1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2015-2023, Linaro Limited 4 * Copyright (c) 2023, Arm Limited 5 */ 6 7 #include <arm.h> 8 #include <assert.h> 9 #include <compiler.h> 10 #include <config.h> 11 #include <console.h> 12 #include <crypto/crypto.h> 13 #include <drivers/gic.h> 14 #include <dt-bindings/interrupt-controller/arm-gic.h> 15 #include <ffa.h> 16 #include <initcall.h> 17 #include <inttypes.h> 18 #include <io.h> 19 #include <keep.h> 20 #include <kernel/asan.h> 21 #include <kernel/boot.h> 22 #include <kernel/dt.h> 23 #include <kernel/linker.h> 24 #include <kernel/misc.h> 25 #include <kernel/panic.h> 26 #include <kernel/tee_misc.h> 27 #include <kernel/thread.h> 28 #include <kernel/tpm.h> 29 #include <kernel/transfer_list.h> 30 #include <libfdt.h> 31 #include <malloc.h> 32 #include <memtag.h> 33 #include <mm/core_memprot.h> 34 #include <mm/core_mmu.h> 35 #include <mm/fobj.h> 36 #include <mm/phys_mem.h> 37 #include <mm/tee_mm.h> 38 #include <mm/tee_pager.h> 39 #include <sm/psci.h> 40 #include <trace.h> 41 #include <utee_defines.h> 42 #include <util.h> 43 44 #include <platform_config.h> 45 46 #if !defined(CFG_WITH_ARM_TRUSTED_FW) 47 #include <sm/sm.h> 48 #endif 49 50 #if defined(CFG_WITH_VFP) 51 #include <kernel/vfp.h> 52 #endif 53 54 /* 55 * In this file we're using unsigned long to represent physical pointers as 56 * they are received in a single register when OP-TEE is initially entered. 57 * This limits 32-bit systems to only use make use of the lower 32 bits 58 * of a physical address for initial parameters. 59 * 60 * 64-bit systems on the other hand can use full 64-bit physical pointers. 61 */ 62 #define PADDR_INVALID ULONG_MAX 63 64 #if defined(CFG_BOOT_SECONDARY_REQUEST) 65 struct ns_entry_context { 66 uintptr_t entry_point; 67 uintptr_t context_id; 68 }; 69 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE]; 70 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE]; 71 #endif 72 73 #ifdef CFG_BOOT_SYNC_CPU 74 /* 75 * Array used when booting, to synchronize cpu. 76 * When 0, the cpu has not started. 77 * When 1, it has started 78 */ 79 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE]; 80 DECLARE_KEEP_PAGER(sem_cpu_sync); 81 #endif 82 83 static unsigned long boot_arg_fdt __nex_bss; 84 static unsigned long boot_arg_nsec_entry __nex_bss; 85 static unsigned long boot_arg_pageable_part __nex_bss; 86 static unsigned long boot_arg_transfer_list __nex_bss; 87 static struct transfer_list_header *mapped_tl __nex_bss; 88 89 #ifdef CFG_SECONDARY_INIT_CNTFRQ 90 static uint32_t cntfrq; 91 #endif 92 93 /* May be overridden in plat-$(PLATFORM)/main.c */ 94 __weak void plat_primary_init_early(void) 95 { 96 } 97 DECLARE_KEEP_PAGER(plat_primary_init_early); 98 99 /* May be overridden in plat-$(PLATFORM)/main.c */ 100 __weak void boot_primary_init_intc(void) 101 { 102 } 103 104 /* May be overridden in plat-$(PLATFORM)/main.c */ 105 __weak void boot_secondary_init_intc(void) 106 { 107 } 108 109 /* May be overridden in plat-$(PLATFORM)/main.c */ 110 __weak unsigned long plat_get_aslr_seed(void) 111 { 112 DMSG("Warning: no ASLR seed"); 113 114 return 0; 115 } 116 117 #if defined(_CFG_CORE_STACK_PROTECTOR) || defined(CFG_WITH_STACK_CANARIES) 118 /* Generate random stack canary value on boot up */ 119 __weak void plat_get_random_stack_canaries(void *buf, size_t ncan, size_t size) 120 { 121 TEE_Result ret = TEE_ERROR_GENERIC; 122 size_t i = 0; 123 124 assert(buf && ncan && size); 125 126 /* 127 * With virtualization the RNG is not initialized in Nexus core. 128 * Need to override with platform specific implementation. 129 */ 130 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 131 IMSG("WARNING: Using fixed value for stack canary"); 132 memset(buf, 0xab, ncan * size); 133 goto out; 134 } 135 136 ret = crypto_rng_read(buf, ncan * size); 137 if (ret != TEE_SUCCESS) 138 panic("Failed to generate random stack canary"); 139 140 out: 141 /* Leave null byte in canary to prevent string base exploit */ 142 for (i = 0; i < ncan; i++) 143 *((uint8_t *)buf + size * i) = 0; 144 } 145 #endif /* _CFG_CORE_STACK_PROTECTOR || CFG_WITH_STACK_CANARIES */ 146 147 /* 148 * This function is called as a guard after each smc call which is not 149 * supposed to return. 150 */ 151 void __panic_at_smc_return(void) 152 { 153 panic(); 154 } 155 156 #if defined(CFG_WITH_ARM_TRUSTED_FW) 157 void init_sec_mon(unsigned long nsec_entry __maybe_unused) 158 { 159 assert(nsec_entry == PADDR_INVALID); 160 /* Do nothing as we don't have a secure monitor */ 161 } 162 #else 163 /* May be overridden in plat-$(PLATFORM)/main.c */ 164 __weak void init_sec_mon(unsigned long nsec_entry) 165 { 166 struct sm_nsec_ctx *nsec_ctx; 167 168 assert(nsec_entry != PADDR_INVALID); 169 170 /* Initialize secure monitor */ 171 nsec_ctx = sm_get_nsec_ctx(); 172 nsec_ctx->mon_lr = nsec_entry; 173 nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I; 174 if (nsec_entry & 1) 175 nsec_ctx->mon_spsr |= CPSR_T; 176 } 177 #endif 178 179 #if defined(CFG_WITH_ARM_TRUSTED_FW) 180 static void init_vfp_nsec(void) 181 { 182 } 183 #else 184 static void init_vfp_nsec(void) 185 { 186 /* Normal world can use CP10 and CP11 (SIMD/VFP) */ 187 write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11); 188 } 189 #endif 190 191 static void check_crypto_extensions(void) 192 { 193 bool ce_supported = true; 194 195 if (!feat_aes_implemented() && 196 