xref: /optee_os/core/arch/arm/kernel/boot.c (revision 55a4d839310ce46aca79a12015ab8e1da9f110e5)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2023, Linaro Limited
4  * Copyright (c) 2023, Arm Limited
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <console.h>
12 #include <crypto/crypto.h>
13 #include <drivers/gic.h>
14 #include <dt-bindings/interrupt-controller/arm-gic.h>
15 #include <ffa.h>
16 #include <initcall.h>
17 #include <inttypes.h>
18 #include <io.h>
19 #include <keep.h>
20 #include <kernel/asan.h>
21 #include <kernel/boot.h>
22 #include <kernel/dt.h>
23 #include <kernel/linker.h>
24 #include <kernel/misc.h>
25 #include <kernel/panic.h>
26 #include <kernel/tee_misc.h>
27 #include <kernel/thread.h>
28 #include <kernel/tpm.h>
29 #include <kernel/transfer_list.h>
30 #include <libfdt.h>
31 #include <malloc.h>
32 #include <memtag.h>
33 #include <mm/core_memprot.h>
34 #include <mm/core_mmu.h>
35 #include <mm/fobj.h>
36 #include <mm/phys_mem.h>
37 #include <mm/tee_mm.h>
38 #include <mm/tee_pager.h>
39 #include <sm/psci.h>
40 #include <trace.h>
41 #include <utee_defines.h>
42 #include <util.h>
43 
44 #include <platform_config.h>
45 
46 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
47 #include <sm/sm.h>
48 #endif
49 
50 #if defined(CFG_WITH_VFP)
51 #include <kernel/vfp.h>
52 #endif
53 
54 /*
55  * In this file we're using unsigned long to represent physical pointers as
56  * they are received in a single register when OP-TEE is initially entered.
57  * This limits 32-bit systems to only use make use of the lower 32 bits
58  * of a physical address for initial parameters.
59  *
60  * 64-bit systems on the other hand can use full 64-bit physical pointers.
61  */
62 #define PADDR_INVALID		ULONG_MAX
63 
64 #if defined(CFG_BOOT_SECONDARY_REQUEST)
65 struct ns_entry_context {
66 	uintptr_t entry_point;
67 	uintptr_t context_id;
68 };
69 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
70 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
71 #endif
72 
73 #ifdef CFG_BOOT_SYNC_CPU
74 /*
75  * Array used when booting, to synchronize cpu.
76  * When 0, the cpu has not started.
77  * When 1, it has started
78  */
79 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
80 DECLARE_KEEP_PAGER(sem_cpu_sync);
81 #endif
82 
83 static unsigned long boot_arg_fdt __nex_bss;
84 static unsigned long boot_arg_nsec_entry __nex_bss;
85 static unsigned long boot_arg_pageable_part __nex_bss;
86 static unsigned long boot_arg_transfer_list __nex_bss;
87 static struct transfer_list_header *mapped_tl __nex_bss;
88 
89 #ifdef CFG_SECONDARY_INIT_CNTFRQ
90 static uint32_t cntfrq;
91 #endif
92 
93 /* May be overridden in plat-$(PLATFORM)/main.c */
94 __weak void plat_primary_init_early(void)
95 {
96 }
97 DECLARE_KEEP_PAGER(plat_primary_init_early);
98 
99 /* May be overridden in plat-$(PLATFORM)/main.c */
100 __weak void boot_primary_init_intc(void)
101 {
102 }
103 
104 /* May be overridden in plat-$(PLATFORM)/main.c */
105 __weak void boot_secondary_init_intc(void)
106 {
107 }
108 
109 /* May be overridden in plat-$(PLATFORM)/main.c */
110 __weak unsigned long plat_get_aslr_seed(void)
111 {
112 	DMSG("Warning: no ASLR seed");
113 
114 	return 0;
115 }
116 
117 #if defined(_CFG_CORE_STACK_PROTECTOR) || defined(CFG_WITH_STACK_CANARIES)
118 /* Generate random stack canary value on boot up */
119 __weak void plat_get_random_stack_canaries(void *buf, size_t ncan, size_t size)
120 {
121 	TEE_Result ret = TEE_ERROR_GENERIC;
122 	size_t i = 0;
123 
124 	assert(buf && ncan && size);
125 
126 	/*
127 	 * With virtualization the RNG is not initialized in Nexus core.
128 	 * Need to override with platform specific implementation.
129 	 */
130 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
131 		IMSG("WARNING: Using fixed value for stack canary");
132 		memset(buf, 0xab, ncan * size);
133 		goto out;
134 	}
135 
136 	ret = crypto_rng_read(buf, ncan * size);
137 	if (ret != TEE_SUCCESS)
138 		panic("Failed to generate random stack canary");
139 
140 out:
141 	/* Leave null byte in canary to prevent string base exploit */
142 	for (i = 0; i < ncan; i++)
143 		*((uint8_t *)buf + size * i) = 0;
144 }
145 #endif /* _CFG_CORE_STACK_PROTECTOR || CFG_WITH_STACK_CANARIES */
146 
147 /*
148  * This function is called as a guard after each smc call which is not
149  * supposed to return.
