xref: /optee_os/core/arch/arm/kernel/boot.c (revision 68045ae95313b78298e98fe4646a161e135ec17b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2023, Linaro Limited
4  * Copyright (c) 2023, Arm Limited
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <console.h>
12 #include <crypto/crypto.h>
13 #include <drivers/gic.h>
14 #include <dt-bindings/interrupt-controller/arm-gic.h>
15 #include <ffa.h>
16 #include <initcall.h>
17 #include <inttypes.h>
18 #include <keep.h>
19 #include <kernel/asan.h>
20 #include <kernel/boot.h>
21 #include <kernel/dt.h>
22 #include <kernel/linker.h>
23 #include <kernel/misc.h>
24 #include <kernel/panic.h>
25 #include <kernel/tee_misc.h>
26 #include <kernel/thread.h>
27 #include <kernel/tpm.h>
28 #include <libfdt.h>
29 #include <malloc.h>
30 #include <memtag.h>
31 #include <mm/core_memprot.h>
32 #include <mm/core_mmu.h>
33 #include <mm/fobj.h>
34 #include <mm/tee_mm.h>
35 #include <mm/tee_pager.h>
36 #include <sm/psci.h>
37 #include <stdio.h>
38 #include <trace.h>
39 #include <utee_defines.h>
40 #include <util.h>
41 
42 #include <platform_config.h>
43 
44 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
45 #include <sm/sm.h>
46 #endif
47 
48 #if defined(CFG_WITH_VFP)
49 #include <kernel/vfp.h>
50 #endif
51 
52 /*
53  * In this file we're using unsigned long to represent physical pointers as
54  * they are received in a single register when OP-TEE is initially entered.
55  * This limits 32-bit systems to only use make use of the lower 32 bits
56  * of a physical address for initial parameters.
57  *
58  * 64-bit systems on the other hand can use full 64-bit physical pointers.
59  */
60 #define PADDR_INVALID		ULONG_MAX
61 
62 #if defined(CFG_BOOT_SECONDARY_REQUEST)
63 struct ns_entry_context {
64 	uintptr_t entry_point;
65 	uintptr_t context_id;
66 };
67 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
68 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
69 #endif
70 
71 #ifdef CFG_BOOT_SYNC_CPU
72 /*
73  * Array used when booting, to synchronize cpu.
74  * When 0, the cpu has not started.
75  * When 1, it has started
76  */
77 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
78 DECLARE_KEEP_PAGER(sem_cpu_sync);
79 #endif
80 
81 #ifdef CFG_CORE_FFA
82 static void *manifest_dt __nex_bss;
83 #endif
84 
85 #ifdef CFG_SECONDARY_INIT_CNTFRQ
86 static uint32_t cntfrq;
87 #endif
88 
89 /* May be overridden in plat-$(PLATFORM)/main.c */
90 __weak void plat_primary_init_early(void)
91 {
92 }
93 DECLARE_KEEP_PAGER(plat_primary_init_early);
94 
95 /* May be overridden in plat-$(PLATFORM)/main.c */
96 __weak void boot_primary_init_intc(void)
97 {
98 }
99 
100 /* May be overridden in plat-$(PLATFORM)/main.c */
101 __weak void boot_secondary_init_intc(void)
102 {
103 }
104 
105 /* May be overridden in plat-$(PLATFORM)/main.c */
106 __weak unsigned long plat_get_aslr_seed(void)
107 {
108 	DMSG("Warning: no ASLR seed");
109 
110 	return 0;
111 }
112 
113 #if defined(_CFG_CORE_STACK_PROTECTOR) || defined(CFG_WITH_STACK_CANARIES)
114 /* Generate random stack canary value on boot up */
115 __weak void plat_get_random_stack_canaries(void *buf, size_t ncan, size_t size)
116 {
117 	TEE_Result ret = TEE_ERROR_GENERIC;
118 	size_t i = 0;
119 
120 	assert(buf && ncan && size);
121 
122 	/*
123 	 * With virtualization the RNG is not initialized in Nexus core.
124 	 * Need to override with platform specific implementation.
125 	 */
126 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
127 		IMSG("WARNING: Using fixed value for stack canary");
128 		memset(buf, 0xab, ncan * size);
129 		goto out;
130 	}
131 
132 	ret = crypto_rng_read(buf, ncan * size);
133 	if (ret != TEE_SUCCESS)
134 		panic("Failed to generate random stack canary");
135 
136 out:
137 	/* Leave null byte in canary to prevent string base exploit */
138 	for (i = 0; i < ncan; i++)
139 		*((uint8_t *)buf + size * i) = 0;
140 }
141 #endif /* _CFG_CORE_STACK_PROTECTOR || CFG_WITH_STACK_CANARIES */
142 
143 /*
144  * This function is called as a guard after each smc call which is not
145  * supposed to return.
146  */
147 void __panic_at_smc_return(void)
148 {
149 	panic();
150 }
151 
152 #if defined(CFG_WITH_ARM_TRUSTED_FW)
153 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
154 {
155 	assert(nsec_entry == PADDR_INVALID);
156 	/* Do nothing as we don't have a secure monitor */
157 }
158 #else
159 /* May be overridden in plat-$(PLATFORM)/main.c */
160 __weak void init_sec_mon(unsigned long nsec_entry)
161 {
162 	struct sm_nsec_ctx *nsec_ctx;
163 
164 	assert(nsec_entry != PADDR_INVALID);
165 
166 	/* Initialize secure monitor */
167 	nsec_ctx = sm_get_nsec_ctx();
168 	nsec_ctx->mon_lr = nsec_entry;
169 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
170 	if (nsec_entry & 1)
171 		nsec_ctx->mon_spsr |= CPSR_T;
172 }
173 #endif
174 
175 #if defined(CFG_WITH_ARM_TRUSTED_FW)
176 static void init_vfp_nsec(void)
177 {
178 }
179 #else
180 static void init_vfp_nsec(void)
181 {
182 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
183 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
184 }
185 #endif
186 
187 #if defined(CFG_WITH_VFP)
188 
189 #ifdef ARM32
190 static void init_vfp_sec(void)
191 {
192 	uint32_t cpacr = read_cpacr();
193 
194 	/*
195 	 * Enable Advanced SIMD functionality.
