xref: /optee_os/core/arch/arm/kernel/boot.c (revision 5d5d7d0b1c038a6836be9f0b38585f5aa6a4dd01)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2023, Linaro Limited
4  * Copyright (c) 2023, Arm Limited
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <console.h>
12 #include <crypto/crypto.h>
13 #include <drivers/gic.h>
14 #include <dt-bindings/interrupt-controller/arm-gic.h>
15 #include <ffa.h>
16 #include <initcall.h>
17 #include <inttypes.h>
18 #include <io.h>
19 #include <keep.h>
20 #include <kernel/asan.h>
21 #include <kernel/boot.h>
22 #include <kernel/dt.h>
23 #include <kernel/linker.h>
24 #include <kernel/misc.h>
25 #include <kernel/panic.h>
26 #include <kernel/tee_misc.h>
27 #include <kernel/thread.h>
28 #include <kernel/tpm.h>
29 #include <kernel/transfer_list.h>
30 #include <libfdt.h>
31 #include <malloc.h>
32 #include <memtag.h>
33 #include <mm/core_memprot.h>
34 #include <mm/core_mmu.h>
35 #include <mm/fobj.h>
36 #include <mm/page_alloc.h>
37 #include <mm/phys_mem.h>
38 #include <mm/tee_mm.h>
39 #include <mm/tee_pager.h>
40 #include <sm/psci.h>
41 #include <stdalign.h>
42 #include <trace.h>
43 #include <utee_defines.h>
44 #include <util.h>
45 
46 #include <platform_config.h>
47 
48 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
49 #include <sm/sm.h>
50 #endif
51 
52 #if defined(CFG_WITH_VFP)
53 #include <kernel/vfp.h>
54 #endif
55 
56 /*
57  * In this file we're using unsigned long to represent physical pointers as
58  * they are received in a single register when OP-TEE is initially entered.
59  * This limits 32-bit systems to only use make use of the lower 32 bits
60  * of a physical address for initial parameters.
61  *
62  * 64-bit systems on the other hand can use full 64-bit physical pointers.
63  */
64 #define PADDR_INVALID		ULONG_MAX
65 
66 #if defined(CFG_BOOT_SECONDARY_REQUEST)
67 struct ns_entry_context {
68 	uintptr_t entry_point;
69 	uintptr_t context_id;
70 };
71 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
72 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
73 #endif
74 
75 #ifdef CFG_BOOT_SYNC_CPU
76 /*
77  * Array used when booting, to synchronize cpu.
78  * When 0, the cpu has not started.
79  * When 1, it has started
80  */
81 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
82 DECLARE_KEEP_PAGER(sem_cpu_sync);
83 #endif
84 
85 /*
86  * Must not be in .bss since it's initialized and used from assembly before
87  * .bss is cleared.
88  */
89 vaddr_t boot_cached_mem_end __nex_data = 1;
90 
91 static unsigned long boot_arg_fdt __nex_bss;
92 unsigned long boot_arg_nsec_entry __nex_bss;
93 static unsigned long boot_arg_pageable_part __nex_bss;
94 static unsigned long boot_arg_transfer_list __nex_bss;
95 static struct transfer_list_header *mapped_tl __nex_bss;
96 
97 #ifdef CFG_SECONDARY_INIT_CNTFRQ
98 static uint32_t cntfrq;
99 #endif
100 
101 /* May be overridden in plat-$(PLATFORM)/main.c */
102 __weak void plat_primary_init_early(void)
103 {
104 }
105 DECLARE_KEEP_PAGER(plat_primary_init_early);
106 
107 /* May be overridden in plat-$(PLATFORM)/main.c */
108 __weak void boot_primary_init_intc(void)
109 {
110 }
111 
112 /* May be overridden in plat-$(PLATFORM)/main.c */
113 __weak void boot_secondary_init_intc(void)
114 {
115 }
116 
117 /* May be overridden in plat-$(PLATFORM)/main.c */
118 __weak unsigned long plat_get_aslr_seed(void)
119 {
120 	DMSG("Warning: no ASLR seed");
121 
122 	return 0;
123 }
124 
125 /*
126  * This function is called as a guard after each smc call which is not
127  * supposed to return.
128  */
129 void __panic_at_smc_return(void)
130 {
131 	panic();
132 }
133 
134 #if defined(CFG_WITH_ARM_TRUSTED_FW)
135 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
136 {
137 	assert(nsec_entry == PADDR_INVALID);
138 	/* Do nothing as we don't have a secure monitor */
139 }
140 #else
141 /* May be overridden in plat-$(PLATFORM)/main.c */
142 __weak void init_sec_mon(unsigned long nsec_entry)
143 {
144 	struct sm_nsec_ctx *nsec_ctx;
145 
146 	assert(nsec_entry != PADDR_INVALID);
147 
148 	/* Initialize secure monitor */
149 	nsec_ctx = sm_get_nsec_ctx();
150 	nsec_ctx->mon_lr = nsec_entry;
151 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
152 	if (nsec_entry & 1)
153 		nsec_ctx->mon_spsr |= CPSR_T;
154 }
155 #endif
156 
157 #if defined(CFG_WITH_ARM_TRUSTED_FW)
158 static void init_vfp_nsec(void)
159 {
160 }
161 #else
162 static void init_vfp_nsec(void)
163 {
164 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
165 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
166 }
167 #endif
168 
169 static void check_crypto_extensions(void)
170 {
171 	bool ce_supported = true;
172 
173 	if (!feat_aes_implemented() &&
174 	    IS_ENABLED(CFG_CRYPTO_AES_ARM_CE)) {
175 		EMSG("AES instructions are not supported");
176 		ce_supported = false;
177 	}
178 
179 	if (!feat_sha1_implemented() &&
180 	    IS_ENABLED(CFG_CRYPTO_SHA1_ARM_CE)) {
181 		EMSG("SHA1 instructions are not supported");
182 		ce_supported = false;
183 	}
184 
185 	if (!feat_sha256_implemented() &&
186 	    IS_ENABLED(CFG_CRYPTO_SHA256_ARM_CE)) {
187 		EMSG("SHA256 instructions are not supported");
188 		ce_supported = false;
189 	}
190 
191 	/* Check aarch64 specific instructions */
192 	if (IS_ENABLED(CFG_ARM64_core)) {
193 		if (!feat_sha512_implemented() &&
194 		    IS_ENABLED(CFG_CRYPTO_SHA512_ARM_CE)) {
195 			EMSG("SHA512 instructions are not supported");
196 			ce_supported = false;
197 		}
198 
199 		if (!feat_sha3_implemented() &&
200 		    IS_ENABLED(CFG_CRYPTO_SHA3_ARM_CE)) {
201 			EMSG("SHA3 instructions are not supported");
202 			ce_supported = false;
203 		}
204 
205 		if (!feat_sm3_implemented() &&
206 		    IS_ENABLED(CFG_CRYPTO_SM3_ARM_CE)) {
207 			EMSG("SM3 instructions are not supported");
208 			ce_supported = false;
209 		}
210 
211 		if (!feat_sm4_implemented() &&
212 		    IS_ENABLED(CFG_CRYPTO_SM4_ARM_CE)) {
213 			EMSG("SM4 instructions are not supported");
214 			ce_supported = false;
215 		}
216 	}
217 
218 	if (!ce_supported)
219 		panic("HW doesn't support CE instructions");
220 }
221 
222 #if defined(CFG_WITH_VFP)
223 
224 #ifdef ARM32
225 static void init_vfp_sec(void)
226 {
227 	uint32_t cpacr = read_cpacr();
228 
229 	/*
230 	 * Enable Advanced SIMD functionality.