150  */
151 void __panic_at_smc_return(void)
152 {
153 	panic();
154 }
155 
156 #if defined(CFG_WITH_ARM_TRUSTED_FW)
157 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
158 {
159 	assert(nsec_entry == PADDR_INVALID);
160 	/* Do nothing as we don't have a secure monitor */
161 }
162 #else
163 /* May be overridden in plat-$(PLATFORM)/main.c */
164 __weak void init_sec_mon(unsigned long nsec_entry)
165 {
166 	struct sm_nsec_ctx *nsec_ctx;
167 
168 	assert(nsec_entry != PADDR_INVALID);
169 
170 	/* Initialize secure monitor */
171 	nsec_ctx = sm_get_nsec_ctx();
172 	nsec_ctx->mon_lr = nsec_entry;
173 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
174 	if (nsec_entry & 1)
175 		nsec_ctx->mon_spsr |= CPSR_T;
176 }
177 #endif
178 
179 #if defined(CFG_WITH_ARM_TRUSTED_FW)
180 static void init_vfp_nsec(void)
181 {
182 }
183 #else
184 static void init_vfp_nsec(void)
185 {
186 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
187 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
188 }
189 #endif
190 
191 static void check_crypto_extensions(void)
192 {
193 	bool ce_supported = true;
194 
195 	if (!feat_aes_implemented() &&
196 	    IS_ENABLED(CFG_CRYPTO_AES_ARM_CE)) {
197 		EMSG("AES instructions are not supported");
198 		ce_supported = false;
199 	}
200 
201 	if (!feat_sha1_implemented() &&
202 	    IS_ENABLED(CFG_CRYPTO_SHA1_ARM_CE)) {
203 		EMSG("SHA1 instructions are not supported");
204 		ce_supported = false;
205 	}
206 
207 	if (!feat_sha256_implemented() &&
208 	    IS_ENABLED(CFG_CRYPTO_SHA256_ARM_CE)) {
209 		EMSG("SHA256 instructions are not supported");
210 		ce_supported = false;
211 	}
212 
213 	/* Check aarch64 specific instructions */
214 	if (IS_ENABLED(CFG_ARM64_core)) {
215 		if (!feat_sha512_implemented() &&
216 		    IS_ENABLED(CFG_CRYPTO_SHA512_ARM_CE)) {
217 			EMSG("SHA512 instructions are not supported");
218 			ce_supported = false;
219 		}
220 
221 		if (!feat_sha3_implemented() &&
222 		    IS_ENABLED(CFG_CRYPTO_SHA3_ARM_CE)) {
223 			EMSG("SHA3 instructions are not supported");
224 			ce_supported = false;
225 		}
226 
227 		if (!feat_sm3_implemented() &&
228 		    IS_ENABLED(CFG_CRYPTO_SM3_ARM_CE)) {
229 			EMSG("SM3 instructions are not supported");
230 			ce_supported = false;
231 		}
232 
233 		if (!feat_sm4_implemented() &&
234 		    IS_ENABLED(CFG_CRYPTO_SM4_ARM_CE)) {
235 			EMSG("SM4 instructions are not supported");
236 			ce_supported = false;
237 		}
238 	}
239 
240 	if (!ce_supported)
241 		panic("HW doesn't support CE instructions");
242 }
243 
244 #if defined(CFG_WITH_VFP)
245 
246 #ifdef ARM32
247 static void init_vfp_sec(void)
248 {
249 	uint32_t cpacr = read_cpacr();
250 
251 	/*
252 	 * Enable Advanced SIMD functionality.
253 	 * Enable use of D16-D31 of the Floating-point Extension register
254 	 * file.
255 	 */
256 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
257 	/*
258 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
259 	 * mode.
260 	 */
261 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
262 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
263 	write_cpacr(cpacr);
264 }
265 #endif /* ARM32 */
266 
267 #ifdef ARM64
268 static void init_vfp_sec(void)
269 {
270 	/* Not using VFP until thread_kernel_enable_vfp() */
271 	vfp_disable();
272 }
273 #endif /* ARM64 */
274 
275 #else /* CFG_WITH_VFP */
276 
277 static void init_vfp_sec(void)
278 {
279 	/* Not using VFP */
280 }
281 #endif
282 
283 #ifdef CFG_SECONDARY_INIT_CNTFRQ
284 static void primary_save_cntfrq(void)
285 {
286 	assert(cntfrq == 0);
287 
288 	/*
289 	 * CNTFRQ should be initialized on the primary CPU by a
290 	 * previous boot stage
291 	 */
292 	cntfrq = read_cntfrq();
293 }
294 
295 static void secondary_init_cntfrq(void)
296 {
297 	assert(cntfrq != 0);
298 	write_cntfrq(cntfrq);
299 }
300 #else /* CFG_SECONDARY_INIT_CNTFRQ */
301 static void primary_save_cntfrq(void)
302 {
303 }
304 
305 static void secondary_init_cntfrq(void)
306 {
307 }
308 #endif
309 
310 #ifdef CFG_CORE_SANITIZE_KADDRESS
311 static void init_run_constructors(void)
312 {
313 	const vaddr_t *ctor;
314 
315 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
316 		((void (*)(void))(*ctor))();
317 }
318 
319 static void init_asan(void)
320 {
321 
322 	/*
323 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
324 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
325 	 * Since all the needed values to calculate the value of
326 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
327 	 * calculate it in advance and hard code it into the platform
328 	 * conf.mk. Here where we have all the needed values we double
329 	 * check that the compiler is supplied the correct value.
330 	 */
331 
332 #define __ASAN_SHADOW_START \
333 	ROUNDUP(TEE_RAM_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
334 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
335 #define __CFG_ASAN_SHADOW_OFFSET \
336 	(__ASAN_SHADOW_START - (TEE_RAM_START / 8))
337 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
338 #undef __ASAN_SHADOW_START
339 #undef __CFG_ASAN_SHADOW_OFFSET
340 
341 	/*
342 	 * Assign area covered by the shadow area, everything from start up
343 	 * to the beginning of the shadow area.
344 	 */
345 	asan_set_shadowed((void *)TEE_LOAD_ADDR, &__asan_shadow_start);
346 
347 	/*
348 	 * Add access to areas that aren't opened automatically by a
349 	 * constructor.