196 	 * Enable use of D16-D31 of the Floating-point Extension register
197 	 * file.
198 	 */
199 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
200 	/*
201 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
202 	 * mode.
203 	 */
204 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
205 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
206 	write_cpacr(cpacr);
207 }
208 #endif /* ARM32 */
209 
210 #ifdef ARM64
211 static void init_vfp_sec(void)
212 {
213 	/* Not using VFP until thread_kernel_enable_vfp() */
214 	vfp_disable();
215 }
216 #endif /* ARM64 */
217 
218 #else /* CFG_WITH_VFP */
219 
220 static void init_vfp_sec(void)
221 {
222 	/* Not using VFP */
223 }
224 #endif
225 
226 #ifdef CFG_SECONDARY_INIT_CNTFRQ
227 static void primary_save_cntfrq(void)
228 {
229 	assert(cntfrq == 0);
230 
231 	/*
232 	 * CNTFRQ should be initialized on the primary CPU by a
233 	 * previous boot stage
234 	 */
235 	cntfrq = read_cntfrq();
236 }
237 
238 static void secondary_init_cntfrq(void)
239 {
240 	assert(cntfrq != 0);
241 	write_cntfrq(cntfrq);
242 }
243 #else /* CFG_SECONDARY_INIT_CNTFRQ */
244 static void primary_save_cntfrq(void)
245 {
246 }
247 
248 static void secondary_init_cntfrq(void)
249 {
250 }
251 #endif
252 
253 #ifdef CFG_CORE_SANITIZE_KADDRESS
254 static void init_run_constructors(void)
255 {
256 	const vaddr_t *ctor;
257 
258 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
259 		((void (*)(void))(*ctor))();
260 }
261 
262 static void init_asan(void)
263 {
264 
265 	/*
266 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
267 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
268 	 * Since all the needed values to calculate the value of
269 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
270 	 * calculate it in advance and hard code it into the platform
271 	 * conf.mk. Here where we have all the needed values we double
272 	 * check that the compiler is supplied the correct value.
273 	 */
274 
275 #define __ASAN_SHADOW_START \
276 	ROUNDUP(TEE_RAM_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
277 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
278 #define __CFG_ASAN_SHADOW_OFFSET \
279 	(__ASAN_SHADOW_START - (TEE_RAM_START / 8))
280 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
281 #undef __ASAN_SHADOW_START
282 #undef __CFG_ASAN_SHADOW_OFFSET
283 
284 	/*
285 	 * Assign area covered by the shadow area, everything from start up
286 	 * to the beginning of the shadow area.
287 	 */
288 	asan_set_shadowed((void *)TEE_LOAD_ADDR, &__asan_shadow_start);
289 
290 	/*
291 	 * Add access to areas that aren't opened automatically by a
292 	 * constructor.
293 	 */
294 	asan_tag_access(&__ctor_list, &__ctor_end);
295 	asan_tag_access(__rodata_start, __rodata_end);
296 #ifdef CFG_WITH_PAGER
297 	asan_tag_access(__pageable_start, __pageable_end);
298 #endif /*CFG_WITH_PAGER*/
299 	asan_tag_access(__nozi_start, __nozi_end);
300 #ifdef ARM32
301 	asan_tag_access(__exidx_start, __exidx_end);
302 	asan_tag_access(__extab_start, __extab_end);
303 #endif
304 
305 	init_run_constructors();
306 
307 	/* Everything is tagged correctly, let's start address sanitizing. */
308 	asan_start();
309 }
310 #else /*CFG_CORE_SANITIZE_KADDRESS*/
311 static void init_asan(void)
312 {
313 }
314 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
315 
316 #if defined(CFG_MEMTAG)
317 /* Called from entry_a64.S only when MEMTAG is configured */
318 void boot_init_memtag(void)
319 {
320 	paddr_t base = 0;
321 	paddr_size_t size = 0;
322 
323 	memtag_init_ops(feat_mte_implemented());
324 	core_mmu_get_secure_memory(&base, &size);
325 	memtag_set_tags((void *)(vaddr_t)base, size, 0);
326 }
327 #endif
328 
329 #ifdef CFG_WITH_PAGER
330 
331 #ifdef CFG_CORE_SANITIZE_KADDRESS
332 static void carve_out_asan_mem(tee_mm_pool_t *pool)
333 {
334 	const size_t s = pool->hi - pool->lo;
335 	tee_mm_entry_t *mm;
336 	paddr_t apa = ASAN_MAP_PA;
337 	size_t asz = ASAN_MAP_SZ;
338 
339 	if (core_is_buffer_outside(apa, asz, pool->lo, s))
340 		return;
341 
342 	/* Reserve the shadow area */
343 	if (!core_is_buffer_inside(apa, asz, pool->lo, s)) {
344 		if (apa < pool->lo) {
345 			/*
346 			 * ASAN buffer is overlapping with the beginning of
347 			 * the pool.
348 			 */
349 			asz -= pool->lo - apa;
350 			apa = pool->lo;
351 		} else {
352 			/*
353 			 * ASAN buffer is overlapping with the end of the
354 			 * pool.