231 	 * Enable use of D16-D31 of the Floating-point Extension register
232 	 * file.
233 	 */
234 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
235 	/*
236 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
237 	 * mode.
238 	 */
239 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
240 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
241 	write_cpacr(cpacr);
242 }
243 #endif /* ARM32 */
244 
245 #ifdef ARM64
246 static void init_vfp_sec(void)
247 {
248 	/* Not using VFP until thread_kernel_enable_vfp() */
249 	vfp_disable();
250 }
251 #endif /* ARM64 */
252 
253 #else /* CFG_WITH_VFP */
254 
255 static void init_vfp_sec(void)
256 {
257 	/* Not using VFP */
258 }
259 #endif
260 
261 #ifdef CFG_SECONDARY_INIT_CNTFRQ
262 static void primary_save_cntfrq(void)
263 {
264 	assert(cntfrq == 0);
265 
266 	/*
267 	 * CNTFRQ should be initialized on the primary CPU by a
268 	 * previous boot stage
269 	 */
270 	cntfrq = read_cntfrq();
271 }
272 
273 static void secondary_init_cntfrq(void)
274 {
275 	assert(cntfrq != 0);
276 	write_cntfrq(cntfrq);
277 }
278 #else /* CFG_SECONDARY_INIT_CNTFRQ */
279 static void primary_save_cntfrq(void)
280 {
281 }
282 
283 static void secondary_init_cntfrq(void)
284 {
285 }
286 #endif
287 
288 #ifdef CFG_CORE_SANITIZE_KADDRESS
289 static void init_run_constructors(void)
290 {
291 	const vaddr_t *ctor;
292 
293 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
294 		((void (*)(void))(*ctor))();
295 }
296 
297 static void init_asan(void)
298 {
299 
300 	/*
301 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
302 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
303 	 * Since all the needed values to calculate the value of
304 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
305 	 * calculate it in advance and hard code it into the platform
306 	 * conf.mk. Here where we have all the needed values we double
307 	 * check that the compiler is supplied the correct value.
308 	 */
309 
310 #define __ASAN_SHADOW_START \
311 	ROUNDUP(TEE_RAM_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
312 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
313 #define __CFG_ASAN_SHADOW_OFFSET \
314 	(__ASAN_SHADOW_START - (TEE_RAM_START / 8))
315 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
316 #undef __ASAN_SHADOW_START
317 #undef __CFG_ASAN_SHADOW_OFFSET
318 
319 	/*
320 	 * Assign area covered by the shadow area, everything from start up
321 	 * to the beginning of the shadow area.
322 	 */
323 	asan_set_shadowed((void *)TEE_LOAD_ADDR, &__asan_shadow_start);
324 
325 	/*
326 	 * Add access to areas that aren't opened automatically by a
327 	 * constructor.
328 	 */
329 	asan_tag_access(&__ctor_list, &__ctor_end);
330 	asan_tag_access(__rodata_start, __rodata_end);
331 #ifdef CFG_WITH_PAGER
332 	asan_tag_access(__pageable_start, __pageable_end);
333 #endif /*CFG_WITH_PAGER*/
334 	asan_tag_access(__nozi_start, __nozi_end);
335 #ifdef ARM32
336 	asan_tag_access(__exidx_start, __exidx_end);
337 	asan_tag_access(__extab_start, __extab_end);
338 #endif
339 
340 	init_run_constructors();
341 
342 	/* Everything is tagged correctly, let's start address sanitizing. */
343 	asan_start();
344 }
345 #else /*CFG_CORE_SANITIZE_KADDRESS*/
346 static void init_asan(void)
347 {
348 }
349 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
350 
351 #if defined(CFG_MEMTAG)
352 /* Called from entry_a64.S only when MEMTAG is configured */
353 void boot_init_memtag(void)
354 {
355 	memtag_init_ops(feat_mte_implemented());
356 }
357 
358 static TEE_Result mmap_clear_memtag(struct tee_mmap_region *map,
359 				    void *ptr __unused)
360 {
361 	switch (map->type) {
362 	case MEM_AREA_NEX_RAM_RO:
363 	case MEM_AREA_SEC_RAM_OVERALL:
364 		DMSG("Clearing tags for VA %#"PRIxVA"..%#"PRIxVA,
365 		     map->va, map->va + map->size - 1);
366 		memtag_set_tags((void *)map->va, map->size, 0);
367 		break;
368 	default:
369 		break;
370 	}
371 
372 	return TEE_SUCCESS;
373 }
374 
375 /* Called from entry_a64.S only when MEMTAG is configured */
376 void boot_clear_memtag(void)
377 {
378 	core_mmu_for_each_map(NULL, mmap_clear_memtag);
379 }
380 #endif
381 
382 #ifdef CFG_WITH_PAGER
383 
384 #ifdef CFG_CORE_SANITIZE_KADDRESS
385 static void carve_out_asan_mem(void)
386 {
387 	nex_phys_mem_partial_carve_out(ASAN_MAP_PA, ASAN_MAP_SZ);
388 }
389 #else
390 static void carve_out_asan_mem(void)
391 {
392 }
393 #endif
394 
395 static void print_pager_pool_size(void)
396 {
397 	struct tee_pager_stats __maybe_unused stats;
398 
399 	tee_pager_get_stats(&stats);
400 	IMSG("Pager pool size: %zukB",
401 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
402 }
403 
404 static void init_virt_pool(tee_mm_pool_t *virt_pool)
405 {
406 	const vaddr_t begin = VCORE_START_VA;
407 	size_t size = TEE_RAM_VA_SIZE;
408 
409 #ifdef CFG_CORE_SANITIZE_KADDRESS
410 	/* Carve out asan memory, flat maped after core memory */
411 	if (begin + size > ASAN_SHADOW_PA)
412 		size = ASAN_MAP_PA - begin;
413 #endif
414 
415 	if (!tee_mm_init(virt_pool, begin, size, SMALL_PAGE_SHIFT,
416 			 TEE_MM_POOL_NO_FLAGS))
417 		panic("core_virt_mem_pool init failed");
418 }
419 
420 /*
421  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
422  * The init part is also paged just as the rest of the normal paged code, with
423  * the difference that it's preloaded during boot. When the backing store
424  * is configured the entire paged binary is copied in place and then also
425  * the init part. Since the init part has been relocated (references to
426  * addresses updated to compensate for the new load address) this has to be
427  * undone for the hashes of those pages to match with the original binary.