IS_ENABLED(CFG_CRYPTO_AES_ARM_CE)) { 197 EMSG("AES instructions are not supported"); 198 ce_supported = false; 199 } 200 201 if (!feat_sha1_implemented() && 202 IS_ENABLED(CFG_CRYPTO_SHA1_ARM_CE)) { 203 EMSG("SHA1 instructions are not supported"); 204 ce_supported = false; 205 } 206 207 if (!feat_sha256_implemented() && 208 IS_ENABLED(CFG_CRYPTO_SHA256_ARM_CE)) { 209 EMSG("SHA256 instructions are not supported"); 210 ce_supported = false; 211 } 212 213 /* Check aarch64 specific instructions */ 214 if (IS_ENABLED(CFG_ARM64_core)) { 215 if (!feat_sha512_implemented() && 216 IS_ENABLED(CFG_CRYPTO_SHA512_ARM_CE)) { 217 EMSG("SHA512 instructions are not supported"); 218 ce_supported = false; 219 } 220 221 if (!feat_sha3_implemented() && 222 IS_ENABLED(CFG_CRYPTO_SHA3_ARM_CE)) { 223 EMSG("SHA3 instructions are not supported"); 224 ce_supported = false; 225 } 226 227 if (!feat_sm3_implemented() && 228 IS_ENABLED(CFG_CRYPTO_SM3_ARM_CE)) { 229 EMSG("SM3 instructions are not supported"); 230 ce_supported = false; 231 } 232 233 if (!feat_sm4_implemented() && 234 IS_ENABLED(CFG_CRYPTO_SM4_ARM_CE)) { 235 EMSG("SM4 instructions are not supported"); 236 ce_supported = false; 237 } 238 } 239 240 if (!ce_supported) 241 panic("HW doesn't support CE instructions"); 242 } 243 244 #if defined(CFG_WITH_VFP) 245 246 #ifdef ARM32 247 static void init_vfp_sec(void) 248 { 249 uint32_t cpacr = read_cpacr(); 250 251 /* 252 * Enable Advanced SIMD functionality. 253 * Enable use of D16-D31 of the Floating-point Extension register 254 * file. 255 */ 256 cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS); 257 /* 258 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user 259 * mode. 260 */ 261 cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL); 262 cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL); 263 write_cpacr(cpacr); 264 } 265 #endif /* ARM32 */ 266 267 #ifdef ARM64 268 static void init_vfp_sec(void) 269 { 270 /* Not using VFP until thread_kernel_enable_vfp() */ 271 vfp_disable(); 272 } 273 #endif /* ARM64 */ 274 275 #else /* CFG_WITH_VFP */ 276 277 static void init_vfp_sec(void) 278 { 279 /* Not using VFP */ 280 } 281 #endif 282 283 #ifdef CFG_SECONDARY_INIT_CNTFRQ 284 static void primary_save_cntfrq(void) 285 { 286 assert(cntfrq == 0); 287 288 /* 289 * CNTFRQ should be initialized on the primary CPU by a 290 * previous boot stage 291 */ 292 cntfrq = read_cntfrq(); 293 } 294 295 static void secondary_init_cntfrq(void) 296 { 297 assert(cntfrq != 0); 298 write_cntfrq(cntfrq); 299 } 300 #else /* CFG_SECONDARY_INIT_CNTFRQ */ 301 static void primary_save_cntfrq(void) 302 { 303 } 304 305 static void secondary_init_cntfrq(void) 306 { 307 } 308 #endif 309 310 #ifdef CFG_CORE_SANITIZE_KADDRESS 311 static void init_run_constructors(void) 312 { 313 const vaddr_t *ctor; 314 315 for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++) 316 ((void (*)(void))(*ctor))(); 317 } 318 319 static void init_asan(void) 320 { 321 322 /* 323 * CFG_ASAN_SHADOW_OFFSET is also supplied as 324 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler. 325 * Since all the needed values to calculate the value of 326 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to 327 * calculate it in advance and hard code it into the platform 328 * conf.mk. Here where we have all the needed values we double 329 * check that the compiler is supplied the correct value. 330 */ 331 332 #define __ASAN_SHADOW_START \ 333 ROUNDUP(TEE_RAM_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8) 334 assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start); 335 #define __CFG_ASAN_SHADOW_OFFSET \ 336 (__ASAN_SHADOW_START - (TEE_RAM_START / 8)) 337 COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET); 338 #undef __ASAN_SHADOW_START 339 #undef __CFG_ASAN_SHADOW_OFFSET 340 341 /* 342 * Assign area covered by the shadow area, everything from start up 343 * to the beginning of the shadow area. 344 */ 345 asan_set_shadowed((void *)TEE_LOAD_ADDR, &__asan_shadow_start); 346 347 /* 348 * Add access to areas that aren't opened automatically by a 349 * constructor. 350 */ 351 asan_tag_access(&__ctor_list, &__ctor_end); 352 asan_tag_access(__rodata_start, __rodata_end); 353 #ifdef CFG_WITH_PAGER 354 asan_tag_access(__pageable_start, __pageable_end); 355 #endif /*CFG_WITH_PAGER*/ 356 asan_tag_access(__nozi_start, __nozi_end); 357 #ifdef ARM32 358 asan_tag_access(__exidx_start, __exidx_end); 359 asan_tag_access(__extab_start, __extab_end); 360 #endif 361 362 init_run_constructors(); 363 364 /* Everything is tagged correctly, let's start address sanitizing. */ 365 asan_start(); 366 } 367 #else /*CFG_CORE_SANITIZE_KADDRESS*/ 368 static void init_asan(void) 369 { 370 } 371 #endif /*CFG_CORE_SANITIZE_KADDRESS*/ 372 373 #if defined(CFG_MEMTAG) 374 /* Called from entry_a64.S only when MEMTAG is configured */ 375 void boot_init_memtag(void) 376 { 377 memtag_init_ops(feat_mte_implemented()); 378 } 379 380 static TEE_Result mmap_clear_memtag(struct tee_mmap_region *map, 381 void *ptr __unused) 382 { 383 switch (map->type) { 384 case MEM_AREA_NEX_RAM_RO: 385 case MEM_AREA_SEC_RAM_OVERALL: 386 DMSG("Clearing tags for VA %#"PRIxVA"..