1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2015-2021, Linaro Limited 4 */ 5 6 #include <arm.h> 7 #include <assert.h> 8 #include <compiler.h> 9 #include <config.h> 10 #include <console.h> 11 #include <crypto/crypto.h> 12 #include <initcall.h> 13 #include <inttypes.h> 14 #include <keep.h> 15 #include <kernel/asan.h> 16 #include <kernel/boot.h> 17 #include <kernel/linker.h> 18 #include <kernel/misc.h> 19 #include <kernel/panic.h> 20 #include <kernel/tee_misc.h> 21 #include <kernel/thread.h> 22 #include <kernel/tpm.h> 23 #include <libfdt.h> 24 #include <malloc.h> 25 #include <mm/core_memprot.h> 26 #include <mm/core_mmu.h> 27 #include <mm/fobj.h> 28 #include <mm/tee_mm.h> 29 #include <mm/tee_pager.h> 30 #include <sm/psci.h> 31 #include <stdio.h> 32 #include <trace.h> 33 #include <utee_defines.h> 34 #include <util.h> 35 36 #include <platform_config.h> 37 38 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 39 #include <sm/sm.h> 40 #endif 41 42 #if defined(CFG_WITH_VFP) 43 #include <kernel/vfp.h> 44 #endif 45 46 /* 47 * In this file we're using unsigned long to represent physical pointers as 48 * they are received in a single register when OP-TEE is initially entered. 49 * This limits 32-bit systems to only use make use of the lower 32 bits 50 * of a physical address for initial parameters. 51 * 52 * 64-bit systems on the other hand can use full 64-bit physical pointers. 53 */ 54 #define PADDR_INVALID ULONG_MAX 55 56 #if defined(CFG_BOOT_SECONDARY_REQUEST) 57 struct ns_entry_context { 58 uintptr_t entry_point; 59 uintptr_t context_id; 60 }; 61 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE]; 62 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE]; 63 #endif 64 65 #ifdef CFG_BOOT_SYNC_CPU 66 /* 67 * Array used when booting, to synchronize cpu. 68 * When 0, the cpu has not started. 69 * When 1, it has started 70 */ 71 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE]; 72 DECLARE_KEEP_PAGER(sem_cpu_sync); 73 #endif 74 75 #ifdef CFG_DT 76 struct dt_descriptor { 77 void *blob; 78 #ifdef CFG_EXTERNAL_DTB_OVERLAY 79 int frag_id; 80 #endif 81 }; 82 83 static struct dt_descriptor external_dt __nex_bss; 84 #endif 85 86 #ifdef CFG_SECONDARY_INIT_CNTFRQ 87 static uint32_t cntfrq; 88 #endif 89 90 /* May be overridden in plat-$(PLATFORM)/main.c */ 91 __weak void plat_primary_init_early(void) 92 { 93 } 94 DECLARE_KEEP_PAGER(plat_primary_init_early); 95 96 /* May be overridden in plat-$(PLATFORM)/main.c */ 97 __weak void main_init_gic(void) 98 { 99 } 100 101 /* May be overridden in plat-$(PLATFORM)/main.c */ 102 __weak void main_secondary_init_gic(void) 103 { 104 } 105 106 /* May be overridden in plat-$(PLATFORM)/main.c */ 107 __weak unsigned long plat_get_aslr_seed(void) 108 { 109 DMSG("Warning: no ASLR seed"); 110 111 return 0; 112 } 113 114 #if defined(CFG_WITH_ARM_TRUSTED_FW) 115 void init_sec_mon(unsigned long nsec_entry __maybe_unused) 116 { 117 assert(nsec_entry == PADDR_INVALID); 118 /* Do nothing as we don't have a secure monitor */ 119 } 120 #else 121 /* May be overridden in plat-$(PLATFORM)/main.c */ 122 __weak void init_sec_mon(unsigned long nsec_entry) 123 { 124 struct sm_nsec_ctx *nsec_ctx; 125 126 assert(nsec_entry != PADDR_INVALID); 127 128 /* Initialize secure monitor */ 129 nsec_ctx = sm_get_nsec_ctx(); 130 nsec_ctx->mon_lr = nsec_entry; 131 nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I; 132 if (nsec_entry & 1) 133 nsec_ctx->mon_spsr |= CPSR_T; 134 } 135 #endif 136 137 #if defined(CFG_WITH_ARM_TRUSTED_FW) 138 static void init_vfp_nsec(void) 139 { 140 } 141 #else 142 static void init_vfp_nsec(void) 143 { 144 /* Normal world can use CP10 and CP11 (SIMD/VFP) */ 145 write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11); 146 } 147 #endif 148 149 #if defined(CFG_WITH_VFP) 150 151 #ifdef ARM32 152 static void init_vfp_sec(void) 153 { 154 uint32_t cpacr = read_cpacr(); 155 156 /* 157 * Enable Advanced SIMD functionality. 158 * Enable use of D16-D31 of the Floating-point Extension register 159 * file. 160 */ 161 cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS); 162 /* 163 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user 164 * mode. 165 */ 166 cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL); 167 cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL); 168 write_cpacr(cpacr); 169 } 170 #endif /* ARM32 */ 171 172 #ifdef ARM64 173 static void init_vfp_sec(void) 174 { 175 /* Not using VFP until thread_kernel_enable_vfp() */ 176 vfp_disable(); 177 } 178 #endif /* ARM64 */ 179 180 #else /* CFG_WITH_VFP */ 181 182 static void init_vfp_sec(void) 183 { 184 /* Not using VFP */ 185 } 186 #endif 187 188 #ifdef CFG_SECONDARY_INIT_CNTFRQ 189 static void primary_save_cntfrq(void) 190 { 