428  *
429  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
430  * unchanged.
431  */
432 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
433 {
434 #ifdef CFG_CORE_ASLR
435 	unsigned long *ptr = NULL;
436 	const uint32_t *reloc = NULL;
437 	const uint32_t *reloc_end = NULL;
438 	unsigned long offs = boot_mmu_config.map_offset;
439 	const struct boot_embdata *embdata = (const void *)__init_end;
440 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_LOAD_ADDR;
441 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_LOAD_ADDR;
442 
443 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
444 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
445 
446 	for (; reloc < reloc_end; reloc++) {
447 		if (*reloc < addr_start)
448 			continue;
449 		if (*reloc >= addr_end)
450 			break;
451 		ptr = (void *)(paged_store + *reloc - addr_start);
452 		*ptr -= offs;
453 	}
454 #endif
455 }
456 
457 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
458 				   void *store)
459 {
460 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
461 #ifdef CFG_CORE_ASLR
462 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
463 	const struct boot_embdata *embdata = (const void *)__init_end;
464 	const void *reloc = __init_end + embdata->reloc_offset;
465 
466 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
467 					 reloc, embdata->reloc_len, store);
468 #else
469 	return fobj_ro_paged_alloc(num_pages, hashes, store);
470 #endif
471 }
472 
473 static void init_pager_runtime(unsigned long pageable_part)
474 {
475 	size_t n;
476 	size_t init_size = (size_t)(__init_end - __init_start);
477 	size_t pageable_start = (size_t)__pageable_start;
478 	size_t pageable_end = (size_t)__pageable_end;
479 	size_t pageable_size = pageable_end - pageable_start;
480 	vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR +
481 			     VCORE_START_VA;
482 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
483 			   TEE_SHA256_HASH_SIZE;
484 	const struct boot_embdata *embdata = (const void *)__init_end;
485 	const void *tmp_hashes = NULL;
486 	tee_mm_entry_t *mm = NULL;
487 	struct fobj *fobj = NULL;
488 	uint8_t *paged_store = NULL;
489 	uint8_t *hashes = NULL;
490 
491 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
492 	assert(embdata->total_len >= embdata->hashes_offset +
493 				     embdata->hashes_len);
494 	assert(hash_size == embdata->hashes_len);
495 
496 	tmp_hashes = __init_end + embdata->hashes_offset;
497 
498 	/*
499 	 * This needs to be initialized early to support address lookup
500 	 * in MEM_AREA_TEE_RAM
501 	 */
502 	tee_pager_early_init();
503 
504 	hashes = malloc(hash_size);
505 	IMSG_RAW("\n");
506 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
507 	assert(hashes);
508 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
509 
510 	/*
511 	 * The pager is about the be enabled below, eventual temporary boot
512 	 * memory allocation must be removed now.
513 	 */
514 	boot_mem_release_tmp_alloc();
515 
516 	carve_out_asan_mem();
517 
518 	mm = nex_phys_mem_ta_alloc(pageable_size);
519 	assert(mm);
520 	paged_store = phys_to_virt(tee_mm_get_smem(mm),
521 				   MEM_AREA_SEC_RAM_OVERALL, pageable_size);
522 	/*
523 	 * Load pageable part in the dedicated allocated area:
524 	 * - Move pageable non-init part into pageable area. Note bootloader
525 	 *   may have loaded it anywhere in TA RAM hence use memmove().
526 	 * - Copy pageable init part from current location into pageable area.
527 	 */
528 	memmove(paged_store + init_size,
529 		phys_to_virt(pageable_part,
530 			     core_mmu_get_type_by_pa(pageable_part),
531 			     __pageable_part_end - __pageable_part_start),
532 		__pageable_part_end - __pageable_part_start);
533 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
534 	/*
535 	 * Undo eventual relocation for the init part so the hash checks
536 	 * can pass.
537 	 */
538 	undo_init_relocation(paged_store);
539 
540 	/* Check that hashes of what's in pageable area is OK */
541 	DMSG("Checking hashes of pageable area");
542 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
543 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
544 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
545 		TEE_Result res;
546 
547 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
548 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
549 		if (res != TEE_SUCCESS) {
550 			EMSG("Hash failed for page %zu at %p: res 0x%x",
551 			     n, (void *)page, res);
552 			panic();
553 		}
554 	}
555 
556 	/*
557 	 * Assert prepaged init sections are page aligned so that nothing
558 	 * trails uninited at the end of the premapped init area.
559 	 */
560 	assert(!(init_size & SMALL_PAGE_MASK));
561 
562 	/*
563 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
564 	 * is supplied to tee_pager_init() below.
565 	 */
566 	init_virt_pool(&core_virt_mem_pool);
567 
568 	/*
569 	 * Assign alias area for pager end of the small page block the rest
570 	 * of the binary is loaded into. We're taking more than needed, but
571 	 * we're guaranteed to not need more than the physical amount of
572 	 * TZSRAM.
573 	 */
574 	mm = tee_mm_alloc2(&core_virt_mem_pool,
575 			   (vaddr_t)core_virt_mem_pool.lo +
576 			   core_virt_mem_pool.size - TZSRAM_SIZE,
577 			   TZSRAM_SIZE);
578 	assert(mm);
579 	tee_pager_set_alias_area(mm);
580 
581 	/*
582 	 * Claim virtual memory which isn't paged.
583 	 * Linear memory (flat map core memory) ends there.
584 	 */
585 	mm = tee_mm_alloc2(&core_virt_mem_pool, VCORE_UNPG_RX_PA,
586 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
587 	assert(mm);
588 
589 	/*
590 	 * Allocate virtual memory for the pageable area and let the pager
591 	 * take charge of all the pages already assigned to that memory.
