_t l; 776 int plen; 777 const char *prop; 778 779 prop = fdt_getprop(dt->blob, offs, "compatible", &plen); 780 if (!prop) 781 return -1; 782 783 while (plen > 0) { 784 if (memcmp(prop, prefix, prefix_len) == 0) 785 return 0; /* match */ 786 787 l = strlen(prop) + 1; 788 prop += l; 789 plen -= l; 790 } 791 792 return -1; 793 } 794 795 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt) 796 { 797 int offs = 0; 798 799 while (1) { 800 offs = fdt_next_node(dt->blob, offs, NULL); 801 if (offs < 0) 802 break; 803 if (fdt_getprop(dt->blob, offs, "enable-method", NULL)) 804 continue; /* already set */ 805 if (check_node_compat_prefix(dt, offs, "arm,cortex-a")) 806 continue; /* no compatible */ 807 if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci")) 808 return -1; 809 /* Need to restart scanning as offsets may have changed */ 810 offs = 0; 811 } 812 return 0; 813 } 814 815 static int config_psci(struct dt_descriptor *dt) 816 { 817 if (dt_add_psci_node(dt)) 818 return -1; 819 return dt_add_psci_cpu_enable_methods(dt); 820 } 821 #else 822 static int config_psci(struct dt_descriptor *dt __unused) 823 { 824 return 0; 825 } 826 #endif /*CFG_PSCI_ARM32*/ 827 828 static void set_dt_val(void *data, uint32_t cell_size, uint64_t val) 829 { 830 if (cell_size == 1) { 831 fdt32_t v = cpu_to_fdt32((uint32_t)val); 832 833 memcpy(data, &v, sizeof(v)); 834 } else { 835 fdt64_t v = cpu_to_fdt64(val); 836 837 memcpy(data, &v, sizeof(v)); 838 } 839 } 840 841 static int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name, 842 paddr_t pa, size_t size) 843 { 844 int offs = 0; 845 int ret = 0; 846 int addr_size = -1; 847 int len_size = -1; 848 bool found = true; 849 char subnode_name[80] = { 0 }; 850 851 offs = fdt_path_offset(dt->blob, "/reserved-memory"); 852 853 if (offs < 0) { 854 found = false; 855 offs = 0; 856 } 857 858 if (IS_ENABLED(_CFG_USE_DTB_OVERLAY)) { 859 len_size = sizeof(paddr_t) / sizeof(uint32_t); 860 addr_size = sizeof(paddr_t) / sizeof(uint32_t); 861 } else { 862 len_size = fdt_size_cells(dt->blob, offs); 863 if (len_size < 0) 864 return -1; 865 addr_size = fdt_address_cells(dt->blob, offs); 866 if (addr_size < 0) 867 return -1; 868 } 869 870 if (!found) { 871 offs = add_dt_path_subnode(dt, "/", "reserved-memory"); 872 if (offs < 0) 873 return -1; 874 ret = fdt_setprop_cell(dt->blob, offs, "#address-cells", 875 addr_size); 876 if (ret < 0) 877 return -1; 878 ret = fdt_setprop_cell(dt->blob, offs, "#size-cells", len_size); 879 if (ret < 0) 880 return -1; 881 ret = fdt_setprop(dt->blob, offs, "ranges", NULL, 0); 882 if (ret < 0) 883 return -1; 884 } 885 886 ret = snprintf(subnode_name, sizeof(subnode_name), 887 "%s@%" PRIxPA, name, pa); 888 if (ret < 0 || ret >= (int)sizeof(subnode_name)) 889 DMSG("truncated node \"%s@%" PRIxPA"\"", name, pa); 890 offs = fdt_add_subnode(dt->blob, offs, subnode_name); 891 if (offs >= 0) { 892 uint32_t data[FDT_MAX_NCELLS * 2]; 893 894 set_dt_val(data, addr_size, pa); 895 set_dt_val(data + addr_size, len_size, size); 896 ret = fdt_setprop(dt->blob, offs, "reg", data, 897 sizeof(uint32_t) * (addr_size + len_size)); 898 if (ret < 0) 899 return -1; 900 ret = fdt_setprop(dt->blob, offs, "no-map", NULL, 0); 901 if (ret < 0) 902 return -1; 903 } else { 904 return -1; 905 } 906 return 0; 907 } 