355 			 */
356 			asz = pool->hi - apa;
357 		}
358 	}
359 	mm = tee_mm_alloc2(pool, apa, asz);
360 	assert(mm);
361 }
362 #else
363 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused)
364 {
365 }
366 #endif
367 
368 static void print_pager_pool_size(void)
369 {
370 	struct tee_pager_stats __maybe_unused stats;
371 
372 	tee_pager_get_stats(&stats);
373 	IMSG("Pager pool size: %zukB",
374 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
375 }
376 
377 static void init_vcore(tee_mm_pool_t *mm_vcore)
378 {
379 	const vaddr_t begin = VCORE_START_VA;
380 	size_t size = TEE_RAM_VA_SIZE;
381 
382 #ifdef CFG_CORE_SANITIZE_KADDRESS
383 	/* Carve out asan memory, flat maped after core memory */
384 	if (begin + size > ASAN_SHADOW_PA)
385 		size = ASAN_MAP_PA - begin;
386 #endif
387 
388 	if (!tee_mm_init(mm_vcore, begin, size, SMALL_PAGE_SHIFT,
389 			 TEE_MM_POOL_NO_FLAGS))
390 		panic("tee_mm_vcore init failed");
391 }
392 
393 /*
394  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
395  * The init part is also paged just as the rest of the normal paged code, with
396  * the difference that it's preloaded during boot. When the backing store
397  * is configured the entire paged binary is copied in place and then also
398  * the init part. Since the init part has been relocated (references to
399  * addresses updated to compensate for the new load address) this has to be
400  * undone for the hashes of those pages to match with the original binary.
401  *
402  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
403  * unchanged.
404  */
405 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
406 {
407 #ifdef CFG_CORE_ASLR
408 	unsigned long *ptr = NULL;
409 	const uint32_t *reloc = NULL;
410 	const uint32_t *reloc_end = NULL;
411 	unsigned long offs = boot_mmu_config.map_offset;
412 	const struct boot_embdata *embdata = (const void *)__init_end;
413 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_LOAD_ADDR;
414 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_LOAD_ADDR;
415 
416 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
417 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
418 
419 	for (; reloc < reloc_end; reloc++) {
420 		if (*reloc < addr_start)
421 			continue;
422 		if (*reloc >= addr_end)
423 			break;
424 		ptr = (void *)(paged_store + *reloc - addr_start);
425 		*ptr -= offs;
426 	}
427 #endif
428 }
429 
430 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
431 				   void *store)
432 {
433 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
434 #ifdef CFG_CORE_ASLR
435 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
436 	const struct boot_embdata *embdata = (const void *)__init_end;
437 	const void *reloc = __init_end + embdata->reloc_offset;
438 
439 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
440 					 reloc, embdata->reloc_len, store);
441 #else
442 	return fobj_ro_paged_alloc(num_pages, hashes, store);
443 #endif
444 }
445 
446 static void init_runtime(unsigned long pageable_part)
447 {
448 	size_t n;
449 	size_t init_size = (size_t)(__init_end - __init_start);
450 	size_t pageable_start = (size_t)__pageable_start;
451 	size_t pageable_end = (size_t)__pageable_end;
452 	size_t pageable_size = pageable_end - pageable_start;
453 	vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR +
454 			     VCORE_START_VA;
455 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
456 			   TEE_SHA256_HASH_SIZE;
457 	const struct boot_embdata *embdata = (const void *)__init_end;
458 	const void *tmp_hashes = NULL;
459 	tee_mm_entry_t *mm = NULL;
460 	struct fobj *fobj = NULL;
461 	uint8_t *paged_store = NULL;
462 	uint8_t *hashes = NULL;
463 
464 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
465 	assert(embdata->total_len >= embdata->hashes_offset +
466 				     embdata->hashes_len);
467 	assert(hash_size == embdata->hashes_len);
468 
469 	tmp_hashes = __init_end + embdata->hashes_offset;
470 
471 	init_asan();
472 
473 	/* Add heap2 first as heap1 may be too small as initial bget pool */
474 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
475 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
476 
477 	/*
478 	 * This needs to be initialized early to support address lookup
479 	 * in MEM_AREA_TEE_RAM
480 	 */
481 	tee_pager_early_init();
482 
483 	hashes = malloc(hash_size);
484 	IMSG_RAW("\n");
485 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
486 	assert(hashes);
487 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
488 
489 	/*
490 	 * Need tee_mm_sec_ddr initialized to be able to allocate secure
491 	 * DDR below.
492 	 */
493 	core_mmu_init_ta_ram();
494 
495 	carve_out_asan_mem(&tee_mm_sec_ddr);
496 
497 	mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size);
498 	assert(mm);
499 	paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
500 				   pageable_size);
501 	/*
502 	 * Load pageable part in the dedicated allocated area:
503 	 * - Move pageable non-init part into pageable area. Note bootloader
504 	 *   may have loaded it anywhere in TA RAM hence use memmove().
505 	 * - Copy pageable init part from current location into pageable area.
506 	 */
507 	memmove(paged_store + init_size,
508 		phys_to_virt(pageable_part,
509 			     core_mmu_get_type_by_pa(pageable_part),
510 			     __pageable_part_end - __pageable_part_start),
511 		__pageable_part_end - __pageable_part_start);
512 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
513 	/*
514 	 * Undo eventual relocation for the init part so the hash checks
515 	 * can pass.
516 	 */
517 	undo_init_relocation(paged_store);
518 
519 	/* Check that hashes of what's in pageable area is OK */
520 	DMSG("Checking hashes of pageable area");
521 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
522 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
523 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
524 		TEE_Result res;
525 
526 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
527 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
528 		if (res != TEE_SUCCESS) {
529 			EMSG("Hash failed for page %zu at %p: res 0x%x",
530 			     n, (void *)page, res);
531 			panic();
532 		}
533 	}
534 
535 	/*
536 	 * Assert prepaged init sections are page aligned so that nothing
537 	 * trails uninited at the end of the premapped init area.
538 	 */
539 	assert(!(init_size & SMALL_PAGE_MASK));
540 
541 	/*
542 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
543 	 * is supplied to tee_pager_init() below.