%#"PRIxVA, 387 map->va, map->va + map->size - 1); 388 memtag_set_tags((void *)map->va, map->size, 0); 389 break; 390 default: 391 break; 392 } 393 394 return TEE_SUCCESS; 395 } 396 397 /* Called from entry_a64.S only when MEMTAG is configured */ 398 void boot_clear_memtag(void) 399 { 400 core_mmu_for_each_map(NULL, mmap_clear_memtag); 401 } 402 #endif 403 404 #ifdef CFG_WITH_PAGER 405 406 #ifdef CFG_CORE_SANITIZE_KADDRESS 407 static void carve_out_asan_mem(void) 408 { 409 nex_phys_mem_partial_carve_out(ASAN_MAP_PA, ASAN_MAP_SZ); 410 } 411 #else 412 static void carve_out_asan_mem(void) 413 { 414 } 415 #endif 416 417 static void print_pager_pool_size(void) 418 { 419 struct tee_pager_stats __maybe_unused stats; 420 421 tee_pager_get_stats(&stats); 422 IMSG("Pager pool size: %zukB", 423 stats.npages_all * SMALL_PAGE_SIZE / 1024); 424 } 425 426 static void init_virt_pool(tee_mm_pool_t *virt_pool) 427 { 428 const vaddr_t begin = VCORE_START_VA; 429 size_t size = TEE_RAM_VA_SIZE; 430 431 #ifdef CFG_CORE_SANITIZE_KADDRESS 432 /* Carve out asan memory, flat maped after core memory */ 433 if (begin + size > ASAN_SHADOW_PA) 434 size = ASAN_MAP_PA - begin; 435 #endif 436 437 if (!tee_mm_init(virt_pool, begin, size, SMALL_PAGE_SHIFT, 438 TEE_MM_POOL_NO_FLAGS)) 439 panic("core_virt_mem_pool init failed"); 440 } 441 442 /* 443 * With CFG_CORE_ASLR=y the init part is relocated very early during boot. 444 * The init part is also paged just as the rest of the normal paged code, with 445 * the difference that it's preloaded during boot. When the backing store 446 * is configured the entire paged binary is copied in place and then also 447 * the init part. Since the init part has been relocated (references to 448 * addresses updated to compensate for the new load address) this has to be 449 * undone for the hashes of those pages to match with the original binary. 450 * 451 * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are 452 * unchanged. 453 */ 454 static void undo_init_relocation(uint8_t *paged_store __maybe_unused) 455 { 456 #ifdef CFG_CORE_ASLR 457 unsigned long *ptr = NULL; 458 const uint32_t *reloc = NULL; 459 const uint32_t *reloc_end = NULL; 460 unsigned long offs = boot_mmu_config.map_offset; 461 const struct boot_embdata *embdata = (const void *)__init_end; 462 vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_LOAD_ADDR; 463 vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_LOAD_ADDR; 464 465 reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset); 466 reloc_end = reloc + embdata->reloc_len / sizeof(*reloc); 467 468 for (; reloc < reloc_end; reloc++) { 469 if (*reloc < addr_start) 470 continue; 471 if (*reloc >= addr_end) 472 break; 473 ptr = (void *)(paged_store + *reloc - addr_start); 474 *ptr -= offs; 475 } 476 #endif 477 } 478 479 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes, 480 void *store) 481 { 482 const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE; 483 #ifdef CFG_CORE_ASLR 484 unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA; 485 const struct boot_embdata *embdata = (const void *)__init_end; 486 const void *reloc = __init_end + embdata->reloc_offset; 487 488 return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs, 489 reloc, embdata->reloc_len, store); 490 #else 491 return fobj_ro_paged_alloc(num_pages, hashes, store); 492 #endif 493 } 494 495 static void init_runtime(unsigned long pageable_part) 496 { 497 size_t n; 498 size_t init_size = (size_t)(__init_end - __init_start); 499 size_t pageable_start = (size_t)__pageable_start; 500 size_t pageable_end = (size_t)__pageable_end; 501 size_t pageable_size = pageable_end - pageable_start; 502 vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR + 503 VCORE_START_VA; 504 size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) * 505 TEE_SHA256_HASH_SIZE; 506 const struct boot_embdata *embdata = (const void *)__init_end; 507 const void *tmp_hashes = NULL; 508 tee_mm_entry_t *mm = NULL; 509 struct fobj *fobj = NULL; 510 uint8_t *paged_store = NULL; 511 uint8_t *hashes = NULL; 512 513 assert(pageable_size % SMALL_PAGE_SIZE == 0); 514 assert(embdata->total_len >= embdata->hashes_offset + 515 embdata->hashes_len); 516 assert(hash_size == embdata->hashes_len); 517 518 tmp_hashes = __init_end + embdata->hashes_offset; 519 520 init_asan(); 521 522 /* Add heap2 first as heap1 may be too small as initial bget pool */ 523 malloc_add_pool(__heap2_start, __heap2_end - __heap2_start); 524 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 525 526 /* 527 * This needs to be initialized early to support address lookup 528 * in MEM_AREA_TEE_RAM 529 */ 530 tee_pager_early_init(); 531 532 hashes = malloc(hash_size); 533 IMSG_RAW("\n"); 534 IMSG("Pager is enabled. Hashes: %zu bytes", hash_size); 535 assert(hashes); 536 asan_memcpy_unchecked(hashes, tmp_hashes, hash_size); 537 538 /* 539 * Need physical memory pool initialized to be able to allocate 540 * secure physical memory below. 541 */ 542 core_mmu_init_phys_mem(); 543 544 carve_out_asan_mem(); 545 546 mm = nex_phys_mem_ta_alloc(pageable_size); 547 assert(mm); 548 paged_store = phys_to_virt(tee_mm_get_smem(mm), 549 MEM_AREA_SEC_RAM_OVERALL, pageable_size); 550 /* 551 * Load pageable part in the dedicated allocated area: 552 * - Move pageable non-init part into pageable area. Note bootloader 553 * may have loaded it anywhere in TA RAM hence use memmove(). 