350 	 */
351 	asan_tag_access(&__ctor_list, &__ctor_end);
352 	asan_tag_access(__rodata_start, __rodata_end);
353 #ifdef CFG_WITH_PAGER
354 	asan_tag_access(__pageable_start, __pageable_end);
355 #endif /*CFG_WITH_PAGER*/
356 	asan_tag_access(__nozi_start, __nozi_end);
357 #ifdef ARM32
358 	asan_tag_access(__exidx_start, __exidx_end);
359 	asan_tag_access(__extab_start, __extab_end);
360 #endif
361 
362 	init_run_constructors();
363 
364 	/* Everything is tagged correctly, let's start address sanitizing. */
365 	asan_start();
366 }
367 #else /*CFG_CORE_SANITIZE_KADDRESS*/
368 static void init_asan(void)
369 {
370 }
371 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
372 
373 #if defined(CFG_MEMTAG)
374 /* Called from entry_a64.S only when MEMTAG is configured */
375 void boot_init_memtag(void)
376 {
377 	memtag_init_ops(feat_mte_implemented());
378 }
379 
380 static TEE_Result mmap_clear_memtag(struct tee_mmap_region *map,
381 				    void *ptr __unused)
382 {
383 	switch (map->type) {
384 	case MEM_AREA_TEE_RAM:
385 	case MEM_AREA_TEE_RAM_RW:
386 	case MEM_AREA_NEX_RAM_RO:
387 	case MEM_AREA_NEX_RAM_RW:
388 	case MEM_AREA_TEE_ASAN:
389 	case MEM_AREA_TA_RAM:
390 		DMSG("Clearing tags for VA %#"PRIxVA"..%#"PRIxVA,
391 		     map->va, map->va + map->size - 1);
392 		memtag_set_tags((void *)map->va, map->size, 0);
393 		break;
394 	default:
395 		break;
396 	}
397 
398 	return TEE_SUCCESS;
399 }
400 
401 /* Called from entry_a64.S only when MEMTAG is configured */
402 void boot_clear_memtag(void)
403 {
404 	core_mmu_for_each_map(NULL, mmap_clear_memtag);
405 }
406 #endif
407 
408 #ifdef CFG_WITH_PAGER
409 
410 #ifdef CFG_CORE_SANITIZE_KADDRESS
411 static void carve_out_asan_mem(void)
412 {
413 	nex_phys_mem_partial_carve_out(ASAN_MAP_PA, ASAN_MAP_SZ);
414 }
415 #else
416 static void carve_out_asan_mem(void)
417 {
418 }
419 #endif
420 
421 static void print_pager_pool_size(void)
422 {
423 	struct tee_pager_stats __maybe_unused stats;
424 
425 	tee_pager_get_stats(&stats);
426 	IMSG("Pager pool size: %zukB",
427 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
428 }
429 
430 static void init_virt_pool(tee_mm_pool_t *virt_pool)
431 {
432 	const vaddr_t begin = VCORE_START_VA;
433 	size_t size = TEE_RAM_VA_SIZE;
434 
435 #ifdef CFG_CORE_SANITIZE_KADDRESS
436 	/* Carve out asan memory, flat maped after core memory */
437 	if (begin + size > ASAN_SHADOW_PA)
438 		size = ASAN_MAP_PA - begin;
439 #endif
440 
441 	if (!tee_mm_init(virt_pool, begin, size, SMALL_PAGE_SHIFT,
442 			 TEE_MM_POOL_NO_FLAGS))
443 		panic("core_virt_mem_pool init failed");
444 }
445 
446 /*
447  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
448  * The init part is also paged just as the rest of the normal paged code, with
449  * the difference that it's preloaded during boot. When the backing store
450  * is configured the entire paged binary is copied in place and then also
451  * the init part. Since the init part has been relocated (references to
452  * addresses updated to compensate for the new load address) this has to be
453  * undone for the hashes of those pages to match with the original binary.
454  *
455  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
456  * unchanged.
457  */
458 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
459 {
460 #ifdef CFG_CORE_ASLR
461 	unsigned long *ptr = NULL;
462 	const uint32_t *reloc = NULL;
463 	const uint32_t *reloc_end = NULL;
464 	unsigned long offs = boot_mmu_config.map_offset;
465 	const struct boot_embdata *embdata = (const void *)__init_end;
466 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_LOAD_ADDR;
467 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_LOAD_ADDR;
468 
469 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
470 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
471 
472 	for (; reloc < reloc_end; reloc++) {
473 		if (*reloc < addr_start)
474 			continue;
475 		if (*reloc >= addr_end)
476 			break;
477 		ptr = (void *)(paged_store + *reloc - addr_start);
478 		*ptr -= offs;
479 	}
480 #endif
481 }
482 
483 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
484 				   void *store)
485 {
486 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
487 #ifdef CFG_CORE_ASLR
488 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
489 	const struct boot_embdata *embdata = (const void *)__init_end;
490 	const void *reloc = __init_end + embdata->reloc_offset;
491 
492 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
493 					 reloc, embdata->reloc_len, store);
494 #else
495 	return fobj_ro_paged_alloc(num_pages, hashes, store);
496 #endif
497 }
498 
499 static void init_runtime(unsigned long pageable_part)
500 {
501 	size_t n;
502 	size_t init_size = (size_t)(__init_end - __init_start);
503 	size_t pageable_start = (size_t)__pageable_start;
504 	size_t pageable_end = (size_t)__pageable_end;
505 	size_t pageable_size = pageable_end - pageable_start;
506 	vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR +
507 			     VCORE_START_VA;
508 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
509 			   TEE_SHA256_HASH_SIZE;
510 	const struct boot_embdata *embdata = (const void *)__init_end;
511 	const void *tmp_hashes = NULL;
512 	tee_mm_entry_t *mm = NULL;
513 	struct fobj *fobj = NULL;
514 	uint8_t *paged_store = NULL;
515 	uint8_t *hashes = NULL;
516 
517 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
518 	assert(embdata->total_len >= embdata->hashes_offset +
519 				     embdata->hashes_len);
520 	assert(hash_size == embdata->hashes_len);
521 
522 	tmp_hashes = __init_end + embdata->hashes_offset;
523 
524 	init_asan();
525 
526 	/* Add heap2 first as heap1 may be too small as initial bget pool */
527 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
528 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
529 
530 	/*
531 	 * This needs to be initialized early to support address lookup
532 	 * in MEM_AREA_TEE_RAM
533 	 */
534 	tee_pager_early_init();
535 
536 	hashes = malloc(hash_size);
537 	IMSG_RAW("\n");
538 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
539 	assert(hashes);
540 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
541 
542 	/*
543 	 * Need physical memory pool initialized to be able to allocate
544 	 * secure physical memory below.
545 	 */
546 	core_mmu_init_phys_mem();
547 
548 	carve_out_asan_mem();
549 
550 	mm = nex_phys_mem_ta_alloc(pageable_size);
551 	assert(mm);
552 	paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
553 				   pageable_size);
554 	/*
555 	 * Load pageable part in the dedicated allocated area:
556 	 * - Move pageable non-init part into pageable area. Note bootloader
557 	 *   may have loaded it anywhere in TA RAM hence use memmove().
558 	 * - Copy pageable init part from current location into pageable area.
559 	 */
560 	memmove(paged_store + init_size,
561 		phys_to_virt(pageable_part,
562 			     core_mmu_get_type_by_pa(pageable_part),
563 			     __pageable_part_end - __pageable_part_start),
564 		__pageable_part_end - __pageable_part_start);
565 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
566 	/*
567 	 * Undo eventual relocation for the init part so the hash checks
568 	 * can pass.
