xref: /optee_os/core/arch/arm/kernel/boot.c (revision 2f2f69df5afe70a5e89b70f30281c1aa8ea82716)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2023, Linaro Limited
4  * Copyright (c) 2023, Arm Limited
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <compiler.h>
10 #include <config.h>
11 #include <console.h>
12 #include <crypto/crypto.h>
13 #include <drivers/gic.h>
14 #include <dt-bindings/interrupt-controller/arm-gic.h>
15 #include <ffa.h>
16 #include <initcall.h>
17 #include <inttypes.h>
18 #include <io.h>
19 #include <keep.h>
20 #include <kernel/asan.h>
21 #include <kernel/boot.h>
22 #include <kernel/dt.h>
23 #include <kernel/linker.h>
24 #include <kernel/misc.h>
25 #include <kernel/panic.h>
26 #include <kernel/tee_misc.h>
27 #include <kernel/thread.h>
28 #include <kernel/tpm.h>
29 #include <kernel/transfer_list.h>
30 #include <libfdt.h>
31 #include <malloc.h>
32 #include <memtag.h>
33 #include <mm/core_memprot.h>
34 #include <mm/core_mmu.h>
35 #include <mm/fobj.h>
36 #include <mm/phys_mem.h>
37 #include <mm/tee_mm.h>
38 #include <mm/tee_pager.h>
39 #include <sm/psci.h>
40 #include <trace.h>
41 #include <utee_defines.h>
42 #include <util.h>
43 
44 #include <platform_config.h>
45 
46 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
47 #include <sm/sm.h>
48 #endif
49 
50 #if defined(CFG_WITH_VFP)
51 #include <kernel/vfp.h>
52 #endif
53 
54 /*
55  * In this file we're using unsigned long to represent physical pointers as
56  * they are received in a single register when OP-TEE is initially entered.
57  * This limits 32-bit systems to only use make use of the lower 32 bits
58  * of a physical address for initial parameters.
59  *
60  * 64-bit systems on the other hand can use full 64-bit physical pointers.
61  */
62 #define PADDR_INVALID		ULONG_MAX
63 
64 #if defined(CFG_BOOT_SECONDARY_REQUEST)
65 struct ns_entry_context {
66 	uintptr_t entry_point;
67 	uintptr_t context_id;
68 };
69 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
70 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
71 #endif
72 
73 #ifdef CFG_BOOT_SYNC_CPU
74 /*
75  * Array used when booting, to synchronize cpu.
76  * When 0, the cpu has not started.
77  * When 1, it has started
78  */
79 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
80 DECLARE_KEEP_PAGER(sem_cpu_sync);
81 #endif
82 
83 static unsigned long boot_arg_fdt __nex_bss;
84 static unsigned long boot_arg_nsec_entry __nex_bss;
85 static unsigned long boot_arg_pageable_part __nex_bss;
86 static unsigned long boot_arg_transfer_list __nex_bss;
87 static struct transfer_list_header *mapped_tl __nex_bss;
88 
89 #ifdef CFG_SECONDARY_INIT_CNTFRQ
90 static uint32_t cntfrq;
91 #endif
92 
93 /* May be overridden in plat-$(PLATFORM)/main.c */
94 __weak void plat_primary_init_early(void)
95 {
96 }
97 DECLARE_KEEP_PAGER(plat_primary_init_early);
98 
99 /* May be overridden in plat-$(PLATFORM)/main.c */
100 __weak void boot_primary_init_intc(void)
101 {
102 }
103 
104 /* May be overridden in plat-$(PLATFORM)/main.c */
105 __weak void boot_secondary_init_intc(void)
106 {
107 }
108 
109 /* May be overridden in plat-$(PLATFORM)/main.c */
110 __weak unsigned long plat_get_aslr_seed(void)
111 {
112 	DMSG("Warning: no ASLR seed");
113 
114 	return 0;
115 }
116 
117 #if defined(_CFG_CORE_STACK_PROTECTOR) || defined(CFG_WITH_STACK_CANARIES)
118 /* Generate random stack canary value on boot up */
119 __weak void plat_get_random_stack_canaries(void *buf, size_t ncan, size_t size)
120 {
121 	TEE_Result ret = TEE_ERROR_GENERIC;
122 	size_t i = 0;
123 
124 	assert(buf && ncan && size);
125 
126 	/*
127 	 * With virtualization the RNG is not initialized in Nexus core.
128 	 * Need to override with platform specific implementation.
129 	 */
130 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
131 		IMSG("WARNING: Using fixed value for stack canary");
132 		memset(buf, 0xab, ncan * size);
133 		goto out;
134 	}
135 
136 	ret = crypto_rng_read(buf, ncan * size);
137 	if (ret != TEE_SUCCESS)
138 		panic("Failed to generate random stack canary");
139 
140 out:
141 	/* Leave null byte in canary to prevent string base exploit */
142 	for (i = 0; i < ncan; i++)
143 		*((uint8_t *)buf + size * i) = 0;
144 }
145 #endif /* _CFG_CORE_STACK_PROTECTOR || CFG_WITH_STACK_CANARIES */
146 
147 /*
148  * This function is called as a guard after each smc call which is not
149  * supposed to return.