554 * - Copy pageable init part from current location into pageable area. 555 */ 556 memmove(paged_store + init_size, 557 phys_to_virt(pageable_part, 558 core_mmu_get_type_by_pa(pageable_part), 559 __pageable_part_end - __pageable_part_start), 560 __pageable_part_end - __pageable_part_start); 561 asan_memcpy_unchecked(paged_store, __init_start, init_size); 562 /* 563 * Undo eventual relocation for the init part so the hash checks 564 * can pass. 565 */ 566 undo_init_relocation(paged_store); 567 568 /* Check that hashes of what's in pageable area is OK */ 569 DMSG("Checking hashes of pageable area"); 570 for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) { 571 const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE; 572 const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE; 573 TEE_Result res; 574 575 DMSG("hash pg_idx %zu hash %p page %p", n, hash, page); 576 res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE); 577 if (res != TEE_SUCCESS) { 578 EMSG("Hash failed for page %zu at %p: res 0x%x", 579 n, (void *)page, res); 580 panic(); 581 } 582 } 583 584 /* 585 * Assert prepaged init sections are page aligned so that nothing 586 * trails uninited at the end of the premapped init area. 587 */ 588 assert(!(init_size & SMALL_PAGE_MASK)); 589 590 /* 591 * Initialize the virtual memory pool used for main_mmu_l2_ttb which 592 * is supplied to tee_pager_init() below. 593 */ 594 init_virt_pool(&core_virt_mem_pool); 595 596 /* 597 * Assign alias area for pager end of the small page block the rest 598 * of the binary is loaded into. We're taking more than needed, but 599 * we're guaranteed to not need more than the physical amount of 600 * TZSRAM. 601 */ 602 mm = tee_mm_alloc2(&core_virt_mem_pool, 603 (vaddr_t)core_virt_mem_pool.lo + 604 core_virt_mem_pool.size - TZSRAM_SIZE, 605 TZSRAM_SIZE); 606 assert(mm); 607 tee_pager_set_alias_area(mm); 608 609 /* 610 * Claim virtual memory which isn't paged. 611 * Linear memory (flat map core memory) ends there. 612 */ 613 mm = tee_mm_alloc2(&core_virt_mem_pool, VCORE_UNPG_RX_PA, 614 (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA)); 615 assert(mm); 616 617 /* 618 * Allocate virtual memory for the pageable area and let the pager 619 * take charge of all the pages already assigned to that memory. 620 */ 621 mm = tee_mm_alloc2(&core_virt_mem_pool, (vaddr_t)__pageable_start, 622 pageable_size); 623 assert(mm); 624 fobj = ro_paged_alloc(mm, hashes, paged_store); 625 assert(fobj); 626 tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO, 627 fobj); 628 fobj_put(fobj); 629 630 tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false); 631 tee_pager_add_pages(pageable_start + init_size, 632 (pageable_size - init_size) / SMALL_PAGE_SIZE, 633 true); 634 if (pageable_end < tzsram_end) 635 tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) / 636 SMALL_PAGE_SIZE, true); 637 638 /* 639 * There may be physical pages in TZSRAM before the core load address. 640 * These pages can be added to the physical pages pool of the pager. 641 * This setup may happen when a the secure bootloader runs in TZRAM 642 * and its memory can be reused by OP-TEE once boot stages complete. 643 */ 644 tee_pager_add_pages(core_virt_mem_pool.lo, 645 (VCORE_UNPG_RX_PA - core_virt_mem_pool.lo) / 646 SMALL_PAGE_SIZE, 647 true); 648 649 print_pager_pool_size(); 650 } 651 #else 652 653 static void init_runtime(unsigned long pageable_part __unused) 654 { 655 init_asan(); 656 657 /* 658 * By default whole OP-TEE uses malloc, so we need to initialize 659 * it early. But, when virtualization is enabled, malloc is used 660 * only by TEE runtime, so malloc should be initialized later, for 661 * every virtual partition separately. Core code uses nex_malloc 662 * instead. 663 */ 664 #ifdef CFG_NS_VIRTUALIZATION 665 nex_malloc_add_pool(__nex_heap_start, __nex_heap_end - 666 __nex_heap_start); 667 #else 668 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start); 669 #endif 670 671 IMSG_RAW("\n"); 672 } 673 #endif 674 675 #if defined(CFG_DT) 676 static int add_optee_dt_node(struct dt_descriptor *dt) 677 { 678 int offs; 679 int ret; 680 681 if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) { 682 DMSG("OP-TEE Device Tree node already exists!"); 683 return 0; 684 } 685 686 offs = fdt_path_offset(dt->blob, "/firmware"); 687 if (offs < 0) { 688 offs = add_dt_path_subnode(dt, "/", "firmware"); 689 if (offs < 0) 690 return -1; 691 } 692 693 offs = fdt_add_subnode(dt->blob, offs, "optee"); 694 if (offs < 0) 695 return -1; 696 697 ret = fdt_setprop_string(dt->blob, offs, "compatible", 698 "linaro,optee-tz"); 699 if (ret < 0) 700 return -1; 701 ret = fdt_setprop_string(dt->blob, offs, "method", "smc"); 702 if (ret < 0) 703 return -1; 704 705 if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) { 706 /* 707 * The format of the interrupt property is defined by the 708 * binding of the interrupt domain root. In this case it's 709 * one Arm GIC v1, v2 or v3 so we must be compatible with 710 * these. 711 * 712 * An SPI type of interrupt is indicated with a 0 in the 713 * first cell. A PPI type is indicated with value 1. 714 * 715 * The interrupt number goes in the second cell where 716 * SPIs ranges from 0 to 987 and PPI ranges from 0 to 15. 717 * 718 * Flags are passed in the third cells. 