592 	 */
593 	mm = tee_mm_alloc2(&core_virt_mem_pool, (vaddr_t)__pageable_start,
594 			   pageable_size);
595 	assert(mm);
596 	fobj = ro_paged_alloc(mm, hashes, paged_store);
597 	assert(fobj);
598 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
599 				  fobj);
600 	fobj_put(fobj);
601 
602 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
603 	tee_pager_add_pages(pageable_start + init_size,
604 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
605 			    true);
606 	if (pageable_end < tzsram_end)
607 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
608 						   SMALL_PAGE_SIZE, true);
609 
610 	/*
611 	 * There may be physical pages in TZSRAM before the core load address.
612 	 * These pages can be added to the physical pages pool of the pager.
613 	 * This setup may happen when a the secure bootloader runs in TZRAM
614 	 * and its memory can be reused by OP-TEE once boot stages complete.
615 	 */
616 	tee_pager_add_pages(core_virt_mem_pool.lo,
617 			    (VCORE_UNPG_RX_PA - core_virt_mem_pool.lo) /
618 				SMALL_PAGE_SIZE,
619 			    true);
620 
621 	print_pager_pool_size();
622 }
623 #else /*!CFG_WITH_PAGER*/
624 static void init_pager_runtime(unsigned long pageable_part __unused)
625 {
626 }
627 #endif
628 
629 #if defined(CFG_DT)
630 static int add_optee_dt_node(struct dt_descriptor *dt)
631 {
632 	int offs;
633 	int ret;
634 
635 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
636 		DMSG("OP-TEE Device Tree node already exists!");
637 		return 0;
638 	}
639 
640 	offs = fdt_path_offset(dt->blob, "/firmware");
641 	if (offs < 0) {
642 		offs = add_dt_path_subnode(dt, "/", "firmware");
643 		if (offs < 0)
644 			return -1;
645 	}
646 
647 	offs = fdt_add_subnode(dt->blob, offs, "optee");
648 	if (offs < 0)
649 		return -1;
650 
651 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
652 				 "linaro,optee-tz");
653 	if (ret < 0)
654 		return -1;
655 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
656 	if (ret < 0)
657 		return -1;
658 
659 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
660 		/*
661 		 * The format of the interrupt property is defined by the
662 		 * binding of the interrupt domain root. In this case it's
663 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
664 		 * these.
665 		 *
666 		 * An SPI type of interrupt is indicated with a 0 in the
667 		 * first cell. A PPI type is indicated with value 1.
668 		 *
669 		 * The interrupt number goes in the second cell where
670 		 * SPIs ranges from 0 to 987 and PPI ranges from 0 to 15.
671 		 *
672 		 * Flags are passed in the third cells.
673 		 */
674 		uint32_t itr_trigger = 0;
675 		uint32_t itr_type = 0;
676 		uint32_t itr_id = 0;
677 		uint32_t val[3] = { };
678 
679 		/* PPI are visible only in current CPU cluster */
680 		static_assert(IS_ENABLED(CFG_CORE_FFA) ||
681 			      !CFG_CORE_ASYNC_NOTIF_GIC_INTID ||
682 			      (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
683 			       GIC_SPI_BASE) ||
684 			      ((CFG_TEE_CORE_NB_CORE <= 8) &&
685 			       (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
686 				GIC_PPI_BASE)));
687 
688 		if (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= GIC_SPI_BASE) {
689 			itr_type = GIC_SPI;
690 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_SPI_BASE;
691 			itr_trigger = IRQ_TYPE_EDGE_RISING;
692 		} else {
693 			itr_type = GIC_PPI;
694 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_PPI_BASE;
695 			itr_trigger = IRQ_TYPE_EDGE_RISING |
696 				      GIC_CPU_MASK_SIMPLE(CFG_TEE_CORE_NB_CORE);
697 		}
698 
699 		val[0] = TEE_U32_TO_BIG_ENDIAN(itr_type);
700 		val[1] = TEE_U32_TO_BIG_ENDIAN(itr_id);
701 		val[2] = TEE_U32_TO_BIG_ENDIAN(itr_trigger);
702 
703 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
704 				  sizeof(val));
705 		if (ret < 0)
706 			return -1;
707 	}
708 	return 0;
709 }
710 
711 #ifdef CFG_PSCI_ARM32
712 static int append_psci_compatible(void *fdt, int offs, const char *str)
713 {
714 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
715 }
716 
717 static int dt_add_psci_node(struct dt_descriptor *dt)
718 {
719 	int offs;
720 
721 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
722 		DMSG("PSCI Device Tree node already exists!");
723 		return 0;
724 	}
725 
726 	offs = add_dt_path_subnode(dt, "/", "psci");
727 	if (offs < 0)
728 		return -1;
729 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
730 		return -1;
731 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
732 		return -1;
733 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
734 		return -1;
735 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
736 		return -1;
737 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
738 		return -1;
739 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
740 		return -1;
741 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
742 		return -1;
743 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
744 		return -1;
745 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
746 		return -1;
747 	return 0;
748 }
749 
750 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
751 				    const char *prefix)
752 {
753 	const size_t prefix_len = strlen(prefix);
754 	size_t l;
755 	int plen;
756 	const char *prop;
757 
758 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
759 	if (!prop)
760 		return -1;
761 
762 	while (plen > 0) {
763 		if (memcmp(prop, prefix, prefix_len) == 0)
764 			return 0; /* match */
765 
766 		l = strlen(prop) + 1;
767 		prop += l;
768 		plen -= l;
769 	}
770 
771 	return -1;
772 }
773 
774 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
775 {
776 	int offs = 0;
777 
778 	while (1) {
779 		offs = fdt_next_node(dt->blob, offs, NULL);
780 		if (offs < 0)
781 			break;
782 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
783 			continue; /* already set */
784 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
785 			continue; /* no compatible */
786 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
787 			return -1;
788 		/* Need to restart scanning as offsets may have changed */
789 		offs = 0;
790 	}
791 	return 0;
792 }
793 
794 static int config_psci(struct dt_descriptor *dt)
795 {
796 	if (dt_add_psci_node(dt))
797 		return -1;
798 	return dt_add_psci_cpu_enable_methods(dt);
799 }
800 #else
801 static int config_psci(struct dt_descriptor *dt __unused)
802 {
803 	return 0;
804 }
805 #endif /*CFG_PSCI_ARM32*/
806 
807 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
808 {
809 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
810 				   CFG_TZDRAM_SIZE);
811 }
812 
813 static void update_external_dt(void)
814 {
815 	struct dt_descriptor *dt = get_external_dt_desc();
816 
817 	if (!dt || !dt->blob)
818 		return;
819 
820 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
821 		panic("Failed to add OP-TEE Device Tree node");
822 
823 	if (config_psci(dt))
824 		panic("Failed to config PSCI");
825 
826 #ifdef CFG_CORE_RESERVED_SHM
827 	if (mark_static_shm_as_reserved(dt))
828 		panic("Failed to config non-secure memory");
829 #endif
830 
831 	if (mark_tzdram_as_reserved(dt))
832 		panic("Failed to config secure memory");
833 }
834 #else /*CFG_DT*/
835 static void update_external_dt(void)
836 {
837 }
838 #endif /*!CFG_DT*/
839 
840 void init_tee_runtime(void)
841 {
842 	/*
843 	 * With virtualization we call this function when creating the
844 	 * OP-TEE partition instead.