191 assert(cntfrq == 0); 192 193 /* 194 * CNTFRQ should be initialized on the primary CPU by a 195 * previous boot stage 196 */ 197 cntfrq = read_cntfrq(); 198 } 199 200 static void secondary_init_cntfrq(void) 201 { 202 assert(cntfrq != 0); 203 write_cntfrq(cntfrq); 204 } 205 #else /* CFG_SECONDARY_INIT_CNTFRQ */ 206 static void primary_save_cntfrq(void) 207 { 208 } 209 210 static void secondary_init_cntfrq(void) 211 { 212 } 213 #endif 214 215 #ifdef CFG_CORE_SANITIZE_KADDRESS 216 static void init_run_constructors(void) 217 { 218 const vaddr_t *ctor; 219 220 for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++) 221 ((void (*)(void))(*ctor))(); 222 } 223 224 static void init_asan(void) 225 { 226 227 /* 228 * CFG_ASAN_SHADOW_OFFSET is also supplied as 229 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler. 230 * Since all the needed values to calculate the value of 231 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to 232 * calculate it in advance and hard code it into the platform 233 * conf.mk. Here where we have all the needed values we double 234 * check that the compiler is supplied the correct value. 235 */ 236 237 #define __ASAN_SHADOW_START \ 238 ROUNDUP(TEE_RAM_VA_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8) 239 assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start); 240 #define __CFG_ASAN_SHADOW_OFFSET \ 241 (__ASAN_SHADOW_START - (TEE_RAM_VA_START / 8)) 242 COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET); 243 #undef __ASAN_SHADOW_START 244 #undef __CFG_ASAN_SHADOW_OFFSET 245 246 /* 247 * Assign area covered by the shadow area, everything from start up 248 * to the beginning of the shadow area. 249 */ 250 asan_set_shadowed((void *)TEE_TEXT_VA_START, &__asan_shadow_start); 251 252 /* 253 * Add access to areas that aren't opened automatically by a 254 * constructor. 255 */ 256 asan_tag_access(&__ctor_list, &__ctor_end); 257 asan_tag_access(__rodata_start, __rodata_end); 258 #ifdef CFG_WITH_PAGER 259 asan_tag_access(__pageable_start, __pageable_end); 260 #endif /*CFG_WITH_PAGER*/ 261 asan_tag_access(__nozi_start, __nozi_end); 262 asan_tag_access(__exidx_start, __exidx_end); 263 asan_tag_access(__extab_start, __extab_end); 264 265 init_run_constructors(); 266 267 /* Everything is tagged correctly, let's start address sanitizing. */ 268 asan_start(); 269 } 270 #else /*CFG_CORE_SANITIZE_KADDRESS*/ 271 static void init_asan(void) 272 { 273 } 274 #endif /*CFG_CORE_SANITIZE_KADDRESS*/ 275 276 #ifdef CFG_WITH_PAGER 277 278 #ifdef CFG_CORE_SANITIZE_KADDRESS 279 static void carve_out_asan_mem(tee_mm_pool_t *pool) 280 { 281 const size_t s = pool->hi - pool->lo; 282 tee_mm_entry_t *mm; 283 paddr_t apa = ASAN_MAP_PA; 284 size_t asz = ASAN_MAP_SZ; 285 286 if (core_is_buffer_outside(apa, asz, pool->lo, s)) 287 return; 288 289 /* Reserve the shadow area */ 290 if (!core_is_buffer_inside(apa, asz, pool->lo, s)) { 291 if (apa < pool->lo) { 292 /* 293 * ASAN buffer is overlapping with the beginning of 294 * the pool. 295 */ 296 asz -= pool->lo - apa; 297 apa = pool->lo; 298 } else { 299 /* 300 * ASAN buffer is overlapping with the end of the 301 * pool. 302 */ 303 asz = pool->hi - apa; 304 } 305 } 306 mm = tee_mm_alloc2(pool, apa, asz); 307 assert(mm); 308 } 309 #else 310 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused) 311 { 312 } 313 #endif 314 315 static void print_pager_pool_size(void) 316 { 317 struct tee_pager_stats __maybe_unused stats; 318 319 tee_pager_get_stats(&stats); 320 IMSG("Pager pool size: %zukB", 321 stats.npages_all * SMALL_PAGE_SIZE / 1024); 322 } 323 324 static void init_vcore(tee_mm_pool_t *mm_vcore) 325 { 326 const vaddr_t begin = VCORE_START_VA; 327 vaddr_t end = begin + TEE_RAM_VA_SIZE; 328 329 #ifdef CFG_CORE_SANITIZE_KADDRESS 330 /* Carve out asan memory, flat maped after core memory */ 331 if (end > ASAN_SHADOW_PA) 332 end = ASAN_MAP_PA; 333 #endif 334 335 if (!tee_mm_init(mm_vcore, begin, end, SMALL_PAGE_SHIFT, 336 TEE_MM_POOL_NO_FLAGS)) 337 panic("tee_mm_vcore init failed"); 338 } 339 340 /* 341 * With CFG_CORE_ASLR=y the init part is relocated very early during boot. 342 * The init part is also paged just as the rest of the normal paged code, with 343 * the difference that it's preloaded during boot. When the backing store 344 * is configured the entire paged binary is copied in place and then also 345 * the init part. Since the init part has been relocated (references to 346 * addresses updated to compensate for the new load address) this has to be 347 * undone for the hashes of those pages to match with the original binary. 348 * 349 * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are 350 * unchanged. 