719 */ 720 uint32_t itr_trigger = 0; 721 uint32_t itr_type = 0; 722 uint32_t itr_id = 0; 723 uint32_t val[3] = { }; 724 725 /* PPI are visible only in current CPU cluster */ 726 static_assert(IS_ENABLED(CFG_CORE_FFA) || 727 !CFG_CORE_ASYNC_NOTIF_GIC_INTID || 728 (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= 729 GIC_SPI_BASE) || 730 ((CFG_TEE_CORE_NB_CORE <= 8) && 731 (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= 732 GIC_PPI_BASE))); 733 734 if (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= GIC_SPI_BASE) { 735 itr_type = GIC_SPI; 736 itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_SPI_BASE; 737 itr_trigger = IRQ_TYPE_EDGE_RISING; 738 } else { 739 itr_type = GIC_PPI; 740 itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_PPI_BASE; 741 itr_trigger = IRQ_TYPE_EDGE_RISING | 742 GIC_CPU_MASK_SIMPLE(CFG_TEE_CORE_NB_CORE); 743 } 744 745 val[0] = TEE_U32_TO_BIG_ENDIAN(itr_type); 746 val[1] = TEE_U32_TO_BIG_ENDIAN(itr_id); 747 val[2] = TEE_U32_TO_BIG_ENDIAN(itr_trigger); 748 749 ret = fdt_setprop(dt->blob, offs, "interrupts", val, 750 sizeof(val)); 751 if (ret < 0) 752 return -1; 753 } 754 return 0; 755 } 756 757 #ifdef CFG_PSCI_ARM32 758 static int append_psci_compatible(void *fdt, int offs, const char *str) 759 { 760 return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1); 761 } 762 763 static int dt_add_psci_node(struct dt_descriptor *dt) 764 { 765 int offs; 766 767 if (fdt_path_offset(dt->blob, "/psci") >= 0) { 768 DMSG("PSCI Device Tree node already exists!"); 769 return 0; 770 } 771 772 offs = add_dt_path_subnode(dt, "/", "psci"); 773 if (offs < 0) 774 return -1; 775 if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0")) 776 return -1; 777 if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2")) 778 return -1; 779 if (append_psci_compatible(dt->blob, offs, "arm,psci")) 780 return -1; 781 if (fdt_setprop_string(dt->blob, offs, "method", "smc")) 782 return -1; 783 if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND)) 784 return -1; 785 if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF)) 786 return -1; 787 if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON)) 788 return -1; 789 if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF)) 790 return -1; 791 if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET)) 792 return -1; 793 return 0; 794 } 795 796 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs, 797 const char *prefix) 798 { 799 const size_t prefix_len = strlen(prefix); 800 size_t l; 801 int plen; 802 const char *prop; 803 804 prop = fdt_getprop(dt->blob, offs, "compatible", &plen); 805 if (!prop) 806 return -1; 807 808 while (plen > 0) { 809 if (memcmp(prop, prefix, prefix_len) == 0) 810 return 0; /* match */ 811 812 l = strlen(prop) + 1; 813 prop += l; 814 plen -= l; 815 } 816 817 return -1; 818 } 819 820 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt) 821 { 822 int offs = 0; 823 824 while (1) { 825 offs = fdt_next_node(dt->blob, offs, NULL); 826 if (offs < 0) 827 break; 828 if (fdt_getprop(dt->blob, offs, "enable-method", NULL)) 829 continue; /* already set */ 830 if (check_node_compat_prefix(dt, offs, "arm,cortex-a")) 831 continue; /* no compatible */ 832 if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci")) 833 return -1; 834 /* Need to restart scanning as offsets may have changed */ 835 offs = 0; 836 } 837 return 0; 838 } 839 840 static int config_psci(struct dt_descriptor *dt) 841 { 842 if (dt_add_psci_node(dt)) 843 return -1; 844 return dt_add_psci_cpu_enable_methods(dt); 845 } 846 #else 847 static int config_psci(struct dt_descriptor *dt __unused) 848 { 849 return 0; 850 } 851 #endif /*CFG_PSCI_ARM32*/ 852 853 static int mark_tzdram_as_reserved(struct dt_descriptor *dt) 854 { 855 return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START, 856 CFG_TZDRAM_SIZE); 857 } 858 859 static void update_external_dt(void) 860 { 861 struct dt_descriptor *dt = get_external_dt_desc(); 862 863 if (!dt || !dt->blob) 864 return; 865 866 if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt)) 867 panic("Failed to add OP-TEE Device Tree node"); 868 869 if (config_psci(dt)) 870 panic("Failed to config PSCI"); 871 872 #ifdef CFG_CORE_RESERVED_SHM 873 if (mark_static_shm_as_reserved(dt)) 874 panic("Failed to config non-secure memory"); 875 #endif 876 877 if (mark_tzdram_as_reserved(dt)) 878 panic("Failed to config secure memory"); 879 } 880 #else /*CFG_DT*/ 881 static void update_external_dt(void) 882 { 883 } 884 #endif /*!CFG_DT*/ 885 886 void init_tee_runtime(void) 887 { 888 #ifndef CFG_WITH_PAGER 889 /* Pager initializes TA RAM early */ 890 core_mmu_init_phys_mem(); 891 #endif 892 /* 893 * With virtualization we call this function when creating the 894 * OP-TEE partition instead. 895 */ 896 if (!IS_ENABLED(CFG_NS_VIRTUALIZATION)) 897 call_preinitcalls(); 898 call_early_initcalls(); 899 call_service_initcalls(); 900 901 /* 902 * These two functions uses crypto_rng_read() to initialize the 903 * pauth keys. Once call_initcalls() returns we're guaranteed that 904 * crypto_rng_read() is ready to be used. 905 */ 906 thread_init_core_local_pauth_keys(); 907 thread_init_thread_pauth_keys(); 908 909 /* 910 * Reinitialize canaries around the stacks with crypto_rng_read(). 911 * 912 * TODO: Updating canaries when CFG_NS_VIRTUALIZATION is enabled will 913 * require synchronization between thread_check_canaries() and 914 * thread_update_canaries(). 915 */ 916 if (!IS_ENABLED(CFG_NS_VIRTUALIZATION)) 917 thread_update_canaries(); 918 } 919 920 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry) 921 { 922 thread_init_core_local_stacks(); 923 /* 924 * Mask asynchronous exceptions before switch to the thread vector 925 * as the thread handler requires those to be masked while 926 * executing with the temporary stack. The thread subsystem also 927 * asserts that the foreign interrupts are blocked when using most of 928 * its functions. 