845 	 */
846 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
847 		call_preinitcalls();
848 	call_early_initcalls();
849 	call_service_initcalls();
850 
851 	/*
852 	 * These two functions uses crypto_rng_read() to initialize the
853 	 * pauth keys. Once call_initcalls() returns we're guaranteed that
854 	 * crypto_rng_read() is ready to be used.
855 	 */
856 	thread_init_core_local_pauth_keys();
857 	thread_init_thread_pauth_keys();
858 
859 	/*
860 	 * Reinitialize canaries around the stacks with crypto_rng_read().
861 	 *
862 	 * TODO: Updating canaries when CFG_NS_VIRTUALIZATION is enabled will
863 	 * require synchronization between thread_check_canaries() and
864 	 * thread_update_canaries().
865 	 */
866 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
867 		thread_update_canaries();
868 }
869 
870 static bool add_padding_to_pool(vaddr_t va, size_t len, void *ptr __unused)
871 {
872 #ifdef CFG_NS_VIRTUALIZATION
873 	nex_malloc_add_pool((void *)va, len);
874 #else
875 	malloc_add_pool((void *)va, len);
876 #endif
877 	return true;
878 }
879 
880 static void init_primary(unsigned long pageable_part)
881 {
882 	vaddr_t va = 0;
883 
884 	/*
885 	 * Mask asynchronous exceptions before switch to the thread vector
886 	 * as the thread handler requires those to be masked while
887 	 * executing with the temporary stack. The thread subsystem also
888 	 * asserts that the foreign interrupts are blocked when using most of
889 	 * its functions.
890 	 */
891 	thread_set_exceptions(THREAD_EXCP_ALL);
892 	primary_save_cntfrq();
893 	init_vfp_sec();
894 
895 	if (IS_ENABLED(CFG_CRYPTO_WITH_CE))
896 		check_crypto_extensions();
897 
898 	init_asan();
899 
900 	/*
901 	 * By default whole OP-TEE uses malloc, so we need to initialize
902 	 * it early. But, when virtualization is enabled, malloc is used
903 	 * only by TEE runtime, so malloc should be initialized later, for
904 	 * every virtual partition separately. Core code uses nex_malloc
905 	 * instead.
906 	 */
907 #ifdef CFG_WITH_PAGER
908 	/* Add heap2 first as heap1 may be too small as initial bget pool */
909 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
910 #endif
911 #ifdef CFG_NS_VIRTUALIZATION
912 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
913 					      __nex_heap_start);
914 #else
915 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
916 #endif
917 	IMSG_RAW("\n");
918 	if (IS_ENABLED(CFG_DYN_CONFIG)) {
919 		size_t sz = sizeof(struct thread_core_local) *
920 			    CFG_TEE_CORE_NB_CORE;
921 		void *p = boot_mem_alloc(sz, alignof(void *) * 2);
922 
923 #ifdef CFG_NS_VIRTUALIZATION
924 		nex_malloc_add_pool(p, sz);
925 #else
926 		malloc_add_pool(p, sz);
927 #endif
928 	}
929 
930 	core_mmu_save_mem_map();
931 	core_mmu_init_phys_mem();
932 	boot_mem_foreach_padding(add_padding_to_pool, NULL);
933 	va = boot_mem_release_unused();
934 	if (!IS_ENABLED(CFG_WITH_PAGER)) {
935 		/*
936 		 * We must update boot_cached_mem_end to reflect the memory
937 		 * just unmapped by boot_mem_release_unused().
938 		 */
939 		assert(va && va <= boot_cached_mem_end);
940 		boot_cached_mem_end = va;
941 	}
942 
943 	if (IS_ENABLED(CFG_DYN_CONFIG)) {
944 		/*
945 		 * This is needed to enable virt_page_alloc() now that
946 		 * boot_mem_alloc() can't be used any longer.
947 		 */
948 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
949 			nex_page_alloc_init();
950 		else
951 			page_alloc_init();
952 	}
953 
954 	if (IS_ENABLED(CFG_WITH_PAGER)) {
955 		/*
956 		 * Pager: init_runtime() calls thread_kernel_enable_vfp()
957 		 * so we must set a current thread right now to avoid a
958 		 * chicken-and-egg problem (thread_init_boot_thread() sets
959 		 * the current thread but needs things set by
960 		 * init_runtime()).
961 		 */
962 		thread_get_core_local()->curr_thread = 0;
963 		init_pager_runtime(pageable_part);
964 	}
965 
966 	/* Initialize canaries around the stacks */
967 	thread_init_canaries();
968 	thread_init_per_cpu();
969 }
970 
971 static bool cpu_nmfi_enabled(void)
972 {
973 #if defined(ARM32)
974 	return read_sctlr() & SCTLR_NMFI;
975 #else
976 	/* Note: ARM64 does not feature non-maskable FIQ support. */
977 	return false;
978 #endif
979 }
980 
981 /*
982  * Note: this function is weak just to make it possible to exclude it from
983  * the unpaged area.
984  */
985 void __weak boot_init_primary_late(unsigned long fdt __unused,
986 				   unsigned long manifest __unused)
987 {
988 	size_t fdt_size = CFG_DTB_MAX_SIZE;
989 
990 	if (IS_ENABLED(CFG_TRANSFER_LIST) && mapped_tl) {
991 		struct transfer_list_entry *tl_e = NULL;
992 
993 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
994 		if (tl_e) {
995 			/*
996 			 * Expand the data size of the DTB entry to the maximum
997 			 * allocable mapped memory to reserve sufficient space
998 			 * for inserting new nodes, avoid potentially corrupting
999 			 * next entries.