150  */
151 void __panic_at_smc_return(void)
152 {
153 	panic();
154 }
155 
156 #if defined(CFG_WITH_ARM_TRUSTED_FW)
157 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
158 {
159 	assert(nsec_entry == PADDR_INVALID);
160 	/* Do nothing as we don't have a secure monitor */
161 }
162 #else
163 /* May be overridden in plat-$(PLATFORM)/main.c */
164 __weak void init_sec_mon(unsigned long nsec_entry)
165 {
166 	struct sm_nsec_ctx *nsec_ctx;
167 
168 	assert(nsec_entry != PADDR_INVALID);
169 
170 	/* Initialize secure monitor */
171 	nsec_ctx = sm_get_nsec_ctx();
172 	nsec_ctx->mon_lr = nsec_entry;
173 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
174 	if (nsec_entry & 1)
175 		nsec_ctx->mon_spsr |= CPSR_T;
176 }
177 #endif
178 
179 #if defined(CFG_WITH_ARM_TRUSTED_FW)
180 static void init_vfp_nsec(void)
181 {
182 }
183 #else
184 static void init_vfp_nsec(void)
185 {
186 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
187 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
188 }
189 #endif
190 
191 static void check_crypto_extensions(void)
192 {
193 	bool ce_supported = true;
194 
195 	if (!feat_aes_implemented() &&
196 	    IS_ENABLED(CFG_CRYPTO_AES_ARM_CE)) {
197 		EMSG("AES instructions are not supported");
198 		ce_supported = false;
199 	}
200 
201 	if (!feat_sha1_implemented() &&
202 	    IS_ENABLED(CFG_CRYPTO_SHA1_ARM_CE)) {
203 		EMSG("SHA1 instructions are not supported");
204 		ce_supported = false;
205 	}
206 
207 	if (!feat_sha256_implemented() &&
208 	    IS_ENABLED(CFG_CRYPTO_SHA256_ARM_CE)) {
209 		EMSG("SHA256 instructions are not supported");
210 		ce_supported = false;
211 	}
212 
213 	/* Check aarch64 specific instructions */
214 	if (IS_ENABLED(CFG_ARM64_core)) {
215 		if (!feat_sha512_implemented() &&
216 		    IS_ENABLED(CFG_CRYPTO_SHA512_ARM_CE)) {
217 			EMSG("SHA512 instructions are not supported");
218 			ce_supported = false;
219 		}
220 
221 		if (!feat_sha3_implemented() &&
222 		    IS_ENABLED(CFG_CRYPTO_SHA3_ARM_CE)) {
223 			EMSG("SHA3 instructions are not supported");
224 			ce_supported = false;
225 		}
226 
227 		if (!feat_sm3_implemented() &&
228 		    IS_ENABLED(CFG_CRYPTO_SM3_ARM_CE)) {
229 			EMSG("SM3 instructions are not supported");
230 			ce_supported = false;
231 		}
232 
233 		if (!feat_sm4_implemented() &&
234 		    IS_ENABLED(CFG_CRYPTO_SM4_ARM_CE)) {
235 			EMSG("SM4 instructions are not supported");
236 			ce_supported = false;
237 		}
238 	}
239 
240 	if (!ce_supported)
241 		panic("HW doesn't support CE instructions");
242 }
243 
244 #if defined(CFG_WITH_VFP)
245 
246 #ifdef ARM32
247 static void init_vfp_sec(void)
248 {
249 	uint32_t cpacr = read_cpacr();
250 
251 	/*
252 	 * Enable Advanced SIMD functionality.
253 	 * Enable use of D16-D31 of the Floating-point Extension register
254 	 * file.
255 	 */
256 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
257 	/*
258 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
259 	 * mode.
260 	 */
261 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
262 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
263 	write_cpacr(cpacr);
264 }
265 #endif /* ARM32 */
266 
267 #ifdef ARM64
268 static void init_vfp_sec(void)
269 {
270 	/* Not using VFP until thread_kernel_enable_vfp() */
271 	vfp_disable();
272 }
273 #endif /* ARM64 */
274 
275 #else /* CFG_WITH_VFP */
276 
277 static void init_vfp_sec(void)
278 {
279 	/* Not using VFP */
280 }
281 #endif
282 
283 #ifdef CFG_SECONDARY_INIT_CNTFRQ
284 static void primary_save_cntfrq(void)
285 {
286 	assert(cntfrq == 0);
287 
288 	/*
289 	 * CNTFRQ should be initialized on the primary CPU by a
290 	 * previous boot stage
291 	 */
292 	cntfrq = read_cntfrq();
293 }
294 
295 static void secondary_init_cntfrq(void)
296 {
297 	assert(cntfrq != 0);
298 	write_cntfrq(cntfrq);
299 }
300 #else /* CFG_SECONDARY_INIT_CNTFRQ */
301 static void primary_save_cntfrq(void)
302 {
303 }
304 
305 static void secondary_init_cntfrq(void)
306 {
307 }
308 #endif
309 
310 #ifdef CFG_CORE_SANITIZE_KADDRESS
311 static void init_run_constructors(void)
312 {
313 	const vaddr_t *ctor;
314 
315 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
316 		((void (*)(void))(*ctor))();
317 }
318 
319 static void init_asan(void)
320 {
321 
322 	/*
323 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
324 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
325 	 * Since all the needed values to calculate the value of
326 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
327 	 * calculate it in advance and hard code it into the platform
328 	 * conf.mk. Here where we have all the needed values we double
329 	 * check that the compiler is supplied the correct value.
330 	 */
331 
332 #define __ASAN_SHADOW_START \
333 	ROUNDUP(TEE_RAM_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
334 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
335 #define __CFG_ASAN_SHADOW_OFFSET \
336 	(__ASAN_SHADOW_START - (TEE_RAM_START / 8))
337 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
338 #undef __ASAN_SHADOW_START
339 #undef __CFG_ASAN_SHADOW_OFFSET
340 
341 	/*
342 	 * Assign area covered by the shadow area, everything from start up
343 	 * to the beginning of the shadow area.
344 	 */
345 	asan_set_shadowed((void *)TEE_LOAD_ADDR, &__asan_shadow_start);
346 
347 	/*
348 	 * Add access to areas that aren't opened automatically by a
349 	 * constructor.