929 */ 930 thread_set_exceptions(THREAD_EXCP_ALL); 931 primary_save_cntfrq(); 932 init_vfp_sec(); 933 934 if (IS_ENABLED(CFG_CRYPTO_WITH_CE)) 935 check_crypto_extensions(); 936 937 /* 938 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must 939 * set a current thread right now to avoid a chicken-and-egg problem 940 * (thread_init_boot_thread() sets the current thread but needs 941 * things set by init_runtime()). 942 */ 943 thread_get_core_local()->curr_thread = 0; 944 init_runtime(pageable_part); 945 946 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 947 /* 948 * Virtualization: We can't initialize threads right now because 949 * threads belong to "tee" part and will be initialized 950 * separately per each new virtual guest. So, we'll clear 951 * "curr_thread" and call it done. 952 */ 953 thread_get_core_local()->curr_thread = -1; 954 } else { 955 thread_init_boot_thread(); 956 } 957 thread_init_primary(); 958 thread_init_per_cpu(); 959 init_sec_mon(nsec_entry); 960 } 961 962 static bool cpu_nmfi_enabled(void) 963 { 964 #if defined(ARM32) 965 return read_sctlr() & SCTLR_NMFI; 966 #else 967 /* Note: ARM64 does not feature non-maskable FIQ support. */ 968 return false; 969 #endif 970 } 971 972 /* 973 * Note: this function is weak just to make it possible to exclude it from 974 * the unpaged area. 975 */ 976 void __weak boot_init_primary_late(unsigned long fdt __unused, 977 unsigned long manifest __unused) 978 { 979 size_t fdt_size = CFG_DTB_MAX_SIZE; 980 981 if (IS_ENABLED(CFG_TRANSFER_LIST) && mapped_tl) { 982 struct transfer_list_entry *tl_e = NULL; 983 984 tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT); 985 if (tl_e) 986 fdt_size = tl_e->data_size; 987 } 988 989 init_external_dt(boot_arg_fdt, fdt_size); 990 reinit_manifest_dt(); 991 #ifdef CFG_CORE_SEL1_SPMC 992 tpm_map_log_area(get_manifest_dt()); 993 #else 994 tpm_map_log_area(get_external_dt()); 995 #endif 996 discover_nsec_memory(); 997 update_external_dt(); 998 configure_console_from_dt(); 999 1000 IMSG("OP-TEE version: %s", core_v_str); 1001 if (IS_ENABLED(CFG_INSECURE)) { 1002 IMSG("WARNING: This OP-TEE configuration might be insecure!"); 1003 IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html"); 1004 } 1005 IMSG("Primary CPU initializing"); 1006 #ifdef CFG_CORE_ASLR 1007 DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA, 1008 (unsigned long)boot_mmu_config.map_offset, VCORE_START_VA); 1009 #endif 1010 if (IS_ENABLED(CFG_MEMTAG)) 1011 DMSG("Memory tagging %s", 1012 memtag_is_enabled() ? "enabled" : "disabled"); 1013 1014 /* Check if platform needs NMFI workaround */ 1015 if (cpu_nmfi_enabled()) { 1016 if (!IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI)) 1017 IMSG("WARNING: This ARM core has NMFI enabled, please apply workaround!"); 1018 } else { 1019 if (IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI)) 1020 IMSG("WARNING: This ARM core does not have NMFI enabled, no need for workaround"); 1021 } 1022 1023 boot_primary_init_intc(); 1024 init_vfp_nsec(); 1025 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1026 IMSG("Initializing virtualization support"); 1027 core_mmu_init_virtualization(); 1028 } else { 1029 init_tee_runtime(); 1030 } 1031 } 1032 1033 /* 1034 * Note: this function is weak just to make it possible to exclude it from 1035 * the unpaged area. 1036 */ 1037 void __weak boot_init_primary_final(void) 1038 { 1039 if (!IS_ENABLED(CFG_NS_VIRTUALIZATION)) 1040 call_driver_initcalls(); 1041 call_finalcalls(); 1042 IMSG("Primary CPU switching to normal world boot"); 1043 } 1044 1045 static void init_secondary_helper(unsigned long nsec_entry) 1046 { 1047 IMSG("Secondary CPU %zu initializing", get_core_pos()); 1048 1049 /* 1050 * Mask asynchronous exceptions before switch to the thread vector 1051 * as the thread handler requires those to be masked while 1052 * executing with the temporary stack. The thread subsystem also 1053 * asserts that the foreign interrupts are blocked when using most of 1054 * its functions. 1055 */ 1056 thread_set_exceptions(THREAD_EXCP_ALL); 1057 1058 secondary_init_cntfrq(); 1059 thread_init_per_cpu(); 1060 init_sec_mon(nsec_entry); 1061 boot_secondary_init_intc(); 1062 init_vfp_sec(); 1063 init_vfp_nsec(); 1064 1065 IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos()); 1066 } 1067 1068 /* 1069 * Note: this function is weak just to make it possible to exclude it from 1070 * the unpaged area so that it lies in the init area. 1071 */ 1072 void __weak boot_init_primary_early(void) 1073 { 1074 unsigned long pageable_part = 0; 1075 unsigned long e = PADDR_INVALID; 1076 struct transfer_list_entry *tl_e = NULL; 1077 1078 if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW)) 1079 e = boot_arg_nsec_entry; 1080 1081 if (IS_ENABLED(CFG_TRANSFER_LIST) && boot_arg_transfer_list) { 1082 /* map and save the TL */ 1083 mapped_tl = transfer_list_map(boot_arg_transfer_list); 1084 if (!mapped_tl) 1085 panic("Failed to map transfer list"); 1086 1087 transfer_list_dump(mapped_tl); 1088 tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT); 1089 if (tl_e) { 1090 /* 1091 * Expand the data size of the DTB entry to the maximum 1092 * allocable mapped memory to reserve sufficient space 1093 * for inserting new nodes, avoid potentially corrupting 1094 * next entries. 