908 909 #ifdef CFG_CORE_DYN_SHM 910 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs, 911 uint32_t cell_size) 912 { 913 uint64_t rv = 0; 914 915 if (cell_size == 1) { 916 uint32_t v; 917 918 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v)); 919 *offs += sizeof(v); 920 rv = fdt32_to_cpu(v); 921 } else { 922 uint64_t v; 923 924 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v)); 925 *offs += sizeof(v); 926 rv = fdt64_to_cpu(v); 927 } 928 929 return rv; 930 } 931 932 /* 933 * Find all non-secure memory from DT. Memory marked inaccessible by Secure 934 * World is ignored since it could not be mapped to be used as dynamic shared 935 * memory. 936 */ 937 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem) 938 { 939 const uint8_t *prop = NULL; 940 uint64_t a = 0; 941 uint64_t l = 0; 942 size_t prop_offs = 0; 943 size_t prop_len = 0; 944 int elems_total = 0; 945 int addr_size = 0; 946 int len_size = 0; 947 int offs = 0; 948 size_t n = 0; 949 int len = 0; 950 951 addr_size = fdt_address_cells(fdt, 0); 952 if (addr_size < 0) 953 return 0; 954 955 len_size = fdt_size_cells(fdt, 0); 956 if (len_size < 0) 957 return 0; 958 959 while (true) { 960 offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type", 961 "memory", 962 sizeof("memory")); 963 if (offs < 0) 964 break; 965 966 if (_fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC | 967 DT_STATUS_OK_SEC)) 968 continue; 969 970 prop = fdt_getprop(fdt, offs, "reg", &len); 971 if (!prop) 972 continue; 973 974 prop_len = len; 975 for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) { 976 a = get_dt_val_and_advance(prop, &prop_offs, addr_size); 977 if (prop_offs >= prop_len) { 978 n--; 979 break; 980 } 981 982 l = get_dt_val_and_advance(prop, &prop_offs, len_size); 983 if (mem) { 984 mem->type = MEM_AREA_DDR_OVERALL; 985 mem->addr = a; 986 mem->size = l; 987 mem++; 988 } 989 } 990 991 elems_total += n; 992 } 993 994 return elems_total; 995 } 996 997 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems) 998 { 999 struct core_mmu_phys_mem *mem = NULL; 1000 int elems_total = 0; 1001 1002 elems_total = get_nsec_memory_helper(fdt, NULL); 1003 if (elems_total <= 0) 1004 return NULL; 1005 1006 mem = nex_calloc(elems_total, sizeof(*mem)); 1007 if (!mem) 1008 panic(); 1009 1010 elems_total = get_nsec_memory_helper(fdt, mem); 1011 assert(elems_total > 0); 1012 1013 *nelems = elems_total; 1014 1015 return mem; 1016 } 1017 #endif /*CFG_CORE_DYN_SHM*/ 1018 1019 #ifdef CFG_CORE_RESERVED_SHM 1020 static int mark_static_shm_as_reserved(struct dt_descriptor *dt) 1021 { 1022 vaddr_t shm_start; 1023 vaddr_t shm_end; 1024 1025 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end); 1026 if (shm_start != shm_end) 1027 return add_res_mem_dt_node(dt, "optee_shm", 1028 virt_to_phys((void *)shm_start), 1029 shm_end - shm_start); 1030 1031 DMSG("No SHM configured"); 1032 return -1; 1033 } 1034 #endif /*CFG_CORE_RESERVED_SHM*/ 1035 1036 static void init_external_dt(unsigned long phys_dt) 1037 { 1038 struct dt_descriptor *dt = &external_dt; 1039 void *fdt; 1040 int ret; 1041 1042 if (!phys_dt) { 1043 /* 1044 * No need to panic as we're not using the DT in OP-TEE 1045 * yet, we're only adding some nodes for normal world use. 1046 * This makes the switch to using DT easier