350 	 */
351 	asan_tag_access(&__ctor_list, &__ctor_end);
352 	asan_tag_access(__rodata_start, __rodata_end);
353 #ifdef CFG_WITH_PAGER
354 	asan_tag_access(__pageable_start, __pageable_end);
355 #endif /*CFG_WITH_PAGER*/
356 	asan_tag_access(__nozi_start, __nozi_end);
357 #ifdef ARM32
358 	asan_tag_access(__exidx_start, __exidx_end);
359 	asan_tag_access(__extab_start, __extab_end);
360 #endif
361 
362 	init_run_constructors();
363 
364 	/* Everything is tagged correctly, let's start address sanitizing. */
365 	asan_start();
366 }
367 #else /*CFG_CORE_SANITIZE_KADDRESS*/
368 static void init_asan(void)
369 {
370 }
371 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
372 
373 #if defined(CFG_MEMTAG)
374 /* Called from entry_a64.S only when MEMTAG is configured */
375 void boot_init_memtag(void)
376 {
377 	memtag_init_ops(feat_mte_implemented());
378 }
379 
380 static TEE_Result mmap_clear_memtag(struct tee_mmap_region *map,
381 				    void *ptr __unused)
382 {
383 	switch (map->type) {
384 	case MEM_AREA_NEX_RAM_RO:
385 	case MEM_AREA_SEC_RAM_OVERALL:
386 		DMSG("Clearing tags for VA %#"PRIxVA"..%#"PRIxVA,
387 		     map->va, map->va + map->size - 1);
388 		memtag_set_tags((void *)map->va, map->size, 0);
389 		break;
390 	default:
391 		break;
392 	}
393 
394 	return TEE_SUCCESS;
395 }
396 
397 /* Called from entry_a64.S only when MEMTAG is configured */
398 void boot_clear_memtag(void)
399 {
400 	core_mmu_for_each_map(NULL, mmap_clear_memtag);
401 }
402 #endif
403 
404 #ifdef CFG_WITH_PAGER
405 
406 #ifdef CFG_CORE_SANITIZE_KADDRESS
407 static void carve_out_asan_mem(void)
408 {
409 	nex_phys_mem_partial_carve_out(ASAN_MAP_PA, ASAN_MAP_SZ);
410 }
411 #else
412 static void carve_out_asan_mem(void)
413 {
414 }
415 #endif
416 
417 static void print_pager_pool_size(void)
418 {
419 	struct tee_pager_stats __maybe_unused stats;
420 
421 	tee_pager_get_stats(&stats);
422 	IMSG("Pager pool size: %zukB",
423 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
424 }
425 
426 static void init_virt_pool(tee_mm_pool_t *virt_pool)
427 {
428 	const vaddr_t begin = VCORE_START_VA;
429 	size_t size = TEE_RAM_VA_SIZE;
430 
431 #ifdef CFG_CORE_SANITIZE_KADDRESS
432 	/* Carve out asan memory, flat maped after core memory */
433 	if (begin + size > ASAN_SHADOW_PA)
434 		size = ASAN_MAP_PA - begin;
435 #endif
436 
437 	if (!tee_mm_init(virt_pool, begin, size, SMALL_PAGE_SHIFT,
438 			 TEE_MM_POOL_NO_FLAGS))
439 		panic("core_virt_mem_pool init failed");
440 }
441 
442 /*
443  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
444  * The init part is also paged just as the rest of the normal paged code, with
445  * the difference that it's preloaded during boot. When the backing store
446  * is configured the entire paged binary is copied in place and then also
447  * the init part. Since the init part has been relocated (references to
448  * addresses updated to compensate for the new load address) this has to be
449  * undone for the hashes of those pages to match with the original binary.
450  *
451  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
452  * unchanged.
453  */
454 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
455 {
456 #ifdef CFG_CORE_ASLR
457 	unsigned long *ptr = NULL;
458 	const uint32_t *reloc = NULL;
459 	const uint32_t *reloc_end = NULL;
460 	unsigned long offs = boot_mmu_config.map_offset;
461 	const struct boot_embdata *embdata = (const void *)__init_end;
462 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_LOAD_ADDR;
463 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_LOAD_ADDR;
464 
465 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
466 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
467 
468 	for (; reloc < reloc_end; reloc++) {
469 		if (*reloc < addr_start)
470 			continue;
471 		if (*reloc >= addr_end)
472 			break;
473 		ptr = (void *)(paged_store + *reloc - addr_start);
474 		*ptr -= offs;
475 	}
476 #endif
477 }
478 
479 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
480 				   void *store)
481 {
482 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
483 #ifdef CFG_CORE_ASLR
484 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
485 	const struct boot_embdata *embdata = (const void *)__init_end;
486 	const void *reloc = __init_end + embdata->reloc_offset;
487 
488 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
489 					 reloc, embdata->reloc_len, store);
490 #else
491 	return fobj_ro_paged_alloc(num_pages, hashes, store);
492 #endif
493 }
494 
495 static void init_runtime(unsigned long pageable_part)
496 {
497 	size_t n;
498 	size_t init_size = (size_t)(__init_end - __init_start);
499 	size_t pageable_start = (size_t)__pageable_start;
500 	size_t pageable_end = (size_t)__pageable_end;
501 	size_t pageable_size = pageable_end - pageable_start;
502 	vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR +
503 			     VCORE_START_VA;
504 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
505 			   TEE_SHA256_HASH_SIZE;
506 	const struct boot_embdata *embdata = (const void *)__init_end;
507 	const void *tmp_hashes = NULL;
508 	tee_mm_entry_t *mm = NULL;
509 	struct fobj *fobj = NULL;
510 	uint8_t *paged_store = NULL;
511 	uint8_t *hashes = NULL;
512 
513 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
514 	assert(embdata->total_len >= embdata->hashes_offset +
515 				     embdata->hashes_len);
516 	assert(hash_size == embdata->hashes_len);
517 
518 	tmp_hashes = __init_end + embdata->hashes_offset;
519 
520 	init_asan();
521 
522 	/* Add heap2 first as heap1 may be too small as initial bget pool */
523 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
524 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
525 
526 	/*
527 	 * This needs to be initialized early to support address lookup
528 	 * in MEM_AREA_TEE_RAM
529 	 */
530 	tee_pager_early_init();
531 
532 	hashes = malloc(hash_size);
533 	IMSG_RAW("\n");
534 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
535 	assert(hashes);
536 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
537 
538 	/*
539 	 * Need physical memory pool initialized to be able to allocate
540 	 * secure physical memory below.
541 	 */
542 	core_mmu_init_phys_mem();
543 
544 	carve_out_asan_mem();
545 
546 	mm = nex_phys_mem_ta_alloc(pageable_size);
547 	assert(mm);
548 	paged_store = phys_to_virt(tee_mm_get_smem(mm),
549 				   MEM_AREA_SEC_RAM_OVERALL, pageable_size);
550 	/*
551 	 * Load pageable part in the dedicated allocated area:
552 	 * - Move pageable non-init part into pageable area. Note bootloader
553 	 *   may have loaded it anywhere in TA RAM hence use memmove().
554 	 * - Copy pageable init part from current location into pageable area.
555 	 */
556 	memmove(paged_store + init_size,
557 		phys_to_virt(pageable_part,
558 			     core_mmu_get_type_by_pa(pageable_part),
559 			     __pageable_part_end - __pageable_part_start),
560 		__pageable_part_end - __pageable_part_start);
561 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
562 	/*
563 	 * Undo eventual relocation for the init part so the hash checks
564 	 * can pass.
565 	 */
566 	undo_init_relocation(paged_store);
567 
568 	/* Check that hashes of what's in pageable area is OK */
569 	DMSG("Checking hashes of pageable area");
570 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
571 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
572 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
573 		TEE_Result res;
574 
575 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
576 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
577 		if (res != TEE_SUCCESS) {
578 			EMSG("Hash failed for page %zu at %p: res 0x%x",
579 			     n, (void *)page, res);
580 			panic();
581 		}
582 	}
583 
584 	/*
585 	 * Assert prepaged init sections are page aligned so that nothing
586 	 * trails uninited at the end of the premapped init area.
587 	 */
588 	assert(!(init_size & SMALL_PAGE_MASK));
589 
590 	/*
591 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
592 	 * is supplied to tee_pager_init() below.
593 	 */
594 	init_virt_pool(&core_virt_mem_pool);
595 
596 	/*
597 	 * Assign alias area for pager end of the small page block the rest
598 	 * of the binary is loaded into. We're taking more than needed, but
599 	 * we're guaranteed to not need more than the physical amount of
600 	 * TZSRAM.
601 	 */
602 	mm = tee_mm_alloc2(&core_virt_mem_pool,
603 			   (vaddr_t)core_virt_mem_pool.lo +
604 			   core_virt_mem_pool.size - TZSRAM_SIZE,
605 			   TZSRAM_SIZE);
606 	assert(mm);
607 	tee_pager_set_alias_area(mm);
608 
609 	/*
610 	 * Claim virtual memory which isn't paged.
611 	 * Linear memory (flat map core memory) ends there.
612 	 */
613 	mm = tee_mm_alloc2(&core_virt_mem_pool, VCORE_UNPG_RX_PA,
614 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
615 	assert(mm);
616 
617 	/*
618 	 * Allocate virtual memory for the pageable area and let the pager
619 	 * take charge of all the pages already assigned to that memory.
620 	 */
621 	mm = tee_mm_alloc2(&core_virt_mem_pool, (vaddr_t)__pageable_start,
622 			   pageable_size);
623 	assert(mm);
624 	fobj = ro_paged_alloc(mm, hashes, paged_store);
625 	assert(fobj);
626 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
627 				  fobj);
628 	fobj_put(fobj);
629 
630 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
631 	tee_pager_add_pages(pageable_start + init_size,
632 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
633 			    true);
634 	if (pageable_end < tzsram_end)
635 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
636 						   SMALL_PAGE_SIZE, true);
637 
638 	/*
639 	 * There may be physical pages in TZSRAM before the core load address.
640 	 * These pages can be added to the physical pages pool of the pager.
641 	 * This setup may happen when a the secure bootloader runs in TZRAM
642 	 * and its memory can be reused by OP-TEE once boot stages complete.
643 	 */
644 	tee_pager_add_pages(core_virt_mem_pool.lo,
645 			    (VCORE_UNPG_RX_PA - core_virt_mem_pool.lo) /
646 				SMALL_PAGE_SIZE,
647 			    true);
648 
649 	print_pager_pool_size();
650 }
651 #else
652 
653 static void init_runtime(unsigned long pageable_part __unused)
654 {
655 	init_asan();
656 
657 	/*
658 	 * By default whole OP-TEE uses malloc, so we need to initialize
659 	 * it early. But, when virtualization is enabled, malloc is used
660 	 * only by TEE runtime, so malloc should be initialized later, for
661 	 * every virtual partition separately. Core code uses nex_malloc
662 	 * instead.
663 	 */
664 #ifdef CFG_NS_VIRTUALIZATION
665 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
666 					      __nex_heap_start);
667 #else
668 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
669 #endif
670 
671 	IMSG_RAW("\n");
672 }
673 #endif
674 
675 #if defined(CFG_DT)
676 static int add_optee_dt_node(struct dt_descriptor *dt)
677 {
678 	int offs;
679 	int ret;
680 
681 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
682 		DMSG("OP-TEE Device Tree node already exists!");
683 		return 0;
684 	}
685 
686 	offs = fdt_path_offset(dt->blob, "/firmware");
687 	if (offs < 0) {
688 		offs = add_dt_path_subnode(dt, "/", "firmware");
689 		if (offs < 0)
690 			return -1;
691 	}
692 
693 	offs = fdt_add_subnode(dt->blob, offs, "optee");
694 	if (offs < 0)
695 		return -1;
696 
697 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
698 				 "linaro,optee-tz");
699 	if (ret < 0)
700 		return -1;
701 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
702 	if (ret < 0)
703 		return -1;
704 
705 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
706 		/*
707 		 * The format of the interrupt property is defined by the
708 		 * binding of the interrupt domain root. In this case it's
709 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
710 		 * these.
711 		 *
712 		 * An SPI type of interrupt is indicated with a 0 in the
713 		 * first cell. A PPI type is indicated with value 1.
714 		 *
715 		 * The interrupt number goes in the second cell where
716 		 * SPIs ranges from 0 to 987 and PPI ranges from 0 to 15.
717 		 *
718 		 * Flags are passed in the third cells.