544 	 */
545 	init_vcore(&tee_mm_vcore);
546 
547 	/*
548 	 * Assign alias area for pager end of the small page block the rest
549 	 * of the binary is loaded into. We're taking more than needed, but
550 	 * we're guaranteed to not need more than the physical amount of
551 	 * TZSRAM.
552 	 */
553 	mm = tee_mm_alloc2(&tee_mm_vcore,
554 			   (vaddr_t)tee_mm_vcore.lo +
555 			   tee_mm_vcore.size - TZSRAM_SIZE,
556 			   TZSRAM_SIZE);
557 	assert(mm);
558 	tee_pager_set_alias_area(mm);
559 
560 	/*
561 	 * Claim virtual memory which isn't paged.
562 	 * Linear memory (flat map core memory) ends there.
563 	 */
564 	mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA,
565 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
566 	assert(mm);
567 
568 	/*
569 	 * Allocate virtual memory for the pageable area and let the pager
570 	 * take charge of all the pages already assigned to that memory.
571 	 */
572 	mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start,
573 			   pageable_size);
574 	assert(mm);
575 	fobj = ro_paged_alloc(mm, hashes, paged_store);
576 	assert(fobj);
577 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
578 				  fobj);
579 	fobj_put(fobj);
580 
581 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
582 	tee_pager_add_pages(pageable_start + init_size,
583 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
584 			    true);
585 	if (pageable_end < tzsram_end)
586 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
587 						   SMALL_PAGE_SIZE, true);
588 
589 	/*
590 	 * There may be physical pages in TZSRAM before the core load address.
591 	 * These pages can be added to the physical pages pool of the pager.
592 	 * This setup may happen when a the secure bootloader runs in TZRAM
593 	 * and its memory can be reused by OP-TEE once boot stages complete.
594 	 */
595 	tee_pager_add_pages(tee_mm_vcore.lo,
596 			(VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE,
597 			true);
598 
599 	print_pager_pool_size();
600 }
601 #else
602 
603 static void init_runtime(unsigned long pageable_part __unused)
604 {
605 	init_asan();
606 
607 	/*
608 	 * By default whole OP-TEE uses malloc, so we need to initialize
609 	 * it early. But, when virtualization is enabled, malloc is used
610 	 * only by TEE runtime, so malloc should be initialized later, for
611 	 * every virtual partition separately. Core code uses nex_malloc
612 	 * instead.
613 	 */
614 #ifdef CFG_NS_VIRTUALIZATION
615 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
616 					      __nex_heap_start);
617 #else
618 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
619 #endif
620 
621 	IMSG_RAW("\n");
622 }
623 #endif
624 
625 #if defined(CFG_DT)
626 static int add_optee_dt_node(struct dt_descriptor *dt)
627 {
628 	int offs;
629 	int ret;
630 
631 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
632 		DMSG("OP-TEE Device Tree node already exists!");
633 		return 0;
634 	}
635 
636 	offs = fdt_path_offset(dt->blob, "/firmware");
637 	if (offs < 0) {
638 		offs = add_dt_path_subnode(dt, "/", "firmware");
639 		if (offs < 0)
640 			return -1;
641 	}
642 
643 	offs = fdt_add_subnode(dt->blob, offs, "optee");
644 	if (offs < 0)
645 		return -1;
646 
647 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
648 				 "linaro,optee-tz");
649 	if (ret < 0)
650 		return -1;
651 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
652 	if (ret < 0)
653 		return -1;
654 
655 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
656 		/*
657 		 * The format of the interrupt property is defined by the
658 		 * binding of the interrupt domain root. In this case it's
659 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
660 		 * these.
661 		 *
662 		 * An SPI type of interrupt is indicated with a 0 in the
663 		 * first cell. A PPI type is indicated with value 1.
664 		 *
665 		 * The interrupt number goes in the second cell where
666 		 * SPIs ranges from 0 to 987 and PPI ranges from 0 to 15.
667 		 *
668 		 * Flags are passed in the third cells.
669 		 */
670 		uint32_t itr_trigger = 0;
671 		uint32_t itr_type = 0;
672 		uint32_t itr_id = 0;
673 		uint32_t val[3] = { };
674 
675 		/* PPI are visible only in current CPU cluster */
676 		static_assert(!CFG_CORE_ASYNC_NOTIF_GIC_INTID ||
677 			      (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
678 			       GIC_SPI_BASE) ||
679 			      ((CFG_TEE_CORE_NB_CORE <= 8) &&
680 			       (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
681 				GIC_PPI_BASE)));
682 
683 		if (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= GIC_SPI_BASE) {
684 			itr_type = GIC_SPI;
685 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_SPI_BASE;
686 			itr_trigger = IRQ_TYPE_EDGE_RISING;
687 		} else {
688 			itr_type = GIC_PPI;
689 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_PPI_BASE;
690 			itr_trigger = IRQ_TYPE_EDGE_RISING |
691 				      GIC_CPU_MASK_SIMPLE(CFG_TEE_CORE_NB_CORE);
692 		}
693 
694 		val[0] = TEE_U32_TO_BIG_ENDIAN(itr_type);
695 		val[1] = TEE_U32_TO_BIG_ENDIAN(itr_id);
696 		val[2] = TEE_U32_TO_BIG_ENDIAN(itr_trigger);
697 
698 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
699 				  sizeof(val));
700 		if (ret < 0)
701 			return -1;
702 	}
703 	return 0;
704 }
705 
706 #ifdef CFG_PSCI_ARM32
707 static int append_psci_compatible(void *fdt, int offs, const char *str)
708 {
709 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
710 }
711 
712 static int dt_add_psci_node(struct dt_descriptor *dt)