351 */ 352 static void undo_init_relocation(uint8_t *paged_store __maybe_unused) 353 { 354 #ifdef CFG_CORE_ASLR 355 unsigned long *ptr = NULL; 356 const uint32_t *reloc = NULL; 357 const uint32_t *reloc_end = NULL; 358 unsigned long offs = boot_mmu_config.load_offset; 359 const struct boot_embdata *embdata = (const void *)__init_end; 360 vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_RAM_START; 361 vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_RAM_START; 362 363 reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset); 364 reloc_end = reloc + embdata->reloc_len / sizeof(*reloc); 365 366 for (; reloc < reloc_end; reloc++) { 367 if (*reloc < addr_start) 368 continue; 369 if (*reloc >= addr_end) 370 break; 371 ptr = (void *)(paged_store + *reloc - addr_start); 372 *ptr -= offs; 373 } 374 #endif 375 } 376 377 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes, 378 void *store) 379 { 380 const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE; 381 #ifdef CFG_CORE_ASLR 382 unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA; 383 const struct boot_embdata *embdata = (const void *)__init_end; 384 const void *reloc = __init_end + embdata->reloc_offset; 385 386 return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs, 387 reloc, embdata->reloc_len, store); 388 #else 389 return fobj_ro_paged_alloc(num_pages, hashes, store); 390 #endif 391 } 392 393 static void init_runtime(unsigned long pageable_part) 394 { 395 size_t n; 396 size_t init_size = (size_t)(__init_end - __init_start); 397 size_t pageable_start = (size_t)__pageable_start; 398 size_t pageable_end = (size_t)__pageable_end; 399 size_t pageable_size = pageable_end - pageable_start; 400 size_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE; 401 size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) * 402 TEE_SHA256_HASH_SIZE; 403 const struct boot_embdata *embdata = (const void *)__init_end; 404 const void *tmp_hashes = NULL; 405 tee_mm_entry_t *mm = NULL; 406 struct fobj *fobj = NULL; 407 uint8_t *paged_store = NULL; 408 uint8_t *hashes = NULL; 409 410 assert(pageable_size % SMALL_PAGE_SIZE == 0); 411 assert(embdata->total_len >= embdata->hashes_offset + 412 embdata->hashes_len); 413 assert(hash_size == embdata->hashes_len); 414 415 tmp_hashes = __init_end + embdata->hashes_offset; 416 417 init_asan(); 418 419 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 420 malloc_add_pool(__heap2_start, __heap2_end - __heap2_start); 421 422 /* 423 * This needs to be initialized early to support address lookup 424 * in MEM_AREA_TEE_RAM 425 */ 426 tee_pager_early_init(); 427 428 hashes = malloc(hash_size); 429 IMSG_RAW("\n"); 430 IMSG("Pager is enabled. Hashes: %zu bytes", hash_size); 431 assert(hashes); 432 asan_memcpy_unchecked(hashes, tmp_hashes, hash_size); 433 434 /* 435 * Need tee_mm_sec_ddr initialized to be able to allocate secure 436 * DDR below. 437 */ 438 core_mmu_init_ta_ram(); 439 440 carve_out_asan_mem(&tee_mm_sec_ddr); 441 442 mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size); 443 assert(mm); 444 paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM); 445 /* 446 * Load pageable part in the dedicated allocated area: 447 * - Move pageable non-init part into pageable area. Note bootloader 448 * may have loaded it anywhere in TA RAM hence use memmove(). 449 * - Copy pageable init part from current location into pageable area. 450 */ 451 memmove(paged_store + init_size, 452 phys_to_virt(pageable_part, 453 core_mmu_get_type_by_pa(pageable_part)), 454 __pageable_part_end - __pageable_part_start); 455 asan_memcpy_unchecked(paged_store, __init_start, init_size); 456 /* 457 * Undo eventual relocation for the init part so the hash checks 458 * can pass. 459 */ 460 undo_init_relocation(paged_store); 461 462 /* Check that hashes of what's in pageable area is OK */ 463 DMSG("Checking hashes of pageable area"); 464 for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) { 465 const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE; 466 const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE; 467 TEE_Result res; 468 469 DMSG("hash pg_idx %zu hash %p page %p", n, hash, page); 470 res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE); 471 if (res != TEE_SUCCESS) { 472 EMSG("Hash failed for page %zu at %p: res 0x%x", 473 n, (void *)page, res); 474 panic(); 475 } 476 } 477 478 /* 479 * Assert prepaged init sections are page aligned so that nothing 480 * trails uninited at the end of the premapped init area. 481 */ 482 assert(!(init_size & SMALL_PAGE_MASK)); 483 484 /* 485 * Initialize the virtual memory pool used for main_mmu_l2_ttb which 486 * is supplied to tee_pager_init() below. 