569 	 */
570 	undo_init_relocation(paged_store);
571 
572 	/* Check that hashes of what's in pageable area is OK */
573 	DMSG("Checking hashes of pageable area");
574 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
575 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
576 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
577 		TEE_Result res;
578 
579 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
580 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
581 		if (res != TEE_SUCCESS) {
582 			EMSG("Hash failed for page %zu at %p: res 0x%x",
583 			     n, (void *)page, res);
584 			panic();
585 		}
586 	}
587 
588 	/*
589 	 * Assert prepaged init sections are page aligned so that nothing
590 	 * trails uninited at the end of the premapped init area.
591 	 */
592 	assert(!(init_size & SMALL_PAGE_MASK));
593 
594 	/*
595 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
596 	 * is supplied to tee_pager_init() below.
597 	 */
598 	init_virt_pool(&core_virt_mem_pool);
599 
600 	/*
601 	 * Assign alias area for pager end of the small page block the rest
602 	 * of the binary is loaded into. We're taking more than needed, but
603 	 * we're guaranteed to not need more than the physical amount of
604 	 * TZSRAM.
605 	 */
606 	mm = tee_mm_alloc2(&core_virt_mem_pool,
607 			   (vaddr_t)core_virt_mem_pool.lo +
608 			   core_virt_mem_pool.size - TZSRAM_SIZE,
609 			   TZSRAM_SIZE);
610 	assert(mm);
611 	tee_pager_set_alias_area(mm);
612 
613 	/*
614 	 * Claim virtual memory which isn't paged.
615 	 * Linear memory (flat map core memory) ends there.
616 	 */
617 	mm = tee_mm_alloc2(&core_virt_mem_pool, VCORE_UNPG_RX_PA,
618 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
619 	assert(mm);
620 
621 	/*
622 	 * Allocate virtual memory for the pageable area and let the pager
623 	 * take charge of all the pages already assigned to that memory.
624 	 */
625 	mm = tee_mm_alloc2(&core_virt_mem_pool, (vaddr_t)__pageable_start,
626 			   pageable_size);
627 	assert(mm);
628 	fobj = ro_paged_alloc(mm, hashes, paged_store);
629 	assert(fobj);
630 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
631 				  fobj);
632 	fobj_put(fobj);
633 
634 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
635 	tee_pager_add_pages(pageable_start + init_size,
636 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
637 			    true);
638 	if (pageable_end < tzsram_end)
639 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
640 						   SMALL_PAGE_SIZE, true);
641 
642 	/*
643 	 * There may be physical pages in TZSRAM before the core load address.
644 	 * These pages can be added to the physical pages pool of the pager.
645 	 * This setup may happen when a the secure bootloader runs in TZRAM
646 	 * and its memory can be reused by OP-TEE once boot stages complete.
647 	 */
648 	tee_pager_add_pages(core_virt_mem_pool.lo,
649 			    (VCORE_UNPG_RX_PA - core_virt_mem_pool.lo) /
650 				SMALL_PAGE_SIZE,
651 			    true);
652 
653 	print_pager_pool_size();
654 }
655 #else
656 
657 static void init_runtime(unsigned long pageable_part __unused)
658 {
659 	init_asan();
660 
661 	/*
662 	 * By default whole OP-TEE uses malloc, so we need to initialize
663 	 * it early. But, when virtualization is enabled, malloc is used
664 	 * only by TEE runtime, so malloc should be initialized later, for
665 	 * every virtual partition separately. Core code uses nex_malloc
666 	 * instead.
667 	 */
668 #ifdef CFG_NS_VIRTUALIZATION
669 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
670 					      __nex_heap_start);
671 #else
672 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
673 #endif
674 
675 	IMSG_RAW("\n");
676 }
677 #endif
678 
679 #if defined(CFG_DT)
680 static int add_optee_dt_node(struct dt_descriptor *dt)
681 {
682 	int offs;
683 	int ret;
684 
685 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
686 		DMSG("OP-TEE Device Tree node already exists!");
687 		return 0;
688 	}
689 
690 	offs = fdt_path_offset(dt->blob, "/firmware");
691 	if (offs < 0) {
692 		offs = add_dt_path_subnode(dt, "/", "firmware");
693 		if (offs < 0)
694 			return -1;
695 	}
696 
697 	offs = fdt_add_subnode(dt->blob, offs, "optee");
698 	if (offs < 0)
699 		return -1;
700 
701 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
702 				 "linaro,optee-tz");
703 	if (ret < 0)
704 		return -1;
705 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
706 	if (ret < 0)
707 		return -1;
708 
709 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
710 		/*
711 		 * The format of the interrupt property is defined by the
712 		 * binding of the interrupt domain root. In this case it's
713 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
714 		 * these.
715 		 *
716 		 * An SPI type of interrupt is indicated with a 0 in the
717 		 * first cell. A PPI type is indicated with value 1.
718 		 *
719 		 * The interrupt number goes in the second cell where
720 		 * SPIs ranges from 0 to 987 and PPI ranges from 0 to 15.
721 		 *
722 		 * Flags are passed in the third cells.