719 		 */
720 		uint32_t itr_trigger = 0;
721 		uint32_t itr_type = 0;
722 		uint32_t itr_id = 0;
723 		uint32_t val[3] = { };
724 
725 		/* PPI are visible only in current CPU cluster */
726 		static_assert(IS_ENABLED(CFG_CORE_FFA) ||
727 			      !CFG_CORE_ASYNC_NOTIF_GIC_INTID ||
728 			      (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
729 			       GIC_SPI_BASE) ||
730 			      ((CFG_TEE_CORE_NB_CORE <= 8) &&
731 			       (CFG_CORE_ASYNC_NOTIF_GIC_INTID >=
732 				GIC_PPI_BASE)));
733 
734 		if (CFG_CORE_ASYNC_NOTIF_GIC_INTID >= GIC_SPI_BASE) {
735 			itr_type = GIC_SPI;
736 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_SPI_BASE;
737 			itr_trigger = IRQ_TYPE_EDGE_RISING;
738 		} else {
739 			itr_type = GIC_PPI;
740 			itr_id = CFG_CORE_ASYNC_NOTIF_GIC_INTID - GIC_PPI_BASE;
741 			itr_trigger = IRQ_TYPE_EDGE_RISING |
742 				      GIC_CPU_MASK_SIMPLE(CFG_TEE_CORE_NB_CORE);
743 		}
744 
745 		val[0] = TEE_U32_TO_BIG_ENDIAN(itr_type);
746 		val[1] = TEE_U32_TO_BIG_ENDIAN(itr_id);
747 		val[2] = TEE_U32_TO_BIG_ENDIAN(itr_trigger);
748 
749 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
750 				  sizeof(val));
751 		if (ret < 0)
752 			return -1;
753 	}
754 	return 0;
755 }
756 
757 #ifdef CFG_PSCI_ARM32
758 static int append_psci_compatible(void *fdt, int offs, const char *str)
759 {
760 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
761 }
762 
763 static int dt_add_psci_node(struct dt_descriptor *dt)
764 {
765 	int offs;
766 
767 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
768 		DMSG("PSCI Device Tree node already exists!");
769 		return 0;
770 	}
771 
772 	offs = add_dt_path_subnode(dt, "/", "psci");
773 	if (offs < 0)
774 		return -1;
775 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
776 		return -1;
777 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
778 		return -1;
779 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
780 		return -1;
781 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
782 		return -1;
783 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
784 		return -1;
785 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
786 		return -1;
787 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
788 		return -1;
789 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
790 		return -1;
791 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
792 		return -1;
793 	return 0;
794 }
795 
796 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
797 				    const char *prefix)
798 {
799 	const size_t prefix_len = strlen(prefix);
800 	size_t l;
801 	int plen;
802 	const char *prop;
803 
804 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
805 	if (!prop)
806 		return -1;
807 
808 	while (plen > 0) {
809 		if (memcmp(prop, prefix, prefix_len) == 0)
810 			return 0; /* match */
811 
812 		l = strlen(prop) + 1;
813 		prop += l;
814 		plen -= l;
815 	}
816 
817 	return -1;
818 }
819 
820 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
821 {
822 	int offs = 0;
823 
824 	while (1) {
825 		offs = fdt_next_node(dt->blob, offs, NULL);
826 		if (offs < 0)
827 			break;
828 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
829 			continue; /* already set */
830 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
831 			continue; /* no compatible */
832 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
833 			return -1;
834 		/* Need to restart scanning as offsets may have changed */
835 		offs = 0;
836 	}
837 	return 0;
838 }
839 
840 static int config_psci(struct dt_descriptor *dt)
841 {
842 	if (dt_add_psci_node(dt))
843 		return -1;
844 	return dt_add_psci_cpu_enable_methods(dt);
845 }
846 #else
847 static int config_psci(struct dt_descriptor *dt __unused)
848 {
849 	return 0;
850 }
851 #endif /*CFG_PSCI_ARM32*/
852 
853 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
854 {
855 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
856 				   CFG_TZDRAM_SIZE);
857 }
858 
859 static void update_external_dt(void)
860 {
861 	struct dt_descriptor *dt = get_external_dt_desc();
862 
863 	if (!dt || !dt->blob)
864 		return;
865 
866 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
867 		panic("Failed to add OP-TEE Device Tree node");
868 
869 	if (config_psci(dt))
870 		panic("Failed to config PSCI");
871 
872 #ifdef CFG_CORE_RESERVED_SHM
873 	if (mark_static_shm_as_reserved(dt))
874 		panic("Failed to config non-secure memory");
875 #endif
876 
877 	if (mark_tzdram_as_reserved(dt))
878 		panic("Failed to config secure memory");
879 }
880 #else /*CFG_DT*/
881 static void update_external_dt(void)
882 {
883 }
884 #endif /*!CFG_DT*/
885 
886 void init_tee_runtime(void)
887 {
888 #ifndef CFG_WITH_PAGER
889 	/* Pager initializes TA RAM early */
890 	core_mmu_init_phys_mem();
891 #endif
892 	/*
893 	 * With virtualization we call this function when creating the
894 	 * OP-TEE partition instead.
895 	 */
896 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
897 		call_preinitcalls();
898 	call_early_initcalls();
899 	call_service_initcalls();
900 
901 	/*
902 	 * These two functions uses crypto_rng_read() to initialize the
903 	 * pauth keys. Once call_initcalls() returns we're guaranteed that
904 	 * crypto_rng_read() is ready to be used.
905 	 */
906 	thread_init_core_local_pauth_keys();
907 	thread_init_thread_pauth_keys();
908 
909 	/*
910 	 * Reinitialize canaries around the stacks with crypto_rng_read().
911 	 *
912 	 * TODO: Updating canaries when CFG_NS_VIRTUALIZATION is enabled will
913 	 * require synchronization between thread_check_canaries() and
914 	 * thread_update_canaries().
915 	 */
916 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
917 		thread_update_canaries();
918 }
919 
920 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
921 {
922 	thread_init_core_local_stacks();
923 	/*
924 	 * Mask asynchronous exceptions before switch to the thread vector
925 	 * as the thread handler requires those to be masked while
926 	 * executing with the temporary stack. The thread subsystem also
927 	 * asserts that the foreign interrupts are blocked when using most of
928 	 * its functions.
929 	 */
930 	thread_set_exceptions(THREAD_EXCP_ALL);
931 	primary_save_cntfrq();
932 	init_vfp_sec();
933 
934 	if (IS_ENABLED(CFG_CRYPTO_WITH_CE))
935 		check_crypto_extensions();
936 
937 	/*
938 	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
939 	 * set a current thread right now to avoid a chicken-and-egg problem
940 	 * (thread_init_boot_thread() sets the current thread but needs
941 	 * things set by init_runtime()).
942 	 */
943 	thread_get_core_local()->curr_thread = 0;
944 	init_runtime(pageable_part);
945 
946 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
947 		/*
948 		 * Virtualization: We can't initialize threads right now because
949 		 * threads belong to "tee" part and will be initialized
950 		 * separately per each new virtual guest. So, we'll clear
951 		 * "curr_thread" and call it done.
952 		 */
953 		thread_get_core_local()->curr_thread = -1;
954 	} else {
955 		thread_init_boot_thread();
956 	}
957 	thread_init_primary();
958 	thread_init_per_cpu();
959 	init_sec_mon(nsec_entry);
960 }
961 
962 static bool cpu_nmfi_enabled(void)
963 {
964 #if defined(ARM32)
965 	return read_sctlr() & SCTLR_NMFI;
966 #else
967 	/* Note: ARM64 does not feature non-maskable FIQ support. */
968 	return false;
969 #endif
970 }
971 
972 /*
973  * Note: this function is weak just to make it possible to exclude it from
974  * the unpaged area.