487 */ 488 init_vcore(&tee_mm_vcore); 489 490 /* 491 * Assign alias area for pager end of the small page block the rest 492 * of the binary is loaded into. We're taking more than needed, but 493 * we're guaranteed to not need more than the physical amount of 494 * TZSRAM. 495 */ 496 mm = tee_mm_alloc2(&tee_mm_vcore, 497 (vaddr_t)tee_mm_vcore.hi - TZSRAM_SIZE, TZSRAM_SIZE); 498 assert(mm); 499 tee_pager_set_alias_area(mm); 500 501 /* 502 * Claim virtual memory which isn't paged. 503 * Linear memory (flat map core memory) ends there. 504 */ 505 mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA, 506 (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA)); 507 assert(mm); 508 509 /* 510 * Allocate virtual memory for the pageable area and let the pager 511 * take charge of all the pages already assigned to that memory. 512 */ 513 mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start, 514 pageable_size); 515 assert(mm); 516 fobj = ro_paged_alloc(mm, hashes, paged_store); 517 assert(fobj); 518 tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO, 519 fobj); 520 fobj_put(fobj); 521 522 tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false); 523 tee_pager_add_pages(pageable_start + init_size, 524 (pageable_size - init_size) / SMALL_PAGE_SIZE, 525 true); 526 if (pageable_end < tzsram_end) 527 tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) / 528 SMALL_PAGE_SIZE, true); 529 530 /* 531 * There may be physical pages in TZSRAM before the core load address. 532 * These pages can be added to the physical pages pool of the pager. 533 * This setup may happen when a the secure bootloader runs in TZRAM 534 * and its memory can be reused by OP-TEE once boot stages complete. 535 */ 536 tee_pager_add_pages(tee_mm_vcore.lo, 537 (VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE, 538 true); 539 540 print_pager_pool_size(); 541 } 542 #else 543 544 static void init_runtime(unsigned long pageable_part __unused) 545 { 546 init_asan(); 547 548 /* 549 * By default whole OP-TEE uses malloc, so we need to initialize 550 * it early. But, when virtualization is enabled, malloc is used 551 * only by TEE runtime, so malloc should be initialized later, for 552 * every virtual partition separately. Core code uses nex_malloc 553 * instead. 554 */ 555 #ifdef CFG_VIRTUALIZATION 556 nex_malloc_add_pool(__nex_heap_start, __nex_heap_end - 557 __nex_heap_start); 558 #else 559 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 560 #endif 561 562 IMSG_RAW("\n"); 563 } 564 #endif 565 566 void *get_dt(void) 567 { 568 void *fdt = get_embedded_dt(); 569 570 if (!fdt) 571 fdt = get_external_dt(); 572 573 return fdt; 574 } 575 576 #if defined(CFG_EMBED_DTB) 577 void *get_embedded_dt(void) 578 { 579 static bool checked; 580 581 assert(cpu_mmu_enabled()); 582 583 if (!checked) { 584 IMSG("Embedded DTB found"); 585 586 if (fdt_check_header(embedded_secure_dtb)) 587 panic("Invalid embedded DTB"); 588 589 checked = true; 590 } 591 592 return embedded_secure_dtb; 593 } 594 #else 595 void *get_embedded_dt(void) 596 { 597 return NULL; 598 } 599 #endif /*CFG_EMBED_DTB*/ 600 601 #if defined(CFG_DT) 602 void *get_external_dt(void) 603 { 604 assert(cpu_mmu_enabled()); 605 return external_dt.blob; 606 } 607 608 static TEE_Result release_external_dt(void) 609 { 610 int ret = 0; 611 612 if (!external_dt.blob) 613 return TEE_SUCCESS; 614 615 ret = fdt_pack(external_dt.blob); 616 if (ret < 0) { 617 EMSG("Failed to pack Device Tree at 0x%" PRIxPA ": error %d", 618 virt_to_phys(external_dt.blob), ret); 619 panic(); 620 } 621 622 if (core_mmu_remove_mapping(MEM_AREA_EXT_DT, external_dt.blob, 623 CFG_DTB_MAX_SIZE)) 624 panic("Failed to remove temporary Device Tree mapping"); 625 626 /* External DTB no more reached, reset pointer to invalid */ 627 external_dt.blob = NULL; 628 629 return TEE_SUCCESS; 630 } 631 boot_final(release_external_dt); 632 633 #ifdef CFG_EXTERNAL_DTB_OVERLAY 634 static int add_dt_overlay_fragment(struct dt_descriptor *dt, int ioffs) 635 { 636 char frag[32]; 637 int offs; 638 int ret; 639 640 snprintf(frag, sizeof(frag), "fragment@%d", dt->frag_id); 641 offs = fdt_add_subnode(dt->blob, ioffs, frag); 642 if (offs < 0) 643 return offs; 644 645 dt->frag_id += 1; 646 647 ret = fdt_setprop_string(dt->blob, offs, "target-path", "/"); 648 if (ret < 0) 649 return -1; 650 651 return fdt_add_subnode(dt->blob, offs, "__overlay__"); 652 } 653 654 static int init_dt_overlay(struct dt_descriptor *dt, int __maybe_unused dt_size) 655 { 656 int fragment; 657 int ret; 658 659 ret = fdt_check_header(dt->blob); 660 if (!ret) { 661 fdt_for_each_subnode(fragment, dt->blob, 0) 662 dt->frag_id += 1; 663 return ret; 664 } 665 666 #ifdef CFG_DT_ADDR 667 return fdt_create_empty_tree(dt->blob, dt_size); 668 #else 669 return -1; 670 #endif 671 } 672 #else 673 