723 		 */
724 		uint32_t itr_trigger = 0;
725 		uint32_t itr_type = 0;
726 		uint32_t itr_id = 0;
727 		uint32_t val[3] = { };
728 
729 		/* PPI are visible only in current CPU cluster */
730 		static_assert(IS_ENABLED(CFG_CORE_FFA) ||
731 			      !CFG_CORE_ASYNC_NOTIF_GIC_INTID ||
732 			      (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
733 			       GIC_SPI_BASE) ||
734 			      ((CFG_TEE_CORE_NB_CORE <= 8) &&
735 			       (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
736 				GIC_PPI_BASE)));
737 
738 		if (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= GIC_SPI_BASE) {
739 			itr_type = GIC_SPI;
740 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_SPI_BASE;
741 			itr_trigger = IRQ_TYPE_EDGE_RISING;
742 		} else {
743 			itr_type = GIC_PPI;
744 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_PPI_BASE;
745 			itr_trigger = IRQ_TYPE_EDGE_RISING |
746 				      GIC_CPU_MASK_SIMPLE(CFG_TEE_CORE_NB_CORE);
747 		}
748 
749 		val[0] = TEE_U32_TO_BIG_ENDIAN(itr_type);
750 		val[1] = TEE_U32_TO_BIG_ENDIAN(itr_id);
751 		val[2] = TEE_U32_TO_BIG_ENDIAN(itr_trigger);
752 
753 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
754 				  sizeof(val));
755 		if (ret < 0)
756 			return -1;
757 	}
758 	return 0;
759 }
760 
761 #ifdef CFG_PSCI_ARM32
762 static int append_psci_compatible(void *fdt, int offs, const char *str)
763 {
764 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
765 }
766 
767 static int dt_add_psci_node(struct dt_descriptor *dt)
768 {
769 	int offs;
770 
771 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
772 		DMSG("PSCI Device Tree node already exists!");
773 		return 0;
774 	}
775 
776 	offs = add_dt_path_subnode(dt, "/", "psci");
777 	if (offs < 0)
778 		return -1;
779 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
780 		return -1;
781 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
782 		return -1;
783 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
784 		return -1;
785 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
786 		return -1;
787 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
788 		return -1;
789 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
790 		return -1;
791 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
792 		return -1;
793 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
794 		return -1;
795 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
796 		return -1;
797 	return 0;
798 }
799 
800 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
801 				    const char *prefix)
802 {
803 	const size_t prefix_len = strlen(prefix);
804 	size_t l;
805 	int plen;
806 	const char *prop;
807 
808 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
809 	if (!prop)
810 		return -1;
811 
812 	while (plen > 0) {
813 		if (memcmp(prop, prefix, prefix_len) == 0)
814 			return 0; /* match */
815 
816 		l = strlen(prop) + 1;
817 		prop += l;
818 		plen -= l;
819 	}
820 
821 	return -1;
822 }
823 
824 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
825 {
826 	int offs = 0;
827 
828 	while (1) {
829 		offs = fdt_next_node(dt->blob, offs, NULL);
830 		if (offs < 0)
831 			break;
832 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
833 			continue; /* already set */
834 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
835 			continue; /* no compatible */
836 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
837 			return -1;
838 		/* Need to restart scanning as offsets may have changed */
839 		offs = 0;
840 	}
841 	return 0;
842 }
843 
844 static int config_psci(struct dt_descriptor *dt)
845 {
846 	if (dt_add_psci_node(dt))
847 		return -1;
848 	return dt_add_psci_cpu_enable_methods(dt);
849 }
850 #else
851 static int config_psci(struct dt_descriptor *dt __unused)
852 {
853 	return 0;
854 }
855 #endif /*CFG_PSCI_ARM32*/
856 
857 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
858 {
859 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
860 				   CFG_TZDRAM_SIZE);
861 }
862 
863 static void update_external_dt(void)
864 {
865 	struct dt_descriptor *dt = get_external_dt_desc();
866 
867 	if (!dt || !dt->blob)
868 		return;
869 
870 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
871 		panic("Failed to add OP-TEE Device Tree node");
872 
873 	if (config_psci(dt))
874 		panic("Failed to config PSCI");
875 
876 #ifdef CFG_CORE_RESERVED_SHM
877 	if (mark_static_shm_as_reserved(dt))
878 		panic("Failed to config non-secure memory");
879 #endif
880 
881 	if (mark_tzdram_as_reserved(dt))
882 		panic("Failed to config secure memory");
883 }
884 #else /*CFG_DT*/
885 static void update_external_dt(void)
886 {
887 }
888 #endif /*!CFG_DT*/
889 
890 void init_tee_runtime(void)
891 {
892 #ifndef CFG_WITH_PAGER
893 	/* Pager initializes TA RAM early */
894 	core_mmu_init_phys_mem();
895 #endif
896 	/*
897 	 * With virtualization we call this function when creating the
898 	 * OP-TEE partition instead.
899 	 */
900 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
901 		call_preinitcalls();
902 	call_early_initcalls();
903 	call_service_initcalls();
904 
905 	/*
906 	 * These two functions uses crypto_rng_read() to initialize the
907 	 * pauth keys. Once call_initcalls() returns we're guaranteed that
908 	 * crypto_rng_read() is ready to be used.
909 	 */
910 	thread_init_core_local_pauth_keys();
911 	thread_init_thread_pauth_keys();
912 
913 	/*
914 	 * Reinitialize canaries around the stacks with crypto_rng_read().
915 	 *
916 	 * TODO: Updating canaries when CFG_NS_VIRTUALIZATION is enabled will
917 	 * require synchronization between thread_check_canaries() and
918 	 * thread_update_canaries().
919 	 */
920 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
921 		thread_update_canaries();
922 }
923 
924 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
925 {
926 	thread_init_core_local_stacks();
927 	/*
928 	 * Mask asynchronous exceptions before switch to the thread vector
929 	 * as the thread handler requires those to be masked while
930 	 * executing with the temporary stack. The thread subsystem also
931 	 * asserts that the foreign interrupts are blocked when using most of
932 	 * its functions.
933 	 */
934 	thread_set_exceptions(THREAD_EXCP_ALL);
935 	primary_save_cntfrq();
936 	init_vfp_sec();
937 
938 	if (IS_ENABLED(CFG_CRYPTO_WITH_CE))
939 		check_crypto_extensions();
940 
941 	/*
942 	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
943 	 * set a current thread right now to avoid a chicken-and-egg problem
944 	 * (thread_init_boot_thread() sets the current thread but needs
945 	 * things set by init_runtime()).
946 	 */
947 	thread_get_core_local()->curr_thread = 0;
948 	init_runtime(pageable_part);
949 
950 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
951 		/*
952 		 * Virtualization: We can't initialize threads right now because
953 		 * threads belong to "tee" part and will be initialized
954 		 * separately per each new virtual guest. So, we'll clear
955 		 * "curr_thread" and call it done.
956 		 */
957 		thread_get_core_local()->curr_thread = -1;
958 	} else {
959 		thread_init_boot_thread();
960 	}
961 	thread_init_primary();
962 	thread_init_per_cpu();
963 	init_sec_mon(nsec_entry);
964 }
965 
966 static bool cpu_nmfi_enabled(void)
967 {
968 #if defined(ARM32)
969 	return read_sctlr() & SCTLR_NMFI;
970 #else
971 	/* Note: ARM64 does not feature non-maskable FIQ support. */
972 	return false;
973 #endif
974 }
975 
976 /*
977  * Note: this function is weak just to make it possible to exclude it from
978  * the unpaged area.