1000 			 */
1001 			uint32_t dtb_max_sz = mapped_tl->max_size -
1002 					      mapped_tl->size + tl_e->data_size;
1003 
1004 			if (!transfer_list_set_data_size(mapped_tl, tl_e,
1005 							 dtb_max_sz)) {
1006 				EMSG("Failed to extend DTB size to %#"PRIx32,
1007 				     dtb_max_sz);
1008 				panic();
1009 			}
1010 			fdt_size = tl_e->data_size;
1011 		}
1012 	}
1013 
1014 	init_external_dt(boot_arg_fdt, fdt_size);
1015 	reinit_manifest_dt();
1016 #ifdef CFG_CORE_SEL1_SPMC
1017 	tpm_map_log_area(get_manifest_dt());
1018 #else
1019 	tpm_map_log_area(get_external_dt());
1020 #endif
1021 	discover_nsec_memory();
1022 	update_external_dt();
1023 	configure_console_from_dt();
1024 
1025 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1026 		/*
1027 		 * Virtualization: We can't initialize threads right now because
1028 		 * threads belong to "tee" part and will be initialized
1029 		 * separately per each new virtual guest. So, we'll clear
1030 		 * "curr_thread" and call it done.
1031 		 */
1032 		thread_get_core_local()->curr_thread = -1;
1033 	} else {
1034 		thread_init_threads(CFG_NUM_THREADS);
1035 		thread_init_boot_thread();
1036 	}
1037 	thread_init_thread_core_local(CFG_TEE_CORE_NB_CORE);
1038 }
1039 
1040 void __weak boot_init_primary_runtime(void)
1041 {
1042 	thread_init_primary();
1043 	IMSG("OP-TEE version: %s", core_v_str);
1044 	if (IS_ENABLED(CFG_INSECURE)) {
1045 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1046 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1047 	}
1048 	IMSG("Primary CPU initializing");
1049 #ifdef CFG_CORE_ASLR
1050 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1051 	     (unsigned long)boot_mmu_config.map_offset, VCORE_START_VA);
1052 #endif
1053 #ifdef CFG_NS_VIRTUALIZATION
1054 	DMSG("NS-virtualization enabled, supporting %u guests",
1055 	     CFG_VIRT_GUEST_COUNT);
1056 #endif
1057 	if (IS_ENABLED(CFG_MEMTAG))
1058 		DMSG("Memory tagging %s",
1059 		     memtag_is_enabled() ?  "enabled" : "disabled");
1060 
1061 	/* Check if platform needs NMFI workaround */
1062 	if (cpu_nmfi_enabled())	{
1063 		if (!IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1064 			IMSG("WARNING: This ARM core has NMFI enabled, please apply workaround!");
1065 	} else {
1066 		if (IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1067 			IMSG("WARNING: This ARM core does not have NMFI enabled, no need for workaround");
1068 	}
1069 
1070 	boot_primary_init_intc();
1071 	init_vfp_nsec();
1072 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1073 		/*
1074 		 * Unmask native interrupts during driver initcalls.
1075 		 *
1076 		 * NS-virtualization still uses the temporary stack also
1077 		 * used for exception handling so it must still have native
1078 		 * interrupts masked.
1079 		 */
1080 		thread_set_exceptions(thread_get_exceptions() &
1081 				      ~THREAD_EXCP_NATIVE_INTR);
1082 		init_tee_runtime();
1083 	}
1084 
1085 	if (!IS_ENABLED(CFG_WITH_PAGER))
1086 		boot_mem_release_tmp_alloc();
1087 }
1088 
1089 void __weak boot_init_primary_final(void)
1090 {
1091 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1092 		call_driver_initcalls();
1093 
1094 	call_finalcalls();
1095 
1096 	IMSG("Primary CPU switching to normal world boot");
1097 
1098 	/* Mask native interrupts before switching to the normal world */
1099 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1100 		thread_set_exceptions(thread_get_exceptions() |
1101 				      THREAD_EXCP_NATIVE_INTR);
1102 }
1103 
1104 static void init_secondary_helper(void)
1105 {
1106 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1107 
1108 	/*
1109 	 * Mask asynchronous exceptions before switch to the thread vector
1110 	 * as the thread handler requires those to be masked while
1111 	 * executing with the temporary stack. The thread subsystem also
1112 	 * asserts that the foreign interrupts are blocked when using most of
1113 	 * its functions.
1114 	 */
1115 	thread_set_exceptions(THREAD_EXCP_ALL);
1116 
1117 	secondary_init_cntfrq();
1118 	thread_init_per_cpu();
1119 	boot_secondary_init_intc();
1120 	init_vfp_sec();
1121 	init_vfp_nsec();
1122 
1123 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1124 }
1125 
1126 /*
1127  * Note: this function is weak just to make it possible to exclude it from
1128  * the unpaged area so that it lies in the init area.
1129  */
1130 void __weak boot_init_primary_early(void)
1131 {
1132 	unsigned long pageable_part = 0;
1133 	struct transfer_list_entry *tl_e = NULL;
1134 
1135 	if (IS_ENABLED(CFG_TRANSFER_LIST) && boot_arg_transfer_list) {
1136 		/* map and save the TL */
1137 		mapped_tl = transfer_list_map(boot_arg_transfer_list);
1138 		if (!mapped_tl)
1139 			panic("Failed to map transfer list");
1140 
1141 		transfer_list_dump(mapped_tl);
1142 		tl_e = transfer_list_find(mapped_tl, TL_TAG_OPTEE_PAGABLE_PART);
1143 	}
1144 
1145 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1146 		if (IS_ENABLED(CFG_TRANSFER_LIST) && tl_e)
1147 			pageable_part =
1148 				get_le64(transfer_list_entry_data(tl_e));
1149 		else
1150 			pageable_part = boot_arg_pageable_part;
1151 	}
1152 
1153 	init_primary(pageable_part);
1154 }
1155 
1156 static void boot_save_transfer_list(unsigned long zero_reg,
1157 				    unsigned long transfer_list,
1158 				    unsigned long fdt)
1159 {
1160 	struct transfer_list_header *tl = (void *)transfer_list;
1161 	struct transfer_list_entry *tl_e = NULL;
1162 
1163 	if (zero_reg != 0)
1164 		panic("Incorrect transfer list register convention");
1165 
1166 	if (!IS_ALIGNED_WITH_TYPE(transfer_list, struct transfer_list_header) ||
1167 	    !IS_ALIGNED(transfer_list, TL_ALIGNMENT_FROM_ORDER(tl->alignment)))
1168 		panic("Transfer list base address is not aligned");
1169 
1170 	if (transfer_list_check_header(tl) == TL_OPS_NONE)
1171 		panic("Invalid transfer list");
1172 
1173 	tl_e = transfer_list_find(tl, TL_TAG_FDT);
1174 	if (fdt != (unsigned long)transfer_list_entry_data(tl_e))
1175 		panic("DT does not match to the DT entry of the TL");
1176 
1177 	boot_arg_transfer_list = transfer_list;
1178 }
1179 
1180 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1181 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1182 				  unsigned long a1 __unused)
1183 {
1184 	init_secondary_helper();
1185 	return 0;
1186 }
1187 #else
1188 void boot_init_secondary(unsigned long nsec_entry __unused)
1189 {
1190 	init_secondary_helper();
1191 }
1192 #endif
1193 
1194 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1195 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1196 			    uintptr_t context_id)
1197 {
1198 	ns_entry_contexts[core_idx].entry_point = entry;
1199 	ns_entry_contexts[core_idx].context_id = context_id;
1200 	dsb_ishst();
1201 }
1202 
1203 int boot_core_release(size_t core_idx, paddr_t entry)
1204 {
1205 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1206 		return -1;
1207 
1208 	ns_entry_contexts[core_idx].entry_point = entry;
1209 	dmb();
1210 	spin_table[core_idx] = 1;
1211 	dsb();
1212 	sev();
1213 
1214 	return 0;
1215 }
1216 
1217 /*
1218  * spin until secondary boot request, then returns with
1219  * the secondary core entry address.