static int add_dt_overlay_fragment(struct dt_descriptor *dt __unused, int offs) 674 { 675 return offs; 676 } 677 678 static int init_dt_overlay(struct dt_descriptor *dt __unused, 679 int dt_size __unused) 680 { 681 return 0; 682 } 683 #endif /* CFG_EXTERNAL_DTB_OVERLAY */ 684 685 static int add_dt_path_subnode(struct dt_descriptor *dt, const char *path, 686 const char *subnode) 687 { 688 int offs; 689 690 offs = fdt_path_offset(dt->blob, path); 691 if (offs < 0) 692 return -1; 693 offs = add_dt_overlay_fragment(dt, offs); 694 if (offs < 0) 695 return -1; 696 offs = fdt_add_subnode(dt->blob, offs, subnode); 697 if (offs < 0) 698 return -1; 699 return offs; 700 } 701 702 static int add_optee_dt_node(struct dt_descriptor *dt) 703 { 704 int offs; 705 int ret; 706 707 if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) { 708 DMSG("OP-TEE Device Tree node already exists!"); 709 return 0; 710 } 711 712 offs = fdt_path_offset(dt->blob, "/firmware"); 713 if (offs < 0) { 714 offs = add_dt_path_subnode(dt, "/", "firmware"); 715 if (offs < 0) 716 return -1; 717 } 718 719 offs = fdt_add_subnode(dt->blob, offs, "optee"); 720 if (offs < 0) 721 return -1; 722 723 ret = fdt_setprop_string(dt->blob, offs, "compatible", 724 "linaro,optee-tz"); 725 if (ret < 0) 726 return -1; 727 ret = fdt_setprop_string(dt->blob, offs, "method", "smc"); 728 if (ret < 0) 729 return -1; 730 return 0; 731 } 732 733 #ifdef CFG_PSCI_ARM32 734 static int append_psci_compatible(void *fdt, int offs, const char *str) 735 { 736 return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1); 737 } 738 739 static int dt_add_psci_node(struct dt_descriptor *dt) 740 { 741 int offs; 742 743 if (fdt_path_offset(dt->blob, "/psci") >= 0) { 744 DMSG("PSCI Device Tree node already exists!"); 745 return 0; 746 } 747 748 offs = add_dt_path_subnode(dt, "/", "psci"); 749 if (offs < 0) 750 return -1; 751 if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0")) 752 return -1; 753 if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2")) 754 return -1; 755 if (append_psci_compatible(dt->blob, offs, "arm,psci")) 756 return -1; 757 if (fdt_setprop_string(dt->blob, offs, "method", "smc")) 758 return -1; 759 if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND)) 760 return -1; 761 if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF)) 762 return -1; 763 if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON)) 764 return -1; 765 if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF)) 766 return -1; 767 if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET)) 768 return -1; 769 return 0; 770 } 771 772 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs, 773 const char *prefix) 774 { 775 const size_t prefix_len = strlen(prefix); 776 size_t l; 777 int plen; 778 const char *prop; 779 780 prop = fdt_getprop(dt->blob, offs, "compatible", &plen); 781 if (!prop) 782 return -1; 783 784 while (plen > 0) { 785 if (memcmp(prop, prefix, prefix_len) == 0) 786 return 0; /* match */ 787 788 l = strlen(prop) + 1; 789 prop += l; 790 plen -= l; 791 } 792 793 return -1; 794 } 795 796 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt) 797 { 798 int offs = 0; 799 800 while (1) { 801 offs = fdt_next_node(dt->blob, offs, NULL); 802 if (offs < 0) 803 break; 804 if (fdt_getprop(dt->blob, offs, "enable-method", NULL)) 805 continue; /* already set */ 806 if (check_node_compat_prefix(dt, offs, "arm,cortex-a")) 807 continue; /* no compatible */ 808 if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci")) 809 return -1; 810 /* Need to restart scanning as offsets may have changed */ 811 offs = 0; 812 } 813 return 0; 814 } 815 816 static int config_psci(struct dt_descriptor *dt) 817 { 818 if (dt_add_psci_node(dt)) 819 return -1; 820 return dt_add_psci_cpu_enable_methods(dt); 821 } 822 #else 823 static int config_psci(struct dt_descriptor *dt __unused) 824 { 825 return 0; 826 } 827 #endif /*CFG_PSCI_ARM32*/ 828 829 static void set_dt_val(void *data, uint32_t cell_size, uint64_t val) 830 { 831 if (cell_size == 1) { 832 fdt32_t v = cpu_to_fdt32((uint32_t)val); 833 834 memcpy(data, &v, sizeof(v)); 835 } else { 836 fdt64_t v = cpu_to_fdt64(val); 837 838 memcpy(data, &v, sizeof(v)); 839 } 840 } 841 842 static int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name, 843 paddr_t pa, size_t size) 844 { 845 int offs = 0; 846 int ret = 0; 847 int addr_size = -1; 848 int len_size = -1; 849 bool found = true; 850 char subnode_name[80] = { 0 }; 851 852 offs = fdt_path_offset(dt->blob, "/reserved-memory"); 853 854 if (offs < 0) { 855 found = false; 856 offs = 0; 857 } 858 859 if (IS_ENABLED(CFG_EXTERNAL_DTB_OVERLAY)) { 860 len_size = sizeof(paddr_t) / sizeof(uint32_t); 861 addr_size = sizeof(paddr_t) / sizeof(uint32_t); 