1095 */ 1096 uint32_t dtb_max_sz = mapped_tl->max_size - 1097 mapped_tl->size + tl_e->data_size; 1098 1099 if (!transfer_list_set_data_size(mapped_tl, tl_e, 1100 dtb_max_sz)) { 1101 EMSG("Failed to extend DTB size to %#"PRIx32, 1102 dtb_max_sz); 1103 panic(); 1104 } 1105 } 1106 tl_e = transfer_list_find(mapped_tl, TL_TAG_OPTEE_PAGABLE_PART); 1107 } 1108 1109 if (IS_ENABLED(CFG_WITH_PAGER)) { 1110 if (IS_ENABLED(CFG_TRANSFER_LIST) && tl_e) 1111 pageable_part = 1112 get_le64(transfer_list_entry_data(tl_e)); 1113 else 1114 pageable_part = boot_arg_pageable_part; 1115 } 1116 1117 init_primary(pageable_part, e); 1118 } 1119 1120 static void boot_save_transfer_list(unsigned long zero_reg, 1121 unsigned long transfer_list, 1122 unsigned long fdt) 1123 { 1124 struct transfer_list_header *tl = (void *)transfer_list; 1125 struct transfer_list_entry *tl_e = NULL; 1126 1127 if (zero_reg != 0) 1128 panic("Incorrect transfer list register convention"); 1129 1130 if (!IS_ALIGNED_WITH_TYPE(transfer_list, struct transfer_list_header) || 1131 !IS_ALIGNED(transfer_list, TL_ALIGNMENT_FROM_ORDER(tl->alignment))) 1132 panic("Transfer list base address is not aligned"); 1133 1134 if (transfer_list_check_header(tl) == TL_OPS_NONE) 1135 panic("Invalid transfer list"); 1136 1137 tl_e = transfer_list_find(tl, TL_TAG_FDT); 1138 if (fdt != (unsigned long)transfer_list_entry_data(tl_e)) 1139 panic("DT does not match to the DT entry of the TL"); 1140 1141 boot_arg_transfer_list = transfer_list; 1142 } 1143 1144 #if defined(CFG_WITH_ARM_TRUSTED_FW) 1145 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused, 1146 unsigned long a1 __unused) 1147 { 1148 init_secondary_helper(PADDR_INVALID); 1149 return 0; 1150 } 1151 #else 1152 void boot_init_secondary(unsigned long nsec_entry) 1153 { 1154 init_secondary_helper(nsec_entry); 1155 } 1156 #endif 1157 1158 #if defined(CFG_BOOT_SECONDARY_REQUEST) 1159 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry, 1160 uintptr_t context_id) 1161 { 1162 ns_entry_contexts[core_idx].entry_point = entry; 1163 ns_entry_contexts[core_idx].context_id = context_id; 1164 dsb_ishst(); 1165 } 1166 1167 int boot_core_release(size_t core_idx, paddr_t entry) 1168 { 1169 if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE) 1170 return -1; 1171 1172 ns_entry_contexts[core_idx].entry_point = entry; 1173 dmb(); 1174 spin_table[core_idx] = 1; 1175 dsb(); 1176 sev(); 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * spin until secondary boot request, then returns with 1183 * the secondary core entry address. 1184 */ 1185 struct ns_entry_context *boot_core_hpen(void) 1186 { 1187 #ifdef CFG_PSCI_ARM32 1188 return &ns_entry_contexts[get_core_pos()]; 1189 #else 1190 do { 1191 wfe(); 1192 } while (!spin_table[get_core_pos()]); 1193 dmb(); 1194 return &ns_entry_contexts[get_core_pos()]; 1195 #endif 1196 } 1197 #endif 1198 1199 #if defined(CFG_CORE_ASLR) 1200 #if defined(CFG_DT) 1201 unsigned long __weak get_aslr_seed(void) 1202 { 1203 void *fdt = NULL; 1204 int rc = 0; 1205 const uint64_t *seed = NULL; 1206 int offs = 0; 1207 int len = 0; 1208 1209 if (!IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1210 fdt = (void *)boot_arg_fdt; 1211 1212 if (!fdt) { 1213 DMSG("No fdt"); 1214 goto err; 1215 } 1216 1217 rc = fdt_check_header(fdt); 1218 if (rc) { 1219 DMSG("Bad fdt: %d", rc); 1220 goto err; 1221 } 1222 1223 offs = fdt_path_offset(fdt, "/secure-chosen"); 1224 if (offs < 0) { 1225 DMSG("Cannot find /secure-chosen"); 1226 goto err; 1227 } 1228 seed = fdt_getprop(fdt, offs, "kaslr-seed", &len); 1229 if (!seed || len != sizeof(*seed)) { 1230 DMSG("Cannot find valid kaslr-seed"); 1231 goto err; 1232 } 1233 1234 return fdt64_to_cpu(fdt64_ld(seed)); 1235 1236 err: 1237 /* Try platform implementation */ 1238 return plat_get_aslr_seed(); 1239 } 1240 #else /*!CFG_DT*/ 1241 unsigned long __weak get_aslr_seed(void) 1242 { 1243 /* Try platform implementation */ 1244 return plat_get_aslr_seed(); 1245 } 1246 #endif /*!CFG_DT*/ 1247 #endif /*CFG_CORE_ASLR*/ 1248 1249 static void *get_fdt_from_boot_info(struct ffa_boot_info_header_1_1 *hdr) 1250 { 1251 struct ffa_boot_info_1_1 *desc = NULL; 1252 uint8_t content_fmt = 0; 1253 uint8_t name_fmt = 0; 1254 void *fdt = NULL; 1255 int ret = 0; 1256 1257 if (hdr->signature != FFA_BOOT_INFO_SIGNATURE) { 1258 EMSG("Bad boot info signature %#"PRIx32, hdr->signature); 1259 panic(); 1260 } 1261 if (hdr->version != FFA_BOOT_INFO_VERSION) { 1262 EMSG("Bad boot info version %#"PRIx32, hdr->version); 1263 panic(); 1264 } 1265 if (hdr->desc_count != 1) { 1266 EMSG("Bad boot info descriptor count %#"PRIx32, 1267 hdr->desc_count); 1268 panic(); 1269 } 1270 desc = (void *)((vaddr_t)hdr + hdr->desc_offset); 1271 name_fmt = desc->flags & FFA_BOOT_INFO_FLAG_NAME_FORMAT_MASK; 1272 if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_STRING) 1273 DMSG("Boot info descriptor name \"%16s\"", desc->name); 1274 else if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_UUID) 1275 DMSG("Boot info descriptor UUID %pUl", (void *)desc->name); 1276 else 1277 DMSG("Boot info descriptor: unknown name format %"PRIu8, 1278 name_fmt); 1279 1280 content_fmt = (desc->flags & FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_MASK) >> 1281 FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT; 1282 if (content_fmt != FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR) { 