1220  */
1221 struct ns_entry_context *boot_core_hpen(void)
1222 {
1223 #ifdef CFG_PSCI_ARM32
1224 	return &ns_entry_contexts[get_core_pos()];
1225 #else
1226 	do {
1227 		wfe();
1228 	} while (!spin_table[get_core_pos()]);
1229 	dmb();
1230 	return &ns_entry_contexts[get_core_pos()];
1231 #endif
1232 }
1233 #endif
1234 
1235 #if defined(CFG_CORE_ASLR)
1236 #if defined(CFG_DT)
1237 unsigned long __weak get_aslr_seed(void)
1238 {
1239 	void *fdt = NULL;
1240 	int rc = 0;
1241 	const uint64_t *seed = NULL;
1242 	int offs = 0;
1243 	int len = 0;
1244 
1245 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC))
1246 		fdt = (void *)boot_arg_fdt;
1247 
1248 	if (!fdt) {
1249 		DMSG("No fdt");
1250 		goto err;
1251 	}
1252 
1253 	rc = fdt_check_header(fdt);
1254 	if (rc) {
1255 		DMSG("Bad fdt: %d", rc);
1256 		goto err;
1257 	}
1258 
1259 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1260 	if (offs < 0) {
1261 		DMSG("Cannot find /secure-chosen");
1262 		goto err;
1263 	}
1264 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1265 	if (!seed || len != sizeof(*seed)) {
1266 		DMSG("Cannot find valid kaslr-seed");
1267 		goto err;
1268 	}
1269 
1270 	return fdt64_to_cpu(fdt64_ld(seed));
1271 
1272 err:
1273 	/* Try platform implementation */
1274 	return plat_get_aslr_seed();
1275 }
1276 #else /*!CFG_DT*/
1277 unsigned long __weak get_aslr_seed(void)
1278 {
1279 	/* Try platform implementation */
1280 	return plat_get_aslr_seed();
1281 }
1282 #endif /*!CFG_DT*/
1283 #endif /*CFG_CORE_ASLR*/
1284 
1285 static void *get_fdt_from_boot_info(struct ffa_boot_info_header_1_1 *hdr)
1286 {
1287 	struct ffa_boot_info_1_1 *desc = NULL;
1288 	uint8_t content_fmt = 0;
1289 	uint8_t name_fmt = 0;
1290 	void *fdt = NULL;
1291 	int ret = 0;
1292 
1293 	if (hdr->signature != FFA_BOOT_INFO_SIGNATURE) {
1294 		EMSG("Bad boot info signature %#"PRIx32, hdr->signature);
1295 		panic();
1296 	}
1297 	if (hdr->version != FFA_BOOT_INFO_VERSION_1_1 &&
1298 	    hdr->version != FFA_BOOT_INFO_VERSION_1_2) {
1299 		EMSG("Bad boot info version %#"PRIx32, hdr->version);
1300 		panic();
1301 	}
1302 	if (hdr->desc_count != 1) {
1303 		EMSG("Bad boot info descriptor count %#"PRIx32,
1304 		     hdr->desc_count);
1305 		panic();
1306 	}
1307 	desc = (void *)((vaddr_t)hdr + hdr->desc_offset);
1308 	name_fmt = desc->flags & FFA_BOOT_INFO_FLAG_NAME_FORMAT_MASK;
1309 	if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_STRING)
1310 		DMSG("Boot info descriptor name \"%16s\"", desc->name);
1311 	else if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_UUID)
1312 		DMSG("Boot info descriptor UUID %pUl", (void *)desc->name);
1313 	else
1314 		DMSG("Boot info descriptor: unknown name format %"PRIu8,
1315 		     name_fmt);
1316 
1317 	content_fmt = (desc->flags & FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_MASK) >>
1318 		      FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
1319 	if (content_fmt != FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR) {
1320 		EMSG("Bad boot info content format %"PRIu8", expected %u (address)",
1321 		     content_fmt, FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR);
1322 		panic();
1323 	}
1324 
1325 	fdt = (void *)(vaddr_t)desc->contents;
1326 	ret = fdt_check_full(fdt, desc->size);
1327 	if (ret < 0) {
1328 		EMSG("Invalid Device Tree at %p: error %d", fdt, ret);
1329 		panic();
1330 	}
1331 	return fdt;
1332 }
1333 
1334 static void get_sec_mem_from_manifest(void *fdt, paddr_t *base,
1335 				      paddr_size_t *size)
1336 {
1337 	int ret = 0;
1338 	uint64_t num = 0;
1339 
1340 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
1341 	if (ret < 0) {
1342 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
1343 		panic();
1344 	}
1345 	ret = dt_getprop_as_number(fdt, 0, "load-address", &num);
1346 	if (ret < 0) {
1347 		EMSG("Can't read \"load-address\" from FF-A manifest at %p: error %d",
1348 		     fdt, ret);
1349 		panic();
1350 	}
1351 	*base = num;
1352 	/* "mem-size" is currently an undocumented extension to the spec. */
1353 	ret = dt_getprop_as_number(fdt, 0, "mem-size", &num);
1354 	if (ret < 0) {
1355 		EMSG("Can't read \"mem-size\" from FF-A manifest at %p: error %d",
1356 		     fdt, ret);
1357 		panic();
1358 	}
1359 	*size = num;
1360 }
1361 
1362 void __weak boot_save_args(unsigned long a0, unsigned long a1,
1363 			   unsigned long a2, unsigned long a3,
1364 			   unsigned long a4 __maybe_unused)
1365 {
1366 	/*
1367 	 * Register use:
1368 	 *
1369 	 * Scenario A: Default arguments
1370 	 * a0   - CFG_CORE_FFA=y && CFG_CORE_SEL2_SPMC=n:
1371 	 *        if non-NULL holds the TOS FW config [1] address
1372 	 *      - CFG_CORE_FFA=y &&
1373 		  (CFG_CORE_SEL2_SPMC=y || CFG_CORE_EL3_SPMC=y):
1374 	 *        address of FF-A Boot Information Blob
1375 	 *      - CFG_CORE_FFA=n:
1376 	 *        if non-NULL holds the pagable part address
1377 	 * a1	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1378 	 *	  Armv7 standard bootarg #1 (kept track of in entry_a32.S)
1379 	 * a2   - CFG_CORE_SEL2_SPMC=n:
1380 	 *        if non-NULL holds the system DTB address
1381 	 *	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1382 	 *	  Armv7 standard bootarg #2 (system DTB address, kept track
1383 	 *	  of in entry_a32.S)
1384 	 * a3	- Not used
1385 	 * a4	- CFG_WITH_ARM_TRUSTED_FW=n:
1386 	 *	  Non-secure entry address
1387 	 *
1388 	 * [1] A TF-A concept: TOS_FW_CONFIG - Trusted OS Firmware
1389 	 * configuration file. Used by Trusted OS (BL32), that is, OP-TEE
1390 	 * here. This is also called Manifest DT, related to the Manifest DT
1391 	 * passed in the FF-A Boot Information Blob, but with a different
1392 	 * compatible string.