862 } else { 863 len_size = fdt_size_cells(dt->blob, offs); 864 if (len_size < 0) 865 return -1; 866 addr_size = fdt_address_cells(dt->blob, offs); 867 if (addr_size < 0) 868 return -1; 869 } 870 871 if (!found) { 872 offs = add_dt_path_subnode(dt, "/", "reserved-memory"); 873 if (offs < 0) 874 return -1; 875 ret = fdt_setprop_cell(dt->blob, offs, "#address-cells", 876 addr_size); 877 if (ret < 0) 878 return -1; 879 ret = fdt_setprop_cell(dt->blob, offs, "#size-cells", len_size); 880 if (ret < 0) 881 return -1; 882 ret = fdt_setprop(dt->blob, offs, "ranges", NULL, 0); 883 if (ret < 0) 884 return -1; 885 } 886 887 ret = snprintf(subnode_name, sizeof(subnode_name), 888 "%s@0x%" PRIxPA, name, pa); 889 if (ret < 0 || ret >= (int)sizeof(subnode_name)) 890 DMSG("truncated node \"%s@0x%"PRIxPA"\"", name, pa); 891 offs = fdt_add_subnode(dt->blob, offs, subnode_name); 892 if (offs >= 0) { 893 uint32_t data[FDT_MAX_NCELLS * 2]; 894 895 set_dt_val(data, addr_size, pa); 896 set_dt_val(data + addr_size, len_size, size); 897 ret = fdt_setprop(dt->blob, offs, "reg", data, 898 sizeof(uint32_t) * (addr_size + len_size)); 899 if (ret < 0) 900 return -1; 901 ret = fdt_setprop(dt->blob, offs, "no-map", NULL, 0); 902 if (ret < 0) 903 return -1; 904 } else { 905 return -1; 906 } 907 return 0; 908 } 909 910 #ifdef CFG_CORE_DYN_SHM 911 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs, 912 uint32_t cell_size) 913 { 914 uint64_t rv = 0; 915 916 if (cell_size == 1) { 917 uint32_t v; 918 919 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v)); 920 *offs += sizeof(v); 921 rv = fdt32_to_cpu(v); 922 } else { 923 uint64_t v; 924 925 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v)); 926 *offs += sizeof(v); 927 rv = fdt64_to_cpu(v); 928 } 929 930 return rv; 931 } 932 933 /* 934 * Find all non-secure memory from DT. Memory marked inaccessible by Secure 935 * World is ignored since it could not be mapped to be used as dynamic shared 936 * memory. 937 */ 938 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem) 939 { 940 const uint8_t *prop = NULL; 941 uint64_t a = 0; 942 uint64_t l = 0; 943 size_t prop_offs = 0; 944 size_t prop_len = 0; 945 int elems_total = 0; 946 int addr_size = 0; 947 int len_size = 0; 948 int offs = 0; 949 size_t n = 0; 950 int len = 0; 951 952 addr_size = fdt_address_cells(fdt, 0); 953 if (addr_size < 0) 954 return 0; 955 956 len_size = fdt_size_cells(fdt, 0); 957 if (len_size < 0) 958 return 0; 959 960 while (true) { 961 offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type", 962 "memory", 963 sizeof("memory")); 964 if (offs < 0) 965 break; 966 967 if (_fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC | 968 DT_STATUS_OK_SEC)) 969 continue; 970 971 prop = fdt_getprop(fdt, offs, "reg", &len); 972 if (!prop) 973 continue; 974 975 prop_len = len; 976 for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) { 977 a = get_dt_val_and_advance(prop, &prop_offs, addr_size); 978 if (prop_offs >= prop_len) { 979 n--; 980 break; 981 } 982 983 l = get_dt_val_and_advance(prop, &prop_offs, len_size); 984 if (mem) { 985 mem->type = MEM_AREA_DDR_OVERALL; 986 mem->addr = a; 987 mem->size = l; 988 mem++; 989 } 990 } 991 992 elems_total += n; 993 } 994 995 return elems_total; 996 } 997 998 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems) 999 { 1000 struct core_mmu_phys_mem *mem = NULL; 1001 int elems_total = 0; 1002 1003 elems_total = get_nsec_memory_helper(fdt, NULL); 1004 if (elems_total <= 0) 1005 return NULL; 1006 1007 mem = nex_calloc(elems_total, sizeof(*mem)); 1008 if (!mem) 1009 panic(); 1010 1011 elems_total = get_nsec_memory_helper(fdt, mem); 1012 assert(elems_total > 0); 1013 1014 *nelems = elems_total; 1015 1016 return mem; 1017 } 1018 #endif /*CFG_CORE_DYN_SHM*/ 1019 1020 #ifdef CFG_CORE_RESERVED_SHM 1021 static int mark_static_shm_as_reserved(struct dt_descriptor *dt) 1022 { 1023 vaddr_t shm_start; 1024 vaddr_t shm_end; 1025 1026 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end); 1027 if (shm_start != shm_end) 1028 return add_res_mem_dt_node(dt, "optee_shm", 1029 virt_to_phys((void *)shm_start), 1030 shm_end - shm_start); 1031 1032 DMSG("No SHM configured"); 1033 return -1; 1034 } 1035 #endif /*CFG_CORE_RESERVED_SHM*/ 1036 1037 static void init_external_dt(unsigned long phys_dt) 1038 { 1039 struct dt_descriptor *dt = &external_dt; 1040 void *fdt; 1041 int ret; 1042 1043 if (!phys_dt) { 1044 /* 1045 * No need to panic as we're not using the DT in OP-TEE 1046 * yet, we're only adding some nodes for normal world use. 1047 * This makes the switch to using DT easier as we can boot 1048 * a newer OP-TEE with older boot loaders. Once we start to 1049 * initialize devices based on DT we'll