975  */
976 void __weak boot_init_primary_late(unsigned long fdt __unused,
977 				   unsigned long manifest __unused)
978 {
979 	size_t fdt_size = CFG_DTB_MAX_SIZE;
980 
981 	if (IS_ENABLED(CFG_TRANSFER_LIST) && mapped_tl) {
982 		struct transfer_list_entry *tl_e = NULL;
983 
984 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
985 		if (tl_e)
986 			fdt_size = tl_e->data_size;
987 	}
988 
989 	init_external_dt(boot_arg_fdt, fdt_size);
990 	reinit_manifest_dt();
991 #ifdef CFG_CORE_SEL1_SPMC
992 	tpm_map_log_area(get_manifest_dt());
993 #else
994 	tpm_map_log_area(get_external_dt());
995 #endif
996 	discover_nsec_memory();
997 	update_external_dt();
998 	configure_console_from_dt();
999 
1000 	IMSG("OP-TEE version: %s", core_v_str);
1001 	if (IS_ENABLED(CFG_INSECURE)) {
1002 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1003 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1004 	}
1005 	IMSG("Primary CPU initializing");
1006 #ifdef CFG_CORE_ASLR
1007 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1008 	     (unsigned long)boot_mmu_config.map_offset, VCORE_START_VA);
1009 #endif
1010 	if (IS_ENABLED(CFG_MEMTAG))
1011 		DMSG("Memory tagging %s",
1012 		     memtag_is_enabled() ?  "enabled" : "disabled");
1013 
1014 	/* Check if platform needs NMFI workaround */
1015 	if (cpu_nmfi_enabled())	{
1016 		if (!IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1017 			IMSG("WARNING: This ARM core has NMFI enabled, please apply workaround!");
1018 	} else {
1019 		if (IS_ENABLED(CFG_CORE_WORKAROUND_ARM_NMFI))
1020 			IMSG("WARNING: This ARM core does not have NMFI enabled, no need for workaround");
1021 	}
1022 
1023 	boot_primary_init_intc();
1024 	init_vfp_nsec();
1025 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1026 		IMSG("Initializing virtualization support");
1027 		core_mmu_init_virtualization();
1028 	} else {
1029 		init_tee_runtime();
1030 	}
1031 }
1032 
1033 /*
1034  * Note: this function is weak just to make it possible to exclude it from
1035  * the unpaged area.
1036  */
1037 void __weak boot_init_primary_final(void)
1038 {
1039 	if (!IS_ENABLED(CFG_NS_VIRTUALIZATION))
1040 		call_driver_initcalls();
1041 	call_finalcalls();
1042 	IMSG("Primary CPU switching to normal world boot");
1043 }
1044 
1045 static void init_secondary_helper(unsigned long nsec_entry)
1046 {
1047 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1048 
1049 	/*
1050 	 * Mask asynchronous exceptions before switch to the thread vector
1051 	 * as the thread handler requires those to be masked while
1052 	 * executing with the temporary stack. The thread subsystem also
1053 	 * asserts that the foreign interrupts are blocked when using most of
1054 	 * its functions.
1055 	 */
1056 	thread_set_exceptions(THREAD_EXCP_ALL);
1057 
1058 	secondary_init_cntfrq();
1059 	thread_init_per_cpu();
1060 	init_sec_mon(nsec_entry);
1061 	boot_secondary_init_intc();
1062 	init_vfp_sec();
1063 	init_vfp_nsec();
1064 
1065 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1066 }
1067 
1068 /*
1069  * Note: this function is weak just to make it possible to exclude it from
1070  * the unpaged area so that it lies in the init area.
1071  */
1072 void __weak boot_init_primary_early(void)
1073 {
1074 	unsigned long pageable_part = 0;
1075 	unsigned long e = PADDR_INVALID;
1076 	struct transfer_list_entry *tl_e = NULL;
1077 
1078 	if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW))
1079 		e = boot_arg_nsec_entry;
1080 
1081 	if (IS_ENABLED(CFG_TRANSFER_LIST) && boot_arg_transfer_list) {
1082 		/* map and save the TL */
1083 		mapped_tl = transfer_list_map(boot_arg_transfer_list);
1084 		if (!mapped_tl)
1085 			panic("Failed to map transfer list");
1086 
1087 		transfer_list_dump(mapped_tl);
1088 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1089 		if (tl_e) {
1090 			/*
1091 			 * Expand the data size of the DTB entry to the maximum
1092 			 * allocable mapped memory to reserve sufficient space
1093 			 * for inserting new nodes, avoid potentially corrupting
1094 			 * next entries.
1095 			 */
1096 			uint32_t dtb_max_sz = mapped_tl->max_size -
1097 					      mapped_tl->size + tl_e->data_size;
1098 
1099 			if (!transfer_list_set_data_size(mapped_tl, tl_e,
1100 							 dtb_max_sz)) {
1101 				EMSG("Failed to extend DTB size to %#"PRIx32,
1102 				     dtb_max_sz);
1103 				panic();
1104 			}
1105 		}
1106 		tl_e = transfer_list_find(mapped_tl, TL_TAG_OPTEE_PAGABLE_PART);
1107 	}
1108 
1109 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1110 		if (IS_ENABLED(CFG_TRANSFER_LIST) && tl_e)
1111 			pageable_part =
1112 				get_le64(transfer_list_entry_data(tl_e));
1113 		else
1114 			pageable_part = boot_arg_pageable_part;
1115 	}
1116 
1117 	init_primary(pageable_part, e);
1118 }
1119 
1120 static void boot_save_transfer_list(unsigned long zero_reg,
1121 				    unsigned long transfer_list,
1122 				    unsigned long fdt)
1123 {
1124 	struct transfer_list_header *tl = (void *)transfer_list;
1125 	struct transfer_list_entry *tl_e = NULL;
1126 
1127 	if (zero_reg != 0)
1128 		panic("Incorrect transfer list register convention");
1129 
1130 	if (!IS_ALIGNED_WITH_TYPE(transfer_list, struct transfer_list_header) ||
1131 	    !IS_ALIGNED(transfer_list, TL_ALIGNMENT_FROM_ORDER(tl->alignment)))
1132 		panic("Transfer list base address is not aligned");
1133 
1134 	if (transfer_list_check_header(tl) == TL_OPS_NONE)
1135 		panic("Invalid transfer list");
1136 
1137 	tl_e = transfer_list_find(tl, TL_TAG_FDT);
1138 	if (fdt != (unsigned long)transfer_list_entry_data(tl_e))
1139 		panic("DT does not match to the DT entry of the TL");
1140 
1141 	boot_arg_transfer_list = transfer_list;
1142 }
1143 
1144 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1145 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1146 				  unsigned long a1 __unused)
1147 {
1148 	init_secondary_helper(PADDR_INVALID);
1149 	return 0;
1150 }
1151 #else
1152 void boot_init_secondary(unsigned long nsec_entry)
1153 {
1154 	init_secondary_helper(nsec_entry);
1155 }
1156 #endif
1157 
1158 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1159 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1160 			    uintptr_t context_id)
1161 {
1162 	ns_entry_contexts[core_idx].entry_point = entry;
1163 	ns_entry_contexts[core_idx].context_id = context_id;
1164 	dsb_ishst();
1165 }
1166 
1167 int boot_core_release(size_t core_idx, paddr_t entry)
1168 {
1169 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1170 		return -1;
1171 
1172 	ns_entry_contexts[core_idx].entry_point = entry;
1173 	dmb();
1174 	spin_table[core_idx] = 1;
1175 	dsb();
1176 	sev();
1177 
1178 	return 0;
1179 }
1180 
1181 /*
1182  * spin until secondary boot request, then returns with
1183  * the secondary core entry address.