713 {
714 	int offs;
715 
716 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
717 		DMSG("PSCI Device Tree node already exists!");
718 		return 0;
719 	}
720 
721 	offs = add_dt_path_subnode(dt, "/", "psci");
722 	if (offs < 0)
723 		return -1;
724 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
725 		return -1;
726 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
727 		return -1;
728 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
729 		return -1;
730 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
731 		return -1;
732 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
733 		return -1;
734 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
735 		return -1;
736 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
737 		return -1;
738 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
739 		return -1;
740 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
741 		return -1;
742 	return 0;
743 }
744 
745 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
746 				    const char *prefix)
747 {
748 	const size_t prefix_len = strlen(prefix);
749 	size_t l;
750 	int plen;
751 	const char *prop;
752 
753 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
754 	if (!prop)
755 		return -1;
756 
757 	while (plen > 0) {
758 		if (memcmp(prop, prefix, prefix_len) == 0)
759 			return 0; /* match */
760 
761 		l = strlen(prop) + 1;
762 		prop += l;
763 		plen -= l;
764 	}
765 
766 	return -1;
767 }
768 
769 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
770 {
771 	int offs = 0;
772 
773 	while (1) {
774 		offs = fdt_next_node(dt->blob, offs, NULL);
775 		if (offs < 0)
776 			break;
777 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
778 			continue; /* already set */
779 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
780 			continue; /* no compatible */
781 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
782 			return -1;
783 		/* Need to restart scanning as offsets may have changed */
784 		offs = 0;
785 	}
786 	return 0;
787 }
788 
789 static int config_psci(struct dt_descriptor *dt)
790 {
791 	if (dt_add_psci_node(dt))
792 		return -1;
793 	return dt_add_psci_cpu_enable_methods(dt);
794 }
795 #else
796 static int config_psci(struct dt_descriptor *dt __unused)
797 {
798 	return 0;
799 }
800 #endif /*CFG_PSCI_ARM32*/
801 
802 #ifdef CFG_CORE_DYN_SHM
803 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs,
804 				       uint32_t cell_size)
805 {
806 	uint64_t rv = 0;
807 
808 	if (cell_size == 1) {
809 		uint32_t v;
810 
811 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
812 		*offs += sizeof(v);
813 		rv = fdt32_to_cpu(v);
814 	} else {
815 		uint64_t v;
816 
817 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
818 		*offs += sizeof(v);
819 		rv = fdt64_to_cpu(v);
820 	}
821 
822 	return rv;
823 }
824 
825 /*
826  * Find all non-secure memory from DT. Memory marked inaccessible by Secure
827  * World is ignored since it could not be mapped to be used as dynamic shared
828  * memory.
829  */
830 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem)
831 {
832 	const uint8_t *prop = NULL;
833 	uint64_t a = 0;
834 	uint64_t l = 0;
835 	size_t prop_offs = 0;
836 	size_t prop_len = 0;
837 	int elems_total = 0;
838 	int addr_size = 0;
839 	int len_size = 0;
840 	int offs = 0;
841 	size_t n = 0;
842 	int len = 0;
843 
844 	addr_size = fdt_address_cells(fdt, 0);
845 	if (addr_size < 0)
846 		return 0;
847 
848 	len_size = fdt_size_cells(fdt, 0);
849 	if (len_size < 0)
850 		return 0;
851 
852 	while (true) {
853 		offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type",
854 						     "memory",
855 						     sizeof("memory"));
856 		if (offs < 0)
857 			break;
858 
859 		if (fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC |
860 						   DT_STATUS_OK_SEC))
861 			continue;
862 
863 		prop = fdt_getprop(fdt, offs, "reg", &len);
864 		if (!prop)
865 			continue;
866 
867 		prop_len = len;
868 		for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) {
869 			a = get_dt_val_and_advance(prop, &prop_offs, addr_size);
870 			if (prop_offs >= prop_len) {
871 				n--;
872 				break;
873 			}
874 
875 			l = get_dt_val_and_advance(prop, &prop_offs, len_size);
876 			if (mem) {
877 				mem->type = MEM_AREA_DDR_OVERALL;
878 				mem->addr = a;
879 				mem->size = l;
880 				mem++;
881 			}
882 		}
883 
884 		elems_total += n;
885 	}
886 
887 	return elems_total;
888 }
889 
890 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems)
891 {
892 	struct core_mmu_phys_mem *mem = NULL;
893 	int elems_total = 0;
894 
895 	elems_total = get_nsec_memory_helper(fdt, NULL);
896 	if (elems_total <= 0)
897 		return NULL;
898 
899 	mem = nex_calloc(elems_total, sizeof(*mem));
900 	if (!mem)
901 		panic();
902 
903 	elems_total = get_nsec_memory_helper(fdt, mem);
904 	assert(elems_total > 0);
905 
906 	*nelems = elems_total;
907 
908 	return mem;
909 }
910 #endif /*CFG_CORE_DYN_SHM*/
911 
912 #ifdef CFG_CORE_RESERVED_SHM
913 static int mark_static_shm_as_reserved(struct dt_descriptor *dt)
914 {
915 	vaddr_t shm_start;
916 	vaddr_t shm_end;
917 
918 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end);
919 	if (shm_start != shm_end)
920 		return add_res_mem_dt_node(dt, "optee_shm",
921 					   virt_to_phys((void *)shm_start),
922 					   shm_end - shm_start);
923 
924 	DMSG("No SHM configured");
925 	return -1;
926 }
927 #endif /*CFG_CORE_RESERVED_SHM*/
928 
929 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
930 {
931 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
932 				   CFG_TZDRAM_SIZE);
933 }
934 
935 static void update_external_dt(void)
936 {
937 	struct dt_descriptor *dt = get_external_dt_desc();
938 
939 	if (!dt || !dt->blob)
940 		return;
941 
942 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
943 		panic("Failed to add OP-TEE Device Tree node");
944 
945 	if (config_psci(dt))
946 		panic("Failed to config PSCI");
947 
948 #ifdef CFG_CORE_RESERVED_SHM
949 	if (mark_static_shm_as_reserved(dt))
950 		panic("Failed to config non-secure memory");
951 #endif
952 
953 	if (mark_tzdram_as_reserved(dt))
954 		panic("Failed to config secure memory");
955 }
956 #else /*CFG_DT*/
957 static void update_external_dt(void)
958 {
959 }
960 
961 #ifdef CFG_CORE_DYN_SHM
962 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused,
963 						 size_t *nelems __unused)
964 {
965 	return NULL;
966 }
967 #endif /*CFG_CORE_DYN_SHM*/
968 #endif /*!CFG_DT*/
969 
970 #if defined(CFG_CORE_FFA)
971 void *get_manifest_dt(void)
972 {
973 	return manifest_dt;
974 }
975 
976 static void init_manifest_dt(unsigned long pa)
977 {
978 	void *fdt = NULL;
979 	int ret = 0;
980 
981 	if (!pa) {
982 		EMSG("No manifest DT found");
983 		return;
984 	}
985 
986 	fdt = core_mmu_add_mapping(MEM_AREA_MANIFEST_DT, pa, CFG_DTB_MAX_SIZE);
987 	if (!fdt)
988 		panic("Failed to map manifest DT");
989 
990 	manifest_dt = fdt;
991 
992 	ret = fdt_check_full(fdt, CFG_DTB_MAX_SIZE);
993 	if (ret < 0) {
994 		EMSG("Invalid manifest Device Tree at %#lx: error %d", pa, ret);
995 		panic();
996 	}
997 
998 	IMSG("manifest DT found");
999 }
1000 
1001 static TEE_Result release_manifest_dt(void)
1002 {
1003 	if (!manifest_dt)
1004 		return TEE_SUCCESS;
1005 
1006 	if (core_mmu_remove_mapping(MEM_AREA_MANIFEST_DT, manifest_dt,
1007 				    CFG_DTB_MAX_SIZE))
1008 		panic("Failed to remove temporary manifest DT mapping");
1009 	manifest_dt = NULL;
1010 
1011 	return TEE_SUCCESS;
1012 }
1013 
1014 boot_final(release_manifest_dt);
1015 #else
1016 void *get_manifest_dt(void)
1017 {
1018 	return NULL;
1019 }
1020 
1021 static void init_manifest_dt(unsigned long pa __unused)
1022 {
1023 }
1024 #endif /*CFG_CORE_FFA*/
1025 
1026 #ifdef CFG_CORE_DYN_SHM
1027 static void discover_nsec_memory(void)
1028 {
1029 	struct core_mmu_phys_mem *mem;
1030 	const struct core_mmu_phys_mem *mem_begin = NULL;
1031 	const struct core_mmu_phys_mem *mem_end = NULL;
1032 	size_t nelems;
1033 	void *fdt = get_external_dt();
1034 
1035 	if (fdt) {
1036 		mem = get_nsec_memory(fdt, &nelems);
1037 		if (mem) {
1038 			core_mmu_set_discovered_nsec_ddr(mem, nelems);
1039 			return;
1040 		}
1041 
1042 		DMSG("No non-secure memory found in FDT");
1043 	}
1044 
1045 	mem_begin = phys_ddr_overall_begin;
1046 	mem_end = phys_ddr_overall_end;
1047 	nelems = mem_end - mem_begin;
1048 	if (nelems) {
1049 		/*
1050 		 * Platform cannot use both register_ddr() and the now
1051 		 * deprecated register_dynamic_shm().
1052 		 */
1053 		assert(phys_ddr_overall_compat_begin ==
1054 		       phys_ddr_overall_compat_end);
1055 	} else {
1056 		mem_begin = phys_ddr_overall_compat_begin;
1057 		mem_end = phys_ddr_overall_compat_end;
1058 		nelems = mem_end - mem_begin;
1059 		if (!nelems)
1060 			return;
1061 		DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead");
1062 	}
1063 
1064 	mem = nex_calloc(nelems, sizeof(*mem));
1065 	if (!mem)
1066 		panic();
1067 
1068 	memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems);
1069 	core_mmu_set_discovered_nsec_ddr(mem, nelems);
1070 }
1071 #else /*CFG_CORE_DYN_SHM*/
1072 static void discover_nsec_memory(void)
1073 {
1074 }
1075 #endif /*!CFG_CORE_DYN_SHM*/
1076 
1077 #ifdef CFG_NS_VIRTUALIZATION
1078 static TEE_Result virt_init_heap(void)
1079 {
1080 	/* We need to initialize pool for every virtual guest partition */
1081 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
1082 
1083 	return TEE_SUCCESS;
1084 }
1085 preinit_early(virt_init_heap);
1086 #endif
1087 
1088 void init_tee_runtime(void)
1089 {
1090 #ifndef CFG_WITH_PAGER
1091 	/* Pager initializes TA RAM early */
1092 	core_mmu_init_ta_ram();
1093 #endif
1094 	/*
1095 	 * With virtualization we call this function when creating the
1096 	 * OP-TEE partition instead.
1097 	 */
1098 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1099 		call_preinitcalls();
1100 	call_initcalls();
1101 
1102 	/*
1103 	 * These two functions uses crypto_rng_read() to initialize the
1104 	 * pauth keys. Once call_initcalls() returns we're guaranteed that
1105 	 * crypto_rng_read() is ready to be used.
1106 	 */
1107 	thread_init_core_local_pauth_keys();
1108 	thread_init_thread_pauth_keys();
1109 
1110 	/*
1111 	 * Reinitialize canaries around the stacks with crypto_rng_read().
1112 	 *
1113 	 * TODO: Updating canaries when CFG_NS_VIRTUALIZATION is enabled will
1114 	 * require synchronization between thread_check_canaries() and
1115 	 * thread_update_canaries().
1116 	 */
1117 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1118 		thread_update_canaries();
1119 }
1120 
1121 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
1122 {
1123 	thread_init_core_local_stacks();
1124 	/*
1125 	 * Mask asynchronous exceptions before switch to the thread vector
1126 	 * as the thread handler requires those to be masked while
1127 	 * executing with the temporary stack. The thread subsystem also
1128 	 * asserts that the foreign interrupts are blocked when using most of
1129 	 * its functions.