979  */
980 void __weak boot_init_primary_late(unsigned long fdt __unused,
981 				   unsigned long manifest __unused)
982 {
983 	size_t fdt_size = CFG_DTB_MAX_SIZE;
984 
985 	if (IS_ENABLED(CFG_TRANSFER_LIST) && mapped_tl) {
986 		struct transfer_list_entry *tl_e = NULL;
987 
988 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
989 		if (tl_e)
990 			fdt_size = tl_e->data_size;
991 	}
992 
993 	init_external_dt(boot_arg_fdt, fdt_size);
994 	reinit_manifest_dt();
995 #ifdef CFG_CORE_SEL1_SPMC
996 	tpm_map_log_area(get_manifest_dt());
997 #else
998 	tpm_map_log_area(get_external_dt());
999 #endif
1000 	discover_nsec_memory();
1001 	update_external_dt();
1002 	configure_console_from_dt();
1003 
1004 	IMSG("OP-TEE version: %s", core_v_str);
1005 	if (IS_ENABLED(CFG_INSECURE)) {
1006 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1007 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1008 	}
1009 	IMSG("Primary CPU initializing");
1010 #ifdef CFG_CORE_ASLR
1011 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1012 	     (unsigned long)boot_mmu_config.map_offset, VCORE_START_VA);
1013 #endif
1014 	if (IS_ENABLED(CFG_MEMTAG))
1015 		DMSG("Memory tagging %s",
1016 		     memtag_is_enabled() ?  "enabled" : "disabled");
1017 
1018 	/* Check if platform needs NMFI workaround */
1019 	if (cpu_nmfi_enabled())	{
1020 		if (!IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1021 			IMSG("WARNING: This ARM core has NMFI enabled, please apply workaround!");
1022 	} else {
1023 		if (IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1024 			IMSG("WARNING: This ARM core does not have NMFI enabled, no need for workaround");
1025 	}
1026 
1027 	boot_primary_init_intc();
1028 	init_vfp_nsec();
1029 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1030 		IMSG("Initializing virtualization support");
1031 		core_mmu_init_virtualization();
1032 	} else {
1033 		init_tee_runtime();
1034 	}
1035 }
1036 
1037 /*
1038  * Note: this function is weak just to make it possible to exclude it from
1039  * the unpaged area.
1040  */
1041 void __weak boot_init_primary_final(void)
1042 {
1043 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1044 		call_driver_initcalls();
1045 	call_finalcalls();
1046 	IMSG("Primary CPU switching to normal world boot");
1047 }
1048 
1049 static void init_secondary_helper(unsigned long nsec_entry)
1050 {
1051 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1052 
1053 	/*
1054 	 * Mask asynchronous exceptions before switch to the thread vector
1055 	 * as the thread handler requires those to be masked while
1056 	 * executing with the temporary stack. The thread subsystem also
1057 	 * asserts that the foreign interrupts are blocked when using most of
1058 	 * its functions.
1059 	 */
1060 	thread_set_exceptions(THREAD_EXCP_ALL);
1061 
1062 	secondary_init_cntfrq();
1063 	thread_init_per_cpu();
1064 	init_sec_mon(nsec_entry);
1065 	boot_secondary_init_intc();
1066 	init_vfp_sec();
1067 	init_vfp_nsec();
1068 
1069 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1070 }
1071 
1072 /*
1073  * Note: this function is weak just to make it possible to exclude it from
1074  * the unpaged area so that it lies in the init area.
1075  */
1076 void __weak boot_init_primary_early(void)
1077 {
1078 	unsigned long pageable_part = 0;
1079 	unsigned long e = PADDR_INVALID;
1080 	struct transfer_list_entry *tl_e = NULL;
1081 
1082 	if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW))
1083 		e = boot_arg_nsec_entry;
1084 
1085 	if (IS_ENABLED(CFG_TRANSFER_LIST) && boot_arg_transfer_list) {
1086 		/* map and save the TL */
1087 		mapped_tl = transfer_list_map(boot_arg_transfer_list);
1088 		if (!mapped_tl)
1089 			panic("Failed to map transfer list");
1090 
1091 		transfer_list_dump(mapped_tl);
1092 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1093 		if (tl_e) {
1094 			/*
1095 			 * Expand the data size of the DTB entry to the maximum
1096 			 * allocable mapped memory to reserve sufficient space
1097 			 * for inserting new nodes, avoid potentially corrupting
1098 			 * next entries.
1099 			 */
1100 			uint32_t dtb_max_sz = mapped_tl->max_size -
1101 					      mapped_tl->size + tl_e->data_size;
1102 
1103 			if (!transfer_list_set_data_size(mapped_tl, tl_e,
1104 							 dtb_max_sz)) {
1105 				EMSG("Failed to extend DTB size to %#"PRIx32,
1106 				     dtb_max_sz);
1107 				panic();
1108 			}
1109 		}
1110 		tl_e = transfer_list_find(mapped_tl, TL_TAG_OPTEE_PAGABLE_PART);
1111 	}
1112 
1113 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1114 		if (IS_ENABLED(CFG_TRANSFER_LIST) && tl_e)
1115 			pageable_part =
1116 				get_le64(transfer_list_entry_data(tl_e));
1117 		else
1118 			pageable_part = boot_arg_pageable_part;
1119 	}
1120 
1121 	init_primary(pageable_part, e);
1122 }
1123 
1124 static void boot_save_transfer_list(unsigned long zero_reg,
1125 				    unsigned long transfer_list,
1126 				    unsigned long fdt)
1127 {
1128 	struct transfer_list_header *tl = (void *)transfer_list;
1129 	struct transfer_list_entry *tl_e = NULL;
1130 
1131 	if (zero_reg != 0)
1132 		panic("Incorrect transfer list register convention");
1133 
1134 	if (!IS_ALIGNED_WITH_TYPE(transfer_list, struct transfer_list_header) ||
1135 	    !IS_ALIGNED(transfer_list, TL_ALIGNMENT_FROM_ORDER(tl->alignment)))
1136 		panic("Transfer list base address is not aligned");
1137 
1138 	if (transfer_list_check_header(tl) == TL_OPS_NONE)
1139 		panic("Invalid transfer list");
1140 
1141 	tl_e = transfer_list_find(tl, TL_TAG_FDT);
1142 	if (fdt != (unsigned long)transfer_list_entry_data(tl_e))
1143 		panic("DT does not match to the DT entry of the TL");
1144 
1145 	boot_arg_transfer_list = transfer_list;
1146 }
1147 
1148 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1149 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1150 				  unsigned long a1 __unused)
1151 {
1152 	init_secondary_helper(PADDR_INVALID);
1153 	return 0;
1154 }
1155 #else
1156 void boot_init_secondary(unsigned long nsec_entry)
1157 {
1158 	init_secondary_helper(nsec_entry);
1159 }
1160 #endif
1161 
1162 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1163 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1164 			    uintptr_t context_id)
1165 {
1166 	ns_entry_contexts[core_idx].entry_point = entry;
1167 	ns_entry_contexts[core_idx].context_id = context_id;
1168 	dsb_ishst();
1169 }
1170 
1171 int boot_core_release(size_t core_idx, paddr_t entry)
1172 {
1173 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1174 		return -1;
1175 
1176 	ns_entry_contexts[core_idx].entry_point = entry;
1177 	dmb();
1178 	spin_table[core_idx] = 1;
1179 	dsb();
1180 	sev();
1181 
1182 	return 0;
1183 }
1184 
1185 /*
1186  * spin until secondary boot request, then returns with
1187  * the secondary core entry address.