1184  */
1185 struct ns_entry_context *boot_core_hpen(void)
1186 {
1187 #ifdef CFG_PSCI_ARM32
1188 	return &ns_entry_contexts[get_core_pos()];
1189 #else
1190 	do {
1191 		wfe();
1192 	} while (!spin_table[get_core_pos()]);
1193 	dmb();
1194 	return &ns_entry_contexts[get_core_pos()];
1195 #endif
1196 }
1197 #endif
1198 
1199 #if defined(CFG_CORE_ASLR)
1200 #if defined(CFG_DT)
1201 unsigned long __weak get_aslr_seed(void)
1202 {
1203 	void *fdt = NULL;
1204 	int rc = 0;
1205 	const uint64_t *seed = NULL;
1206 	int offs = 0;
1207 	int len = 0;
1208 
1209 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC))
1210 		fdt = (void *)boot_arg_fdt;
1211 
1212 	if (!fdt) {
1213 		DMSG("No fdt");
1214 		goto err;
1215 	}
1216 
1217 	rc = fdt_check_header(fdt);
1218 	if (rc) {
1219 		DMSG("Bad fdt: %d", rc);
1220 		goto err;
1221 	}
1222 
1223 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1224 	if (offs < 0) {
1225 		DMSG("Cannot find /secure-chosen");
1226 		goto err;
1227 	}
1228 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1229 	if (!seed || len != sizeof(*seed)) {
1230 		DMSG("Cannot find valid kaslr-seed");
1231 		goto err;
1232 	}
1233 
1234 	return fdt64_to_cpu(fdt64_ld(seed));
1235 
1236 err:
1237 	/* Try platform implementation */
1238 	return plat_get_aslr_seed();
1239 }
1240 #else /*!CFG_DT*/
1241 unsigned long __weak get_aslr_seed(void)
1242 {
1243 	/* Try platform implementation */
1244 	return plat_get_aslr_seed();
1245 }
1246 #endif /*!CFG_DT*/
1247 #endif /*CFG_CORE_ASLR*/
1248 
1249 static void *get_fdt_from_boot_info(struct ffa_boot_info_header_1_1 *hdr)
1250 {
1251 	struct ffa_boot_info_1_1 *desc = NULL;
1252 	uint8_t content_fmt = 0;
1253 	uint8_t name_fmt = 0;
1254 	void *fdt = NULL;
1255 	int ret = 0;
1256 
1257 	if (hdr->signature != FFA_BOOT_INFO_SIGNATURE) {
1258 		EMSG("Bad boot info signature %#"PRIx32, hdr->signature);
1259 		panic();
1260 	}
1261 	if (hdr->version != FFA_BOOT_INFO_VERSION) {
1262 		EMSG("Bad boot info version %#"PRIx32, hdr->version);
1263 		panic();
1264 	}
1265 	if (hdr->desc_count != 1) {
1266 		EMSG("Bad boot info descriptor count %#"PRIx32,
1267 		     hdr->desc_count);
1268 		panic();
1269 	}
1270 	desc = (void *)((vaddr_t)hdr + hdr->desc_offset);
1271 	name_fmt = desc->flags & FFA_BOOT_INFO_FLAG_NAME_FORMAT_MASK;
1272 	if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_STRING)
1273 		DMSG("Boot info descriptor name \"%16s\"", desc->name);
1274 	else if (name_fmt == FFA_BOOT_INFO_FLAG_NAME_FORMAT_UUID)
1275 		DMSG("Boot info descriptor UUID %pUl", (void *)desc->name);
1276 	else
1277 		DMSG("Boot info descriptor: unknown name format %"PRIu8,
1278 		     name_fmt);
1279 
1280 	content_fmt = (desc->flags & FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_MASK) >>
1281 		      FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT;
1282 	if (content_fmt != FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR) {
1283 		EMSG("Bad boot info content format %"PRIu8", expected %u (address)",
1284 		     content_fmt, FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR);
1285 		panic();
1286 	}
1287 
1288 	fdt = (void *)(vaddr_t)desc->contents;
1289 	ret = fdt_check_full(fdt, desc->size);
1290 	if (ret < 0) {
1291 		EMSG("Invalid Device Tree at %p: error %d", fdt, ret);
1292 		panic();
1293 	}
1294 	return fdt;
1295 }
1296 
1297 static void get_sec_mem_from_manifest(void *fdt, paddr_t *base, size_t *size)
1298 {
1299 	int ret = 0;
1300 	uint64_t num = 0;
1301 
1302 	ret = fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0");
1303 	if (ret < 0) {
1304 		EMSG("Invalid FF-A manifest at %p: error %d", fdt, ret);
1305 		panic();
1306 	}
1307 	ret = dt_getprop_as_number(fdt, 0, "load-address", &num);
1308 	if (ret < 0) {
1309 		EMSG("Can't read \"load-address\" from FF-A manifest at %p: error %d",
1310 		     fdt, ret);
1311 		panic();
1312 	}
1313 	*base = num;
1314 	/* "mem-size" is currently an undocumented extension to the spec. */
1315 	ret = dt_getprop_as_number(fdt, 0, "mem-size", &num);
1316 	if (ret < 0) {
1317 		EMSG("Can't read \"mem-size\" from FF-A manifest at %p: error %d",
1318 		     fdt, ret);
1319 		panic();
1320 	}
1321 	*size = num;
1322 }
1323 
1324 void __weak boot_save_args(unsigned long a0, unsigned long a1,
1325 			   unsigned long a2, unsigned long a3,
1326 			   unsigned long a4 __maybe_unused)
1327 {
1328 	/*
1329 	 * Register use:
1330 	 *
1331 	 * Scenario A: Default arguments
1332 	 * a0   - CFG_CORE_FFA=y && CFG_CORE_SEL2_SPMC=n:
1333 	 *        if non-NULL holds the TOS FW config [1] address
1334 	 *      - CFG_CORE_FFA=y &&
1335 		  (CFG_CORE_SEL2_SPMC=y || CFG_CORE_EL3_SPMC=y):
1336 	 *        address of FF-A Boot Information Blob
1337 	 *      - CFG_CORE_FFA=n:
1338 	 *        if non-NULL holds the pagable part address
1339 	 * a1	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1340 	 *	  Armv7 standard bootarg #1 (kept track of in entry_a32.S)
1341 	 * a2   - CFG_CORE_SEL2_SPMC=n:
1342 	 *        if non-NULL holds the system DTB address
1343 	 *	- CFG_WITH_ARM_TRUSTED_FW=n (Armv7):
1344 	 *	  Armv7 standard bootarg #2 (system DTB address, kept track
1345 	 *	  of in entry_a32.S)
1346 	 * a3	- Not used
1347 	 * a4	- CFG_WITH_ARM_TRUSTED_FW=n:
1348 	 *	  Non-secure entry address
1349 	 *
1350 	 * [1] A TF-A concept: TOS_FW_CONFIG - Trusted OS Firmware
1351 	 * configuration file. Used by Trusted OS (BL32), that is, OP-TEE
1352 	 * here. This is also called Manifest DT, related to the Manifest DT
1353 	 * passed in the FF-A Boot Information Blob, but with a different
1354 	 * compatible string.