1393 
1394 	 * Scenario B: FW Handoff via Transfer List
1395 	 * Note: FF-A and non-secure entry are not yet supported with
1396 	 *       Transfer List
1397 	 * a0	- DTB address or 0 (AArch64)
1398 	 *	- must be 0 (AArch32)
1399 	 * a1	- 1 << 32 | TRANSFER_LIST_SIGNATURE[0:31] (AArch64)
1400 	 *	- 1 << 24 | TRANSFER_LIST_SIGNATURE[0:23] (AArch32)
1401 	 * a2	- must be 0 (AArch64)
1402 	 *	- DTB address or 0 (AArch32)
1403 	 * a3	- Transfer list base address
1404 	 * a4	- Not used
1405 	 */
1406 
1407 	if (IS_ENABLED(CFG_TRANSFER_LIST)) {
1408 		if (IS_ENABLED(CFG_ARM64_core) &&
1409 		    a1 == TL_HANDOFF_X1_VALUE(TL_REG_CONVENTION_VER)) {
1410 			boot_save_transfer_list(a2, a3, a0);
1411 			boot_arg_fdt = a0;
1412 		} else if (IS_ENABLED(CFG_ARM32_core) &&
1413 			   a1 == TL_HANDOFF_R1_VALUE(TL_REG_CONVENTION_VER)) {
1414 			boot_save_transfer_list(a0, a3, a2);
1415 			boot_arg_fdt = a2;
1416 		}
1417 
1418 		return;
1419 	}
1420 
1421 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC)) {
1422 #if defined(CFG_DT_ADDR)
1423 		boot_arg_fdt = CFG_DT_ADDR;
1424 #else
1425 		boot_arg_fdt = a2;
1426 #endif
1427 	}
1428 
1429 	if (IS_ENABLED(CFG_CORE_FFA)) {
1430 		size_t fdt_max_size = CFG_DTB_MAX_SIZE;
1431 		void *fdt = NULL;
1432 
1433 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) ||
1434 		    IS_ENABLED(CFG_CORE_EL3_SPMC))
1435 			fdt = get_fdt_from_boot_info((void *)a0);
1436 		else
1437 			fdt = (void *)a0;
1438 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) {
1439 			paddr_size_t size = 0;
1440 			paddr_t base = 0;
1441 
1442 			if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)) {
1443 				get_sec_mem_from_manifest(fdt, &base, &size);
1444 				core_mmu_set_secure_memory(base, size);
1445 			} else {
1446 				core_mmu_get_secure_memory(&base, &size);
1447 			}
1448 			assert((unsigned long)fdt >= base);
1449 			assert((unsigned long)fdt <= base + size);
1450 			assert((unsigned long)fdt < VCORE_START_VA);
1451 			fdt_max_size = VCORE_START_VA - (unsigned long)fdt;
1452 		}
1453 		init_manifest_dt(fdt, fdt_max_size);
1454 	} else {
1455 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1456 #if defined(CFG_PAGEABLE_ADDR)
1457 			boot_arg_pageable_part = CFG_PAGEABLE_ADDR;
1458 #else
1459 			boot_arg_pageable_part = a0;
1460 #endif
1461 		}
1462 		if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW)) {
1463 #if defined(CFG_NS_ENTRY_ADDR)
1464 			boot_arg_nsec_entry = CFG_NS_ENTRY_ADDR;
1465 #else
1466 			boot_arg_nsec_entry = a4;
1467 #endif
1468 		}
1469 	}
1470 }
1471 
1472 #if defined(CFG_TRANSFER_LIST)
1473 static TEE_Result release_transfer_list(void)
1474 {
1475 	struct dt_descriptor *dt = get_external_dt_desc();
1476 
1477 	if (!mapped_tl)
1478 		return TEE_SUCCESS;
1479 
1480 	if (dt) {
1481 		int ret = 0;
1482 		struct transfer_list_entry *tl_e = NULL;
1483 
1484 		/*
1485 		 * Pack the DTB and update the transfer list before un-mapping
1486 		 */
1487 		ret = fdt_pack(dt->blob);
1488 		if (ret < 0) {
1489 			EMSG("Failed to pack Device Tree at 0x%" PRIxPA
1490 			     ": error %d", virt_to_phys(dt->blob), ret);
1491 			panic();
1492 		}
1493 
1494 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1495 		assert(dt->blob == transfer_list_entry_data(tl_e));
1496 		transfer_list_set_data_size(mapped_tl, tl_e,
1497 					    fdt_totalsize(dt->blob));
1498 		dt->blob = NULL;
1499 	}
1500 
1501 	transfer_list_unmap_sync(mapped_tl);
1502 	mapped_tl = NULL;
1503 
1504 	return TEE_SUCCESS;
1505 }
1506 
1507 boot_final(release_transfer_list);
1508 #endif
1509