as we can boot 1047 * a newer OP-TEE with older boot loaders. Once we start to 1048 * initialize devices based on DT we'll likely panic 1049 * instead of returning here. 1050 */ 1051 IMSG("No non-secure external DT"); 1052 return; 1053 } 1054 1055 fdt = core_mmu_add_mapping(MEM_AREA_EXT_DT, phys_dt, CFG_DTB_MAX_SIZE); 1056 if (!fdt) 1057 panic("Failed to map external DTB"); 1058 1059 dt->blob = fdt; 1060 1061 ret = init_dt_overlay(dt, CFG_DTB_MAX_SIZE); 1062 if (ret < 0) { 1063 EMSG("Device Tree Overlay init fail @ %#lx: error %d", phys_dt, 1064 ret); 1065 panic(); 1066 } 1067 1068 ret = fdt_open_into(fdt, fdt, CFG_DTB_MAX_SIZE); 1069 if (ret < 0) { 1070 EMSG("Invalid Device Tree at %#lx: error %d", phys_dt, ret); 1071 panic(); 1072 } 1073 1074 IMSG("Non-secure external DT found"); 1075 } 1076 1077 static int mark_tzdram_as_reserved(struct dt_descriptor *dt) 1078 { 1079 return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START, 1080 CFG_TZDRAM_SIZE); 1081 } 1082 1083 static void update_external_dt(void) 1084 { 1085 struct dt_descriptor *dt = &external_dt; 1086 1087 if (!dt->blob) 1088 return; 1089 1090 if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt)) 1091 panic("Failed to add OP-TEE Device Tree node"); 1092 1093 if (config_psci(dt)) 1094 panic("Failed to config PSCI"); 1095 1096 #ifdef CFG_CORE_RESERVED_SHM 1097 if (mark_static_shm_as_reserved(dt)) 1098 panic("Failed to config non-secure memory"); 1099 #endif 1100 1101 if (mark_tzdram_as_reserved(dt)) 1102 panic("Failed to config secure memory"); 1103 } 1104 #else /*CFG_DT*/ 1105 void *get_external_dt(void) 1106 { 1107 return NULL; 1108 } 1109 1110 static void init_external_dt(unsigned long phys_dt __unused) 1111 { 1112 } 1113 1114 static void update_external_dt(void) 1115 { 1116 } 1117 1118 #ifdef CFG_CORE_DYN_SHM 1119 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused, 1120 size_t *nelems __unused) 1121 { 1122 return NULL; 1123 } 1124 #endif /*CFG_CORE_DYN_SHM*/ 1125 #endif /*!CFG_DT*/ 1126 1127 #ifdef CFG_CORE_DYN_SHM 1128 static void discover_nsec_memory(void) 1129 { 1130 struct core_mmu_phys_mem *mem; 1131 const struct core_mmu_phys_mem *mem_begin = NULL; 1132 const struct core_mmu_phys_mem *mem_end = NULL; 1133 size_t nelems; 1134 void *fdt = get_external_dt(); 1135 1136 if (fdt) { 1137 mem = get_nsec_memory(fdt, &nelems); 1138 if (mem) { 1139 core_mmu_set_discovered_nsec_ddr(mem, nelems); 1140 return; 1141 } 1142 1143 DMSG("No non-secure memory found in FDT"); 1144 } 1145 1146 mem_begin = phys_ddr_overall_begin; 1147 mem_end = phys_ddr_overall_end; 1148 nelems = mem_end - mem_begin; 1149 if (nelems) { 1150 /* 1151 * Platform cannot use both register_ddr() and the now 1152 * deprecated register_dynamic_shm(). 1153 */ 1154 assert(phys_ddr_overall_compat_begin == 1155 phys_ddr_overall_compat_end); 1156 } else { 1157 mem_begin = phys_ddr_overall_compat_begin; 1158 mem_end = phys_ddr_overall_compat_end; 1159 nelems = mem_end - mem_begin; 1160 if (!nelems) 1161 return; 1162 DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead"); 1163 } 1164 1165 mem = nex_calloc(nelems, sizeof(*mem)); 1166 if (!mem) 1167 panic(); 1168 1169 memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems); 1170 core_mmu_set_discovered_nsec_ddr(mem, nelems); 1171 } 