1355 
1356 	 * Scenario B: FW Handoff via Transfer List
1357 	 * Note: FF-A and non-secure entry are not yet supported with
1358 	 *       Transfer List
1359 	 * a0	- DTB address or 0 (AArch64)
1360 	 *	- must be 0 (AArch32)
1361 	 * a1	- 1 << 32 | TRANSFER_LIST_SIGNATURE[0:31] (AArch64)
1362 	 *	- 1 << 24 | TRANSFER_LIST_SIGNATURE[0:23] (AArch32)
1363 	 * a2	- must be 0 (AArch64)
1364 	 *	- DTB address or 0 (AArch32)
1365 	 * a3	- Transfer list base address
1366 	 * a4	- Not used
1367 	 */
1368 
1369 	if (IS_ENABLED(CFG_TRANSFER_LIST)) {
1370 		if (IS_ENABLED(CFG_ARM64_core) &&
1371 		    a1 == TL_HANDOFF_X1_VALUE(TL_REG_CONVENTION_VER)) {
1372 			boot_save_transfer_list(a2, a3, a0);
1373 			boot_arg_fdt = a0;
1374 		} else if (IS_ENABLED(CFG_ARM32_core) &&
1375 			   a1 == TL_HANDOFF_R1_VALUE(TL_REG_CONVENTION_VER)) {
1376 			boot_save_transfer_list(a0, a3, a2);
1377 			boot_arg_fdt = a2;
1378 		}
1379 
1380 		return;
1381 	}
1382 
1383 	if (!IS_ENABLED(CFG_CORE_SEL2_SPMC)) {
1384 #if defined(CFG_DT_ADDR)
1385 		boot_arg_fdt = CFG_DT_ADDR;
1386 #else
1387 		boot_arg_fdt = a2;
1388 #endif
1389 	}
1390 
1391 	if (IS_ENABLED(CFG_CORE_FFA)) {
1392 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) ||
1393 		    IS_ENABLED(CFG_CORE_EL3_SPMC))
1394 			init_manifest_dt(get_fdt_from_boot_info((void *)a0));
1395 		else
1396 			init_manifest_dt((void *)a0);
1397 		if (IS_ENABLED(CFG_CORE_SEL2_SPMC) &&
1398 		    IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)) {
1399 			paddr_t base = 0;
1400 			size_t size = 0;
1401 
1402 			get_sec_mem_from_manifest(get_manifest_dt(),
1403 						  &base, &size);
1404 			core_mmu_set_secure_memory(base, size);
1405 		}
1406 	} else {
1407 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1408 #if defined(CFG_PAGEABLE_ADDR)
1409 			boot_arg_pageable_part = CFG_PAGEABLE_ADDR;
1410 #else
1411 			boot_arg_pageable_part = a0;
1412 #endif
1413 		}
1414 		if (!IS_ENABLED(CFG_WITH_ARM_TRUSTED_FW)) {
1415 #if defined(CFG_NS_ENTRY_ADDR)
1416 			boot_arg_nsec_entry = CFG_NS_ENTRY_ADDR;
1417 #else
1418 			boot_arg_nsec_entry = a4;
1419 #endif
1420 		}
1421 	}
1422 }
1423 
1424 #if defined(CFG_TRANSFER_LIST)
1425 static TEE_Result release_transfer_list(void)
1426 {
1427 	struct dt_descriptor *dt = get_external_dt_desc();
1428 
1429 	if (!mapped_tl)
1430 		return TEE_SUCCESS;
1431 
1432 	if (dt) {
1433 		int ret = 0;
1434 		struct transfer_list_entry *tl_e = NULL;
1435 
1436 		/*
1437 		 * Pack the DTB and update the transfer list before un-mapping
1438 		 */
1439 		ret = fdt_pack(dt->blob);
1440 		if (ret < 0) {
1441 			EMSG("Failed to pack Device Tree at 0x%" PRIxPA
1442 			     ": error %d", virt_to_phys(dt->blob), ret);
1443 			panic();
1444 		}
1445 
1446 		tl_e = transfer_list_find(mapped_tl, TL_TAG_FDT);
1447 		assert(dt->blob == transfer_list_entry_data(tl_e));
1448 		transfer_list_set_data_size(mapped_tl, tl_e,
1449 					    fdt_totalsize(dt->blob));
1450 		dt->blob = NULL;
1451 	}
1452 
1453 	transfer_list_unmap_sync(mapped_tl);
1454 	mapped_tl = NULL;
1455 
1456 	return TEE_SUCCESS;
1457 }
1458 
1459 boot_final(release_transfer_list);
1460 #endif
1461