1130 	 */
1131 	thread_set_exceptions(THREAD_EXCP_ALL);
1132 	primary_save_cntfrq();
1133 	init_vfp_sec();
1134 	/*
1135 	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
1136 	 * set a current thread right now to avoid a chicken-and-egg problem
1137 	 * (thread_init_boot_thread() sets the current thread but needs
1138 	 * things set by init_runtime()).
1139 	 */
1140 	thread_get_core_local()->curr_thread = 0;
1141 	init_runtime(pageable_part);
1142 
1143 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1144 		/*
1145 		 * Virtualization: We can't initialize threads right now because
1146 		 * threads belong to "tee" part and will be initialized
1147 		 * separately per each new virtual guest. So, we'll clear
1148 		 * "curr_thread" and call it done.
1149 		 */
1150 		thread_get_core_local()->curr_thread = -1;
1151 	} else {
1152 		thread_init_boot_thread();
1153 	}
1154 	thread_init_primary();
1155 	thread_init_per_cpu();
1156 	init_sec_mon(nsec_entry);
1157 }
1158 
1159 static bool cpu_nmfi_enabled(void)
1160 {
1161 #if defined(ARM32)
1162 	return read_sctlr() & SCTLR_NMFI;
1163 #else
1164 	/* Note: ARM64 does not feature non-maskable FIQ support. */
1165 	return false;
1166 #endif
1167 }
1168 
1169 /*
1170  * Note: this function is weak just to make it possible to exclude it from
1171  * the unpaged area.
1172  */
1173 void __weak boot_init_primary_late(unsigned long fdt,
1174 				   unsigned long manifest)
1175 {
1176 	init_external_dt(fdt);
1177 	/*
1178 	 * With an SPMC at S-EL2 we have saved the physical fdt address
1179 	 * from the passed boot info.
1180 	 */
1181 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1182 		manifest = (unsigned long)get_manifest_dt();
1183 	init_manifest_dt(manifest);
1184 #ifdef CFG_CORE_SEL1_SPMC
1185 	tpm_map_log_area(get_manifest_dt());
1186 #else
1187 	tpm_map_log_area(get_external_dt());
1188 #endif
1189 	discover_nsec_memory();
1190 	update_external_dt();
1191 	configure_console_from_dt();
1192 
1193 	IMSG("OP-TEE version: %s", core_v_str);
1194 	if (IS_ENABLED(CFG_WARN_INSECURE)) {
1195 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1196 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1197 	}
1198 	IMSG("Primary CPU initializing");
1199 #ifdef CFG_CORE_ASLR
1200 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1201 	     (unsigned long)boot_mmu_config.map_offset, VCORE_START_VA);
1202 #endif
1203 	if (IS_ENABLED(CFG_MEMTAG))
1204 		DMSG("Memory tagging %s",
1205 		     memtag_is_enabled() ?  "enabled" : "disabled");
1206 
1207 	/* Check if platform needs NMFI workaround */
1208 	if (cpu_nmfi_enabled())	{
1209 		if (!IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1210 			IMSG("WARNING: This ARM core has NMFI enabled, please apply workaround!");
1211 	} else {
1212 		if (IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1213 			IMSG("WARNING: This ARM core does not have NMFI enabled, no need for workaround");
1214 	}
1215 
1216 	boot_primary_init_intc();
1217 	init_vfp_nsec();
1218 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1219 		IMSG("Initializing virtualization support");
1220 		core_mmu_init_virtualization();
1221 	} else {
1222 		init_tee_runtime();
1223 	}
1224 	call_finalcalls();
1225 	IMSG("Primary CPU switching to normal world boot");
1226 }
1227 
1228 static void init_secondary_helper(unsigned long nsec_entry)
1229 {
1230 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1231 
1232 	/*
1233 	 * Mask asynchronous exceptions before switch to the thread vector
1234 	 * as the thread handler requires those to be masked while
1235 	 * executing with the temporary stack. The thread subsystem also
1236 	 * asserts that the foreign interrupts are blocked when using most of
1237 	 * its functions.
1238 	 */
1239 	thread_set_exceptions(THREAD_EXCP_ALL);
1240 
1241 	secondary_init_cntfrq();
1242 	thread_init_per_cpu();
1243 	init_sec_mon(nsec_entry);
1244 	boot_secondary_init_intc();
1245 	init_vfp_sec();
1246 	init_vfp_nsec();
1247 
1248 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1249 }
1250 
1251 /*
1252  * Note: this function is weak just to make it possible to exclude it from
1253  * the unpaged area so that it lies in the init area.
1254  */
1255 void __weak boot_init_primary_early(unsigned long pageable_part,
1256 				    unsigned long nsec_entry __maybe_unused)
1257 {
1258 	unsigned long e = PADDR_INVALID;
1259 
1260 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
1261 	e = nsec_entry;
1262 #endif
1263 
1264 	init_primary(pageable_part, e);
1265 }
1266 
1267 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1268 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1269 				  unsigned long a1 __unused)
1270 {
1271 	init_secondary_helper(PADDR_INVALID);
1272 	return 0;
1273 }
1274 #else
1275 void boot_init_secondary(unsigned long nsec_entry)
1276 {
1277 	init_secondary_helper(nsec_entry);
1278 }
1279 #endif
1280 
1281 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1282 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1283 			    uintptr_t context_id)
1284 {
1285 	ns_entry_contexts[core_idx].entry_point = entry;
1286 	ns_entry_contexts[core_idx].context_id = context_id;
1287 	dsb_ishst();
1288 }
1289 
1290 int boot_core_release(size_t core_idx, paddr_t entry)
1291 {
1292 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1293 		return -1;
1294 
1295 	ns_entry_contexts[core_idx].entry_point = entry;
1296 	dmb();
1297 	spin_table[core_idx] = 1;
1298 	dsb();
1299 	sev();
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * spin until secondary boot request, then returns with
1306  * the secondary core entry address.