1188  */
1189 struct ns_entry_context *boot_core_hpen(void)
1190 {
1191 #ifdef CFG_PSCI_ARM32
1192 	return &ns_entry_contexts[get_core_pos()];
1193 #else
1194 	do {
1195 		wfe();
1196 	} while (!spin_table[get_core_pos()]);
1197 	dmb();
1198 	return &ns_entry_contexts[get_core_pos()];
1199 #endif
1200 }
1201 #endif
1202 
1203 #if defined(CFG_CORE_ASLR)
1204 #if defined(CFG_DT)
1205 unsigned long __weak get_aslr_seed(void)
1206 {
1207 	void *fdt = NULL;
1208 	int rc = 0;
1209 	const uint64_t *seed = NULL;
1210 	int offs = 0;
1211 	int len = 0;
1212 
1213 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC))
1214 		fdt = (void *)boot_arg_fdt;
1215 
1216 	if (!fdt) {
1217 		DMSG("No fdt");
1218 		goto err;
1219 	}
1220 
1221 	rc = fdt_check_header(fdt);
1222 	if (rc) {
1223 		DMSG("Bad fdt: %d", rc);
1224 		goto err;
1225 	}
1226 
1227 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1228 	if (offs < 0) {
1229 		DMSG("Cannot find /secure-chosen");
1230 		goto err;
1231 	}
1232 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1233 	if (!seed || len != sizeof(*seed)) {
1234 		DMSG("Cannot find valid kaslr-seed");
1235 		goto err;
1236 	}
1237 
1238 	return fdt64_to_cpu(fdt64_ld(seed));
1239 
1240 err:
1241 	/* Try platform implementation */
1242 	return plat_get_aslr_seed();
1243 }
1244 #else /*!CFG_DT*/
1245 unsigned long __weak get_aslr_seed(void)
1246 {
1247 	/* Try platform implementation */
1248 	return plat_get_aslr_seed();
1249 }
1250 #endif /*!CFG_DT*/
1251 #endif /*CFG_CORE_ASLR*/
1252 
1253 static void *get_fdt_from_boot_info(struct ffa_boot_info_header_1_1 *hdr)
1254 {
1255 	struct ffa_boot_info_1_1 *desc = NULL;
1256 	uint8_t content_fmt = 0;
1257 	uint8_t name_fmt = 0;
1258 	void *fdt = NULL;
1259 	int ret = 0;
1260 
1261 	if (hdr->signature != FFA_BOOT_INFO_SIGNATURE) {
1262 		EMSG("Bad boot info signature %#"PRIx32, hdr->signature);
1263 		panic();
1264 	}
1265 	if (hdr->version != FFA_BOOT_INFO_VERSION) {
1266 		EMSG("Bad boot info version %#"PRIx32, hdr->version);
1267 		panic();
1268 	}
1269 	if (hdr->desc_count != 1) {
1270 		EMSG("Bad boot info descriptor count %#"PRIx32,
1271 		     hdr->desc_count);
1272 		panic();
1273 	}
1274 	desc = (void *)((vaddr_t)hdr + hdr->desc_offset);
1275 	name_fmt = desc->flags & FFA_BOOT_INFO_FLAG_NAME_FORMAT_MASK;
1276 	if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_STRING)
1277 		DMSG("Boot info descriptor name \"%16s\"", desc->name);
1278 	else if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_UUID)
1279 		DMSG("Boot info descriptor UUID %pUl", (void *)desc->name);
1280 	else
1281 		DMSG("Boot info descriptor: unknown name format %"PRIu8,
1282 		     name_fmt);
1283 
1284 	content_fmt = (desc->flags & FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_MASK) >>
1285 		      FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
1286 	if (content_fmt != FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR) {
1287 		EMSG("Bad boot info content format %"PRIu8", expected %u (address)",
1288 		     content_fmt, FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR);
1289 		panic();
1290 	}
1291 
1292 	fdt = (void *)(vaddr_t)desc->contents;
1293 	ret = fdt_check_full(fdt, desc->size);
1294 	if (ret < 0) {
1295 		EMSG("Invalid Device Tree at %p: error %d", fdt, ret);
1296 		panic();
1297 	}
1298 	return fdt;
1299 }
1300 
1301 static void get_sec_mem_from_manifest(void *fdt, paddr_t *base, size_t *size)
1302 {
1303 	int ret = 0;
1304 	uint64_t num = 0;
1305 
1306 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
1307 	if (ret < 0) {
1308 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
1309 		panic();
1310 	}
1311 	ret = dt_getprop_as_number(fdt, 0, "load-address", &num);
1312 	if (ret < 0) {
1313 		EMSG("Can't read \"load-address\" from FF-A manifest at %p: error %d",
1314 		     fdt, ret);
1315 		panic();
1316 	}
1317 	*base = num;
1318 	/* "mem-size" is currently an undocumented extension to the spec. */
1319 	ret = dt_getprop_as_number(fdt, 0, "mem-size", &num);
1320 	if (ret < 0) {
1321 		EMSG("Can't read \"mem-size\" from FF-A manifest at %p: error %d",
1322 		     fdt, ret);
1323 		panic();
1324 	}
1325 	*size = num;
1326 }
1327 
1328 void __weak boot_save_args(unsigned long a0, unsigned long a1,
1329 			   unsigned long a2, unsigned long a3,
1330 			   unsigned long a4 __maybe_unused)
1331 {
1332 	/*
1333 	 * Register use:
1334 	 *