1172 #else /*CFG_CORE_DYN_SHM*/ 1173 static void discover_nsec_memory(void) 1174 { 1175 } 1176 #endif /*!CFG_CORE_DYN_SHM*/ 1177 1178 #ifdef CFG_VIRTUALIZATION 1179 static TEE_Result virt_init_heap(void) 1180 { 1181 /* We need to initialize pool for every virtual guest partition */ 1182 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 1183 1184 return TEE_SUCCESS; 1185 } 1186 preinit_early(virt_init_heap); 1187 #endif 1188 1189 void init_tee_runtime(void) 1190 { 1191 #ifndef CFG_WITH_PAGER 1192 /* Pager initializes TA RAM early */ 1193 core_mmu_init_ta_ram(); 1194 #endif 1195 /* 1196 * With virtualization we call this function when creating the 1197 * OP-TEE partition instead. 1198 */ 1199 if (!IS_ENABLED(CFG_VIRTUALIZATION)) 1200 call_preinitcalls(); 1201 call_initcalls(); 1202 } 1203 1204 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry) 1205 { 1206 /* 1207 * Mask asynchronous exceptions before switch to the thread vector 1208 * as the thread handler requires those to be masked while 1209 * executing with the temporary stack. The thread subsystem also 1210 * asserts that the foreign interrupts are blocked when using most of 1211 * its functions. 1212 */ 1213 thread_set_exceptions(THREAD_EXCP_ALL); 1214 primary_save_cntfrq(); 1215 init_vfp_sec(); 1216 /* 1217 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must 1218 * set a current thread right now to avoid a chicken-and-egg problem 1219 * (thread_init_boot_thread() sets the current thread but needs 1220 * things set by init_runtime()). 1221 */ 1222 thread_get_core_local()->curr_thread = 0; 1223 init_runtime(pageable_part); 1224 1225 if (IS_ENABLED(CFG_VIRTUALIZATION)) { 1226 /* 1227 * Virtualization: We can't initialize threads right now because 1228 * threads belong to "tee" part and will be initialized 1229 * separately per each new virtual guest. So, we'll clear 1230 * "curr_thread" and call it done. 1231 */ 1232 thread_get_core_local()->curr_thread = -1; 1233 } else { 1234 thread_init_boot_thread(); 1235 } 1236 thread_init_primary(); 1237 thread_init_per_cpu(); 1238 init_sec_mon(nsec_entry); 1239 } 1240 1241 /* 1242 * Note: this function is weak just to make it possible to exclude it from 1243 * the unpaged area. 1244 */ 1245 void __weak boot_init_primary_late(unsigned long fdt) 1246 { 1247 init_external_dt(fdt); 1248 tpm_map_log_area(get_external_dt()); 1249 discover_nsec_memory(); 1250 update_external_dt(); 1251 configure_console_from_dt(); 1252 1253 IMSG("OP-TEE version: %s", core_v_str); 1254 IMSG("Primary CPU initializing"); 1255 #ifdef CFG_CORE_ASLR 1256 DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA, 1257 (unsigned long)boot_mmu_config.load_offset, VCORE_START_VA); 1258 #endif 1259 1260 main_init_gic(); 1261 init_vfp_nsec(); 1262 if (IS_ENABLED(CFG_VIRTUALIZATION)) { 1263 IMSG("Initializing virtualization support"); 1264 core_mmu_init_virtualization(); 1265 } else { 1266 init_tee_runtime(); 1267 } 1268 call_finalcalls(); 1269 IMSG("Primary CPU switching to normal world boot"); 1270 } 1271 1272 static void init_secondary_helper(unsigned long nsec_entry) 1273 { 1274 IMSG("Secondary CPU %zu initializing", get_core_pos()); 1275 1276 /* 1277 * Mask asynchronous exceptions before switch to the thread vector 1278 * as the thread handler requires those to be masked while 1279 * executing with the temporary stack. The thread subsystem also 1280 * asserts that the foreign interrupts are blocked when using most of 1281 * its functions. 