1307  */
1308 struct ns_entry_context *boot_core_hpen(void)
1309 {
1310 #ifdef CFG_PSCI_ARM32
1311 	return &ns_entry_contexts[get_core_pos()];
1312 #else
1313 	do {
1314 		wfe();
1315 	} while (!spin_table[get_core_pos()]);
1316 	dmb();
1317 	return &ns_entry_contexts[get_core_pos()];
1318 #endif
1319 }
1320 #endif
1321 
1322 #if defined(CFG_CORE_ASLR)
1323 #if defined(CFG_DT)
1324 unsigned long __weak get_aslr_seed(void *fdt)
1325 {
1326 	int rc = 0;
1327 	const uint64_t *seed = NULL;
1328 	int offs = 0;
1329 	int len = 0;
1330 
1331 	if (!fdt) {
1332 		DMSG("No fdt");
1333 		goto err;
1334 	}
1335 
1336 	rc = fdt_check_header(fdt);
1337 	if (rc) {
1338 		DMSG("Bad fdt: %d", rc);
1339 		goto err;
1340 	}
1341 
1342 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1343 	if (offs < 0) {
1344 		DMSG("Cannot find /secure-chosen");
1345 		goto err;
1346 	}
1347 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1348 	if (!seed || len != sizeof(*seed)) {
1349 		DMSG("Cannot find valid kaslr-seed");
1350 		goto err;
1351 	}
1352 
1353 	return fdt64_to_cpu(*seed);
1354 
1355 err:
1356 	/* Try platform implementation */
1357 	return plat_get_aslr_seed();
1358 }
1359 #else /*!CFG_DT*/
1360 unsigned long __weak get_aslr_seed(void *fdt __unused)
1361 {
1362 	/* Try platform implementation */
1363 	return plat_get_aslr_seed();
1364 }
1365 #endif /*!CFG_DT*/
1366 #endif /*CFG_CORE_ASLR*/
1367 
1368 #if defined(CFG_CORE_FFA)
1369 static void *get_fdt_from_boot_info(struct ffa_boot_info_header_1_1 *hdr)
1370 {
1371 	struct ffa_boot_info_1_1 *desc = NULL;
1372 	uint8_t content_fmt = 0;
1373 	uint8_t name_fmt = 0;
1374 	void *fdt = NULL;
1375 	int ret = 0;
1376 
1377 	if (hdr->signature != FFA_BOOT_INFO_SIGNATURE) {
1378 		EMSG("Bad boot info signature %#"PRIx32, hdr->signature);
1379 		panic();
1380 	}
1381 	if (hdr->version != FFA_BOOT_INFO_VERSION) {
1382 		EMSG("Bad boot info version %#"PRIx32, hdr->version);
1383 		panic();
1384 	}
1385 	if (hdr->desc_count != 1) {
1386 		EMSG("Bad boot info descriptor count %#"PRIx32,
1387 		     hdr->desc_count);
1388 		panic();
1389 	}
1390 	desc = (void *)((vaddr_t)hdr + hdr->desc_offset);
1391 	name_fmt = desc->flags & FFA_BOOT_INFO_FLAG_NAME_FORMAT_MASK;
1392 	if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_STRING)
1393 		DMSG("Boot info descriptor name \"%16s\"", desc->name);
1394 	else if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_UUID)
1395 		DMSG("Boot info descriptor UUID %pUl", (void *)desc->name);
1396 	else
1397 		DMSG("Boot info descriptor: unknown name format %"PRIu8,
1398 		     name_fmt);
1399 
1400 	content_fmt = (desc->flags & FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_MASK) >>
1401 		      FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
1402 	if (content_fmt != FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR) {
1403 		EMSG("Bad boot info content format %"PRIu8", expected %u (address)",
1404 		     content_fmt, FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR);
1405 		panic();
1406 	}
1407 
1408 	fdt = (void *)(vaddr_t)desc->contents;
1409 	ret = fdt_check_full(fdt, desc->size);
1410 	if (ret < 0) {
1411 		EMSG("Invalid Device Tree at %p: error %d", fdt, ret);
1412 		panic();
1413 	}
1414 	return fdt;
1415 }
1416 
1417 static void get_sec_mem_from_manifest(void *fdt, paddr_t *base, size_t *size)
1418 {
1419 	int ret = 0;
1420 	uint64_t num = 0;
1421 
1422 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
1423 	if (ret < 0) {
1424 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
1425 		panic();
1426 	}
1427 	ret = dt_getprop_as_number(fdt, 0, "load-address", &num);
1428 	if (ret < 0) {
1429 		EMSG("Can't read \"load-address\" from FF-A manifest at %p: error %d",
1430 		     fdt, ret);
1431 		panic();
1432 	}
1433 	*base = num;
1434 	/* "mem-size" is currently an undocumented extension to the spec. */
1435 	ret = dt_getprop_as_number(fdt, 0, "mem-size", &num);
1436 	if (ret < 0) {
1437 		EMSG("Can't read \"mem-size\" from FF-A manifest at %p: error %d",
1438 		     fdt, ret);
1439 		panic();
1440 	}
1441 	*size = num;
1442 }
1443 
1444 void __weak boot_save_boot_info(void *boot_info)
1445 {
1446 	paddr_t base = 0;
1447 	size_t size = 0;
1448 
1449 	manifest_dt = get_fdt_from_boot_info(boot_info);
1450 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC) &&
1451 	    IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)) {
1452 		get_sec_mem_from_manifest(manifest_dt, &base, &size);
1453 		core_mmu_set_secure_memory(base, size);
1454 	}
1455 }
1456 #endif /*CFG_CORE_FFA*/
1457