1335 	 * Scenario A: Default arguments
1336 	 * a0   - CFG_CORE_FFA=y && CFG_CORE_SEL2_SPMC=n:
1337 	 *        if non-NULL holds the TOS FW config [1] address
1338 	 *      - CFG_CORE_FFA=y &&
1339 		  (CFG_CORE_SEL2_SPMC=y || CFG_CORE_EL3_SPMC=y):
1340 	 *        address of FF-A Boot Information Blob
1341 	 *      - CFG_CORE_FFA=n:
1342 	 *        if non-NULL holds the pagable part address
1343 	 * a1	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1344 	 *	  Armv7 standard bootarg #1 (kept track of in entry_a32.S)
1345 	 * a2   - CFG_CORE_SEL2_SPMC=n:
1346 	 *        if non-NULL holds the system DTB address
1347 	 *	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1348 	 *	  Armv7 standard bootarg #2 (system DTB address, kept track
1349 	 *	  of in entry_a32.S)
1350 	 * a3	- Not used
1351 	 * a4	- CFG_WITH_ARM_TRUSTED_FW=n:
1352 	 *	  Non-secure entry address
1353 	 *
1354 	 * [1] A TF-A concept: TOS_FW_CONFIG - Trusted OS Firmware
1355 	 * configuration file. Used by Trusted OS (BL32), that is, OP-TEE
1356 	 * here. This is also called Manifest DT, related to the Manifest DT
1357 	 * passed in the FF-A Boot Information Blob, but with a different
1358 	 * compatible string.
1359 
1360 	 * Scenario B: FW Handoff via Transfer List
1361 	 * Note: FF-A and non-secure entry are not yet supported with
1362 	 *       Transfer List
1363 	 * a0	- DTB address or 0 (AArch64)
1364 	 *	- must be 0 (AArch32)
1365 	 * a1	- 1 << 32 | TRANSFER_LIST_SIGNATURE[0:31] (AArch64)
1366 	 *	- 1 << 24 | TRANSFER_LIST_SIGNATURE[0:23] (AArch32)
1367 	 * a2	- must be 0 (AArch64)
1368 	 *	- DTB address or 0 (AArch32)
1369 	 * a3	- Transfer list base address
1370 	 * a4	- Not used
1371 	 */
1372 
1373 	if (IS_ENABLED(CFG_TRANSFER_LIST)) {
1374 		if (IS_ENABLED(CFG_ARM64_core) &&
1375 		    a1 == TL_HANDOFF_X1_VALUE(TL_REG_CONVENTION_VER)) {
1376 			boot_save_transfer_list(a2, a3, a0);
1377 			boot_arg_fdt = a0;
1378 		} else if (IS_ENABLED(CFG_ARM32_core) &&
1379 			   a1 == TL_HANDOFF_R1_VALUE(TL_REG_CONVENTION_VER)) {
1380 			boot_save_transfer_list(a0, a3, a2);
1381 			boot_arg_fdt = a2;
1382 		}
1383 
1384 		return;
1385 	}
1386 
1387 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC)) {
1388 #if defined(CFG_DT_ADDR)
1389 		boot_arg_fdt = CFG_DT_ADDR;
1390 #else
1391 		boot_arg_fdt = a2;
1392 #endif
1393 	}
1394 
1395 	if (IS_ENABLED(CFG_CORE_FFA)) {
1396 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) ||
1397 		    IS_ENABLED(CFG_CORE_EL3_SPMC))
1398 			init_manifest_dt(get_fdt_from_boot_info((void *)a0));
1399 		else
1400 			init_manifest_dt((void *)a0);
1401 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) &&
1402 		    IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)) {
1403 			paddr_t base = 0;
1404 			size_t size = 0;
1405 
1406 			get_sec_mem_from_manifest(get_manifest_dt(),
1407 						  &base, &size);
1408 			core_mmu_set_secure_memory(base, size);
1409 		}
1410 	} else {
1411 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1412 #if defined(CFG_PAGEABLE_ADDR)
1413 			boot_arg_pageable_part = CFG_PAGEABLE_ADDR;
1414 #else
1415 			boot_arg_pageable_part = a0;
1416 #endif
1417 		}
1418 		if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW)) {
1419 #if defined(CFG_NS_ENTRY_ADDR)
1420 			boot_arg_nsec_entry = CFG_NS_ENTRY_ADDR;
1421 #else
1422 			boot_arg_nsec_entry = a4;
1423 #endif
1424 		}
1425 	}
1426 }
1427 
1428 #if defined(CFG_TRANSFER_LIST)
1429 static TEE_Result release_transfer_list(void)
1430 {
1431 	struct dt_descriptor *dt = get_external_dt_desc();
1432 
1433 	if (!mapped_tl)
1434 		return TEE_SUCCESS;
1435 
1436 	if (dt) {
1437 		int ret = 0;
1438 		struct transfer_list_entry *tl_e = NULL;
1439 
1440 		/*
1441 		 * Pack the DTB and update the transfer list before un-mapping
1442 		 */
1443 		ret = fdt_pack(dt->blob);
1444 		if (ret < 0) {
1445 			EMSG("Failed to pack Device Tree at 0x%" PRIxPA
1446 			     ": error %d", virt_to_phys(dt->blob), ret);
1447 			panic();
1448 		}
1449 
1450 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1451 		assert(dt->blob == transfer_list_entry_data(tl_e));
1452 		transfer_list_set_data_size(mapped_tl, tl_e,
1453 					    fdt_totalsize(dt->blob));
1454 		dt->blob = NULL;
1455 	}
1456 
1457 	transfer_list_unmap_sync(mapped_tl);
1458 	mapped_tl = NULL;
1459 
1460 	return TEE_SUCCESS;
1461 }
1462 
1463 boot_final(release_transfer_list);
1464 #endif
1465