likely panic 1050 * instead of returning here. 1051 */ 1052 IMSG("No non-secure external DT"); 1053 return; 1054 } 1055 1056 fdt = core_mmu_add_mapping(MEM_AREA_EXT_DT, phys_dt, CFG_DTB_MAX_SIZE); 1057 if (!fdt) 1058 panic("Failed to map external DTB"); 1059 1060 dt->blob = fdt; 1061 1062 ret = init_dt_overlay(dt, CFG_DTB_MAX_SIZE); 1063 if (ret < 0) { 1064 EMSG("Device Tree Overlay init fail @ %#lx: error %d", phys_dt, 1065 ret); 1066 panic(); 1067 } 1068 1069 ret = fdt_open_into(fdt, fdt, CFG_DTB_MAX_SIZE); 1070 if (ret < 0) { 1071 EMSG("Invalid Device Tree at %#lx: error %d", phys_dt, ret); 1072 panic(); 1073 } 1074 1075 IMSG("Non-secure external DT found"); 1076 } 1077 1078 static int mark_tzdram_as_reserved(struct dt_descriptor *dt) 1079 { 1080 return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START, 1081 CFG_TZDRAM_SIZE); 1082 } 1083 1084 static void update_external_dt(void) 1085 { 1086 struct dt_descriptor *dt = &external_dt; 1087 1088 if (!dt->blob) 1089 return; 1090 1091 if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt)) 1092 panic("Failed to add OP-TEE Device Tree node"); 1093 1094 if (config_psci(dt)) 1095 panic("Failed to config PSCI"); 1096 1097 #ifdef CFG_CORE_RESERVED_SHM 1098 if (mark_static_shm_as_reserved(dt)) 1099 panic("Failed to config non-secure memory"); 1100 #endif 1101 1102 if (mark_tzdram_as_reserved(dt)) 1103 panic("Failed to config secure memory"); 1104 } 1105 #else /*CFG_DT*/ 1106 void *get_external_dt(void) 1107 { 1108 return NULL; 1109 } 1110 1111 static void init_external_dt(unsigned long phys_dt __unused) 1112 { 1113 } 1114 1115 static void update_external_dt(void) 1116 { 1117 } 1118 1119 #ifdef CFG_CORE_DYN_SHM 1120 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused, 1121 size_t *nelems __unused) 1122 { 1123 return NULL; 1124 } 1125 #endif /*CFG_CORE_DYN_SHM*/ 1126 #endif /*!CFG_DT*/ 1127 1128 #ifdef CFG_CORE_DYN_SHM 1129 static void discover_nsec_memory(void) 1130 { 1131 struct core_mmu_phys_mem *mem; 1132 const struct core_mmu_phys_mem *mem_begin = NULL; 1133 const struct core_mmu_phys_mem *mem_end = NULL; 1134 size_t nelems; 1135 void *fdt = get_external_dt(); 1136 1137 if (fdt) { 1138 mem = get_nsec_memory(fdt, &nelems); 1139 if (mem) { 1140 core_mmu_set_discovered_nsec_ddr(mem, nelems); 1141 return; 1142 } 1143 1144 DMSG("No non-secure memory found in FDT"); 1145 } 1146 1147 mem_begin = phys_ddr_overall_begin; 1148 mem_end = phys_ddr_overall_end; 1149 nelems = mem_end - mem_begin; 1150 if (nelems) { 1151 /* 1152 * Platform cannot use both register_ddr() and the now 1153 * deprecated register_dynamic_shm(). 1154 */ 1155 assert(phys_ddr_overall_compat_begin == 1156 phys_ddr_overall_compat_end); 1157 } else { 1158 mem_begin = phys_ddr_overall_compat_begin; 1159 mem_end = phys_ddr_overall_compat_end; 1160 nelems = mem_end - mem_begin; 1161 if (!nelems) 1162 return; 1163 DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead"); 1164 } 1165 1166 mem = nex_calloc(nelems, sizeof(*mem)); 1167 if (!mem) 1168 panic(); 1169 1170 memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems); 1171 core_mmu_set_discovered_nsec_ddr(mem, nelems); 1172 } 1173 #else /*CFG_CORE_DYN_SHM*/ 1174 static void discover_nsec_memory(void) 1175 { 1176 } 1177 #endif /*!CFG_CORE_DYN_SHM*/ 1178 1179 void init_tee_runtime(void) 1180 { 1181 #ifdef CFG_VIRTUALIZATION 1182 /* We need to initialize pool for every virtual guest partition */ 1183 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 1184 #endif 1185 1186 #ifndef CFG_WITH_PAGER 1187 /* Pager initializes TA RAM early */ 1188 core_mmu_init_ta_ram(); 1189 #endif 1190 call_initcalls(); 1191 } 1192 1193 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry) 1194 { 1195 /* 1196 * Mask asynchronous exceptions before switch to the thread vector 1197 * as the thread handler requires those to be masked while 1198 * executing with the temporary stack. The thread subsystem also 1199 * asserts that the foreign interrupts are blocked when using most of 1200 * its functions. 1201 */ 1202 thread_set_exceptions(THREAD_EXCP_ALL); 1203 primary_save_cntfrq(); 1204 init_vfp_sec(); 1205 /* 1206 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must 1207 * set a current thread right now to avoid a chicken-and-egg problem 1208 * (thread_init_boot_thread() sets the current thread but needs 1209 * things set by init_runtime()). 