1282 */ 1283 thread_set_exceptions(THREAD_EXCP_ALL); 1284 1285 secondary_init_cntfrq(); 1286 thread_init_per_cpu(); 1287 init_sec_mon(nsec_entry); 1288 main_secondary_init_gic(); 1289 init_vfp_sec(); 1290 init_vfp_nsec(); 1291 1292 IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos()); 1293 } 1294 1295 /* 1296 * Note: this function is weak just to make it possible to exclude it from 1297 * the unpaged area so that it lies in the init area. 1298 */ 1299 void __weak boot_init_primary_early(unsigned long pageable_part, 1300 unsigned long nsec_entry __maybe_unused) 1301 { 1302 unsigned long e = PADDR_INVALID; 1303 1304 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 1305 e = nsec_entry; 1306 #endif 1307 1308 init_primary(pageable_part, e); 1309 } 1310 1311 #if defined(CFG_WITH_ARM_TRUSTED_FW) 1312 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused, 1313 unsigned long a1 __unused) 1314 { 1315 init_secondary_helper(PADDR_INVALID); 1316 return 0; 1317 } 1318 #else 1319 void boot_init_secondary(unsigned long nsec_entry) 1320 { 1321 init_secondary_helper(nsec_entry); 1322 } 1323 #endif 1324 1325 #if defined(CFG_BOOT_SECONDARY_REQUEST) 1326 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry, 1327 uintptr_t context_id) 1328 { 1329 ns_entry_contexts[core_idx].entry_point = entry; 1330 ns_entry_contexts[core_idx].context_id = context_id; 1331 dsb_ishst(); 1332 } 1333 1334 int boot_core_release(size_t core_idx, paddr_t entry) 1335 { 1336 if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE) 1337 return -1; 1338 1339 ns_entry_contexts[core_idx].entry_point = entry; 1340 dmb(); 1341 spin_table[core_idx] = 1; 1342 dsb(); 1343 sev(); 1344 1345 return 0; 1346 } 1347 1348 /* 1349 * spin until secondary boot request, then returns with 1350 * the secondary core entry address. 1351 */ 1352 struct ns_entry_context *boot_core_hpen(void) 1353 { 1354 #ifdef CFG_PSCI_ARM32 1355 return &ns_entry_contexts[get_core_pos()]; 1356 #else 1357 do { 1358 wfe(); 1359 } while (!spin_table[get_core_pos()]); 1360 dmb(); 1361 return &ns_entry_contexts[get_core_pos()]; 1362 #endif 1363 } 1364 #endif 1365 1366 #if defined(CFG_CORE_ASLR) 1367 #if defined(CFG_DT) 1368 unsigned long __weak get_aslr_seed(void *fdt) 1369 { 1370 int rc = fdt_check_header(fdt); 1371 const uint64_t *seed = NULL; 1372 int offs = 0; 1373 int len = 0; 1374 1375 if (rc) { 1376 DMSG("Bad fdt: %d", rc); 1377 goto err; 1378 } 1379 1380 offs = fdt_path_offset(fdt, "/secure-chosen"); 1381 if (offs < 0) { 1382 DMSG("Cannot find /secure-chosen"); 1383 goto err; 1384 } 1385 seed = fdt_getprop(fdt, offs, "kaslr-seed", &len); 1386 if (!seed || len != sizeof(*seed)) { 1387 DMSG("Cannot find valid kaslr-seed"); 1388 goto err; 1389 } 1390 1391 return fdt64_to_cpu(*seed); 1392 1393 err: 1394 /* Try platform implementation */ 1395 return plat_get_aslr_seed(); 1396 } 1397 #else /*!CFG_DT*/ 1398 unsigned long __weak get_aslr_seed(void *fdt __unused) 1399 { 1400 /* Try platform implementation */ 1401 return plat_get_aslr_seed(); 1402 } 1403 #endif /*!CFG_DT*/ 1404 #endif /*CFG_CORE_ASLR*/ 1405