1283 EMSG("Bad boot info content format %"PRIu8", expected %u (address)", 1284 content_fmt, FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR); 1285 panic(); 1286 } 1287 1288 fdt = (void *)(vaddr_t)desc->contents; 1289 ret = fdt_check_full(fdt, desc->size); 1290 if (ret < 0) { 1291 EMSG("Invalid Device Tree at %p: error %d", fdt, ret); 1292 panic(); 1293 } 1294 return fdt; 1295 } 1296 1297 static void get_sec_mem_from_manifest(void *fdt, paddr_t *base, size_t *size) 1298 { 1299 int ret = 0; 1300 uint64_t num = 0; 1301 1302 ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0"); 1303 if (ret < 0) { 1304 EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret); 1305 panic(); 1306 } 1307 ret = dt_getprop_as_number(fdt, 0, "load-address", &num); 1308 if (ret < 0) { 1309 EMSG("Can't read \"load-address\" from FF-A manifest at %p: error %d", 1310 fdt, ret); 1311 panic(); 1312 } 1313 *base = num; 1314 /* "mem-size" is currently an undocumented extension to the spec. */ 1315 ret = dt_getprop_as_number(fdt, 0, "mem-size", &num); 1316 if (ret < 0) { 1317 EMSG("Can't read \"mem-size\" from FF-A manifest at %p: error %d", 1318 fdt, ret); 1319 panic(); 1320 } 1321 *size = num; 1322 } 1323 1324 void __weak boot_save_args(unsigned long a0, unsigned long a1, 1325 unsigned long a2, unsigned long a3, 1326 unsigned long a4 __maybe_unused) 1327 { 1328 /* 1329 * Register use: 1330 * 1331 * Scenario A: Default arguments 1332 * a0 - CFG_CORE_FFA=y && CFG_CORE_SEL2_SPMC=n: 1333 * if non-NULL holds the TOS FW config [1] address 1334 * - CFG_CORE_FFA=y && 1335 (CFG_CORE_SEL2_SPMC=y || CFG_CORE_EL3_SPMC=y): 1336 * address of FF-A Boot Information Blob 1337 * - CFG_CORE_FFA=n: 1338 * if non-NULL holds the pagable part address 1339 * a1 - CFG_WITH_ARM_TRUSTED_FW=n (Armv7): 1340 * Armv7 standard bootarg #1 (kept track of in entry_a32.S) 1341 * a2 - CFG_CORE_SEL2_SPMC=n: 1342 * if non-NULL holds the system DTB address 1343 * - CFG_WITH_ARM_TRUSTED_FW=n (Armv7): 1344 * Armv7 standard bootarg #2 (system DTB address, kept track 1345 * of in entry_a32.S) 1346 * a3 - Not used 1347 * a4 - CFG_WITH_ARM_TRUSTED_FW=n: 1348 * Non-secure entry address 1349 * 1350 * [1] A TF-A concept: TOS_FW_CONFIG - Trusted OS Firmware 1351 * configuration file. Used by Trusted OS (BL32), that is, OP-TEE 1352 * here. This is also called Manifest DT, related to the Manifest DT 1353 * passed in the FF-A Boot Information Blob, but with a different 1354 * compatible string. 1355 1356 * Scenario B: FW Handoff via Transfer List 1357 * Note: FF-A and non-secure entry are not yet supported with 1358 * Transfer List 1359 * a0 - DTB address or 0 (AArch64) 1360 * - must be 0 (AArch32) 1361 * a1 - 1 << 32 | TRANSFER_LIST_SIGNATURE[0:31] (AArch64) 1362 * - 1 << 24 | TRANSFER_LIST_SIGNATURE[0:23] (AArch32) 1363 * a2 - must be 0 (AArch64) 1364 * - DTB address or 0 (AArch32) 1365 * a3 - Transfer list base address 1366 * a4 - Not used 1367 */ 1368 1369 if (IS_ENABLED(CFG_TRANSFER_LIST)) { 1370 if (IS_ENABLED(CFG_ARM64_core) && 1371 a1 == TL_HANDOFF_X1_VALUE(TL_REG_CONVENTION_VER)) { 1372 boot_save_transfer_list(a2, a3, a0); 1373 boot_arg_fdt = a0; 1374 } else if (IS_ENABLED(CFG_ARM32_core) && 1375 a1 == TL_HANDOFF_R1_VALUE(TL_REG_CONVENTION_VER)) { 1376 boot_save_transfer_list(a0, a3, a2); 1377 boot_arg_fdt = a2; 1378 } 1379 1380 return; 1381 } 1382 1383 if (!IS_ENABLED(CFG_CORE_SEL2_SPMC)) { 1384 #if defined(CFG_DT_ADDR) 1385 boot_arg_fdt = CFG_DT_ADDR; 1386 #else 1387 boot_arg_fdt = a2; 1388 #endif 1389 } 1390 1391 if (IS_ENABLED(CFG_CORE_FFA)) { 1392 if (IS_ENABLED(CFG_CORE_SEL2_SPMC) || 1393 IS_ENABLED(CFG_CORE_EL3_SPMC)) 1394 init_manifest_dt(get_fdt_from_boot_info((void *)a0)); 1395 else 1396 init_manifest_dt((void *)a0); 1397 if (IS_ENABLED(CFG_CORE_SEL2_SPMC) && 1398 IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)) { 1399 paddr_t base = 0; 1400 size_t size = 0; 1401 1402 get_sec_mem_from_manifest(get_manifest_dt(), 1403 &base, &size); 1404 core_mmu_set_secure_memory(base, size); 1405 } 1406 } else { 1407 if (IS_ENABLED(CFG_WITH_PAGER)) { 1408 #if defined(CFG_PAGEABLE_ADDR) 1409 boot_arg_pageable_part = CFG_PAGEABLE_ADDR; 1410 #else 1411 boot_arg_pageable_part = a0; 1412 #endif 1413 } 1414 if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW)) { 1415 #if defined(CFG_NS_ENTRY_ADDR) 1416 boot_arg_nsec_entry = CFG_NS_ENTRY_ADDR; 1417 #else 1418 boot_arg_nsec_entry = a4; 1419 #endif 1420 } 1421 } 1422 } 1423 1424 #if defined(CFG_TRANSFER_LIST) 1425 static TEE_Result release_transfer_list(void) 1426 { 1427 struct dt_descriptor *dt = get_external_dt_desc(); 1428 1429 if (!mapped_tl) 1430 return TEE_SUCCESS; 1431 1432 if (dt) { 1433 int ret = 0; 1434 struct transfer_list_entry *tl_e = NULL; 1435 1436 /* 1437 * Pack the DTB and update the transfer list before un-mapping 1438 */ 1439 ret = fdt_pack(dt->blob); 1440 if (ret < 0) { 1441 EMSG("Failed to pack Device Tree at 0x%" PRIxPA 1442 ": error %d", virt_to_phys(dt->blob), ret); 1443 panic(); 1444 } 1445 1446 tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT); 1447 assert(dt->blob == transfer_list_entry_data(tl_e)); 1448 transfer_list_set_data_size(mapped_tl, tl_e, 1449 fdt_totalsize(dt->blob)); 1450 dt->blob = NULL; 1451 } 1452 1453 transfer_list_unmap_sync(mapped_tl); 1454 mapped_tl = NULL; 1455 1456 return TEE_SUCCESS; 1457 } 1458 1459 boot_final(release_transfer_list); 1460 #endif 1461