1210 */ 1211 thread_get_core_local()->curr_thread = 0; 1212 init_runtime(pageable_part); 1213 1214 if (IS_ENABLED(CFG_VIRTUALIZATION)) { 1215 /* 1216 * Virtualization: We can't initialize threads right now because 1217 * threads belong to "tee" part and will be initialized 1218 * separately per each new virtual guest. So, we'll clear 1219 * "curr_thread" and call it done. 1220 */ 1221 thread_get_core_local()->curr_thread = -1; 1222 } else { 1223 thread_init_boot_thread(); 1224 } 1225 thread_init_primary(); 1226 thread_init_per_cpu(); 1227 init_sec_mon(nsec_entry); 1228 } 1229 1230 /* 1231 * Note: this function is weak just to make it possible to exclude it from 1232 * the unpaged area. 1233 */ 1234 void __weak boot_init_primary_late(unsigned long fdt) 1235 { 1236 init_external_dt(fdt); 1237 tpm_map_log_area(get_external_dt()); 1238 discover_nsec_memory(); 1239 update_external_dt(); 1240 configure_console_from_dt(); 1241 1242 IMSG("OP-TEE version: %s", core_v_str); 1243 IMSG("Primary CPU initializing"); 1244 #ifdef CFG_CORE_ASLR 1245 DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA, 1246 (unsigned long)boot_mmu_config.load_offset, VCORE_START_VA); 1247 #endif 1248 1249 main_init_gic(); 1250 init_vfp_nsec(); 1251 #ifndef CFG_VIRTUALIZATION 1252 init_tee_runtime(); 1253 #endif 1254 #ifdef CFG_VIRTUALIZATION 1255 IMSG("Initializing virtualization support"); 1256 core_mmu_init_virtualization(); 1257 #endif 1258 call_finalcalls(); 1259 IMSG("Primary CPU switching to normal world boot"); 1260 } 1261 1262 static void init_secondary_helper(unsigned long nsec_entry) 1263 { 1264 IMSG("Secondary CPU %zu initializing", get_core_pos()); 1265 1266 /* 1267 * Mask asynchronous exceptions before switch to the thread vector 1268 * as the thread handler requires those to be masked while 1269 * executing with the temporary stack. The thread subsystem also 1270 * asserts that the foreign interrupts are blocked when using most of 1271 * its functions. 1272 */ 1273 thread_set_exceptions(THREAD_EXCP_ALL); 1274 1275 secondary_init_cntfrq(); 1276 thread_init_per_cpu(); 1277 init_sec_mon(nsec_entry); 1278 main_secondary_init_gic(); 1279 init_vfp_sec(); 1280 init_vfp_nsec(); 1281 1282 IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos()); 1283 } 1284 1285 /* 1286 * Note: this function is weak just to make it possible to exclude it from 1287 * the unpaged area so that it lies in the init area. 1288 */ 1289 void __weak boot_init_primary_early(unsigned long pageable_part, 1290 unsigned long nsec_entry __maybe_unused) 1291 { 1292 unsigned long e = PADDR_INVALID; 1293 1294 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 1295 e = nsec_entry; 1296 #endif 1297 1298 init_primary(pageable_part, e); 1299 } 1300 1301 #if defined(CFG_WITH_ARM_TRUSTED_FW) 1302 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused, 1303 unsigned long a1 __unused) 1304 { 1305 init_secondary_helper(PADDR_INVALID); 1306 return 0; 1307 } 1308 #else 1309 void boot_init_secondary(unsigned long nsec_entry) 1310 { 1311 init_secondary_helper(nsec_entry); 1312 } 1313 #endif 1314 1315 #if defined(CFG_BOOT_SECONDARY_REQUEST) 1316 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry, 1317 uintptr_t context_id) 1318 { 1319 ns_entry_contexts[core_idx].entry_point = entry; 1320 ns_entry_contexts[core_idx].context_id = context_id; 1321 dsb_ishst(); 1322 } 1323 1324 int boot_core_release(size_t core_idx, paddr_t entry) 1325 { 1326 if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE) 1327 return -1; 1328 1329 ns_entry_contexts[core_idx].entry_point = entry; 1330 dmb(); 1331 spin_table[core_idx] = 1; 1332 dsb(); 1333 sev(); 1334 1335 return 0; 1336 } 1337 1338 /* 1339 * spin until secondary boot request, then returns with 1340 * the secondary core entry address. 1341 */ 1342 struct ns_entry_context *boot_core_hpen(void) 1343 { 1344 #ifdef CFG_PSCI_ARM32 1345 return &ns_entry_contexts[get_core_pos()]; 1346 #else 1347 do { 1348 wfe(); 1349 } while (!spin_table[get_core_pos()]); 1350 dmb(); 1351 return &ns_entry_contexts[get_core_pos()]; 1352 #endif 1353 } 1354 #endif 1355 1356 #if defined(CFG_CORE_ASLR) 1357 #if defined(CFG_DT) 1358 unsigned long __weak get_aslr_seed(void *fdt) 1359 { 1360 int rc = fdt_check_header(fdt); 1361 const uint64_t *seed = NULL; 1362 int offs = 0; 1363 int len = 0; 1364 1365 if (rc) { 1366 DMSG("Bad fdt: %d", rc); 1367 goto err; 1368 } 1369 1370 offs = fdt_path_offset(fdt, "/secure-chosen"); 1371 if (offs < 0) { 1372 DMSG("Cannot find /secure-chosen"); 1373 goto err; 1374 } 1375 seed = fdt_getprop(fdt, offs, "kaslr-seed", &len); 1376 if (!seed || len != sizeof(*seed)) { 1377 DMSG("Cannot find valid kaslr-seed"); 1378 goto err; 1379 } 1380 1381 return fdt64_to_cpu(*seed); 1382 1383 err: 1384 /* Try platform implementation */ 1385 return plat_get_aslr_seed(); 1386 } 1387 #else /*!CFG_DT*/ 1388 unsigned long __weak get_aslr_seed(void *fdt __unused) 1389 { 1390 /* Try platform implementation */ 1391 return plat_get_aslr_seed(); 1392 } 1393 #endif /*!CFG_DT*/ 1394 #endif /*CFG_CORE_ASLR*/ 1395