xref: /optee_os/core/arch/arm/kernel/boot.c (revision 23ef3871cb5814f45010171373add4d339285616)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2015-2022, Linaro Limited
4  */
5 
6 #include <arm.h>
7 #include <assert.h>
8 #include <compiler.h>
9 #include <config.h>
10 #include <console.h>
11 #include <crypto/crypto.h>
12 #include <drivers/gic.h>
13 #include <initcall.h>
14 #include <inttypes.h>
15 #include <keep.h>
16 #include <kernel/asan.h>
17 #include <kernel/boot.h>
18 #include <kernel/linker.h>
19 #include <kernel/misc.h>
20 #include <kernel/panic.h>
21 #include <kernel/tee_misc.h>
22 #include <kernel/thread.h>
23 #include <kernel/tpm.h>
24 #include <libfdt.h>
25 #include <malloc.h>
26 #include <memtag.h>
27 #include <mm/core_memprot.h>
28 #include <mm/core_mmu.h>
29 #include <mm/fobj.h>
30 #include <mm/tee_mm.h>
31 #include <mm/tee_pager.h>
32 #include <sm/psci.h>
33 #include <stdio.h>
34 #include <trace.h>
35 #include <utee_defines.h>
36 #include <util.h>
37 
38 #include <platform_config.h>
39 
40 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
41 #include <sm/sm.h>
42 #endif
43 
44 #if defined(CFG_WITH_VFP)
45 #include <kernel/vfp.h>
46 #endif
47 
48 /*
49  * In this file we're using unsigned long to represent physical pointers as
50  * they are received in a single register when OP-TEE is initially entered.
51  * This limits 32-bit systems to only use make use of the lower 32 bits
52  * of a physical address for initial parameters.
53  *
54  * 64-bit systems on the other hand can use full 64-bit physical pointers.
55  */
56 #define PADDR_INVALID		ULONG_MAX
57 
58 #if defined(CFG_BOOT_SECONDARY_REQUEST)
59 struct ns_entry_context {
60 	uintptr_t entry_point;
61 	uintptr_t context_id;
62 };
63 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
64 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
65 #endif
66 
67 #ifdef CFG_BOOT_SYNC_CPU
68 /*
69  * Array used when booting, to synchronize cpu.
70  * When 0, the cpu has not started.
71  * When 1, it has started
72  */
73 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
74 DECLARE_KEEP_PAGER(sem_cpu_sync);
75 #endif
76 
77 #ifdef CFG_DT
78 struct dt_descriptor {
79 	void *blob;
80 #ifdef _CFG_USE_DTB_OVERLAY
81 	int frag_id;
82 #endif
83 };
84 
85 static struct dt_descriptor external_dt __nex_bss;
86 #endif
87 
88 #ifdef CFG_SECONDARY_INIT_CNTFRQ
89 static uint32_t cntfrq;
90 #endif
91 
92 /* May be overridden in plat-$(PLATFORM)/main.c */
93 __weak void plat_primary_init_early(void)
94 {
95 }
96 DECLARE_KEEP_PAGER(plat_primary_init_early);
97 
98 /* May be overridden in plat-$(PLATFORM)/main.c */
99 __weak void main_init_gic(void)
100 {
101 }
102 
103 /* May be overridden in plat-$(PLATFORM)/main.c */
104 __weak void main_secondary_init_gic(void)
105 {
106 }
107 
108 /* May be overridden in plat-$(PLATFORM)/main.c */
109 __weak unsigned long plat_get_aslr_seed(void)
110 {
111 	DMSG("Warning: no ASLR seed");
112 
113 	return 0;
114 }
115 
116 /*
117  * This function is called as a guard after each smc call which is not
118  * supposed to return.
119  */
120 void __panic_at_smc_return(void)
121 {
122 	panic();
123 }
124 
125 #if defined(CFG_WITH_ARM_TRUSTED_FW)
126 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
127 {
128 	assert(nsec_entry == PADDR_INVALID);
129 	/* Do nothing as we don't have a secure monitor */
130 }
131 #else
132 /* May be overridden in plat-$(PLATFORM)/main.c */
133 __weak void init_sec_mon(unsigned long nsec_entry)
134 {
135 	struct sm_nsec_ctx *nsec_ctx;
136 
137 	assert(nsec_entry != PADDR_INVALID);
138 
139 	/* Initialize secure monitor */
140 	nsec_ctx = sm_get_nsec_ctx();
141 	nsec_ctx->mon_lr = nsec_entry;
142 	nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
143 	if (nsec_entry & 1)
144 		nsec_ctx->mon_spsr |= CPSR_T;
145 }
146 #endif
147 
148 #if defined(CFG_WITH_ARM_TRUSTED_FW)
149 static void init_vfp_nsec(void)
150 {
151 }
152 #else
153 static void init_vfp_nsec(void)
154 {
155 	/* Normal world can use CP10 and CP11 (SIMD/VFP) */
156 	write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
157 }
158 #endif
159 
160 #if defined(CFG_WITH_VFP)
161 
162 #ifdef ARM32
163 static void init_vfp_sec(void)
164 {
165 	uint32_t cpacr = read_cpacr();
166 
167 	/*
168 	 * Enable Advanced SIMD functionality.
169 	 * Enable use of D16-D31 of the Floating-point Extension register
170 	 * file.
171 	 */
172 	cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
173 	/*
174 	 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
175 	 * mode.
176 	 */
177 	cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
178 	cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
179 	write_cpacr(cpacr);
180 }
181 #endif /* ARM32 */
182 
183 #ifdef ARM64
184 static void init_vfp_sec(void)
185 {
186 	/* Not using VFP until thread_kernel_enable_vfp() */
187 	vfp_disable();
188 }
189 #endif /* ARM64 */
190 
191 #else /* CFG_WITH_VFP */
192 
193 static void init_vfp_sec(void)
194 {
195 	/* Not using VFP */
196 }
197 #endif
198 
199 #ifdef CFG_SECONDARY_INIT_CNTFRQ
200 static void primary_save_cntfrq(void)
201 {
202 	assert(cntfrq == 0);
203 
204 	/*
205 	 * CNTFRQ should be initialized on the primary CPU by a
206 	 * previous boot stage
207 	 */
208 	cntfrq = read_cntfrq();
209 }
210 
211 static void secondary_init_cntfrq(void)
212 {
213 	assert(cntfrq != 0);
214 	write_cntfrq(cntfrq);
215 }
216 #else /* CFG_SECONDARY_INIT_CNTFRQ */
217 static void primary_save_cntfrq(void)
218 {
219 }
220 
221 static void secondary_init_cntfrq(void)
222 {
223 }
224 #endif
225 
226 #ifdef CFG_CORE_SANITIZE_KADDRESS
227 static void init_run_constructors(void)
228 {
229 	const vaddr_t *ctor;
230 
231 	for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
232 		((void (*)(void))(*ctor))();
233 }
234 
235 static void init_asan(void)
236 {
237 
238 	/*
239 	 * CFG_ASAN_SHADOW_OFFSET is also supplied as
240 	 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
241 	 * Since all the needed values to calculate the value of
242 	 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
243 	 * calculate it in advance and hard code it into the platform
244 	 * conf.mk. Here where we have all the needed values we double
245 	 * check that the compiler is supplied the correct value.
246 	 */
247 
248 #define __ASAN_SHADOW_START \
249 	ROUNDUP(TEE_RAM_VA_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
250 	assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
251 #define __CFG_ASAN_SHADOW_OFFSET \
252 	(__ASAN_SHADOW_START - (TEE_RAM_VA_START / 8))
253 	COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
254 #undef __ASAN_SHADOW_START
255 #undef __CFG_ASAN_SHADOW_OFFSET
256 
257 	/*
258 	 * Assign area covered by the shadow area, everything from start up
259 	 * to the beginning of the shadow area.
260 	 */
261 	asan_set_shadowed((void *)TEE_TEXT_VA_START, &__asan_shadow_start);
262 
263 	/*
264 	 * Add access to areas that aren't opened automatically by a
265 	 * constructor.
266 	 */
267 	asan_tag_access(&__ctor_list, &__ctor_end);
268 	asan_tag_access(__rodata_start, __rodata_end);
269 #ifdef CFG_WITH_PAGER
270 	asan_tag_access(__pageable_start, __pageable_end);
271 #endif /*CFG_WITH_PAGER*/
272 	asan_tag_access(__nozi_start, __nozi_end);
273 	asan_tag_access(__exidx_start, __exidx_end);
274 	asan_tag_access(__extab_start, __extab_end);
275 
276 	init_run_constructors();
277 
278 	/* Everything is tagged correctly, let's start address sanitizing. */
279 	asan_start();
280 }
281 #else /*CFG_CORE_SANITIZE_KADDRESS*/
282 static void init_asan(void)
283 {
284 }
285 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
286 
287 #if defined(CFG_MEMTAG)
288 /* Called from entry_a64.S only when MEMTAG is configured */
289 void boot_init_memtag(void)
290 {
291 	memtag_init_ops(feat_mte_implemented());
292 	memtag_set_tags((void *)TEE_RAM_START, TEE_RAM_PH_SIZE, 0);
293 }
294 #endif
295 
296 #ifdef CFG_WITH_PAGER
297 
298 #ifdef CFG_CORE_SANITIZE_KADDRESS
299 static void carve_out_asan_mem(tee_mm_pool_t *pool)
300 {
301 	const size_t s = pool->hi - pool->lo;
302 	tee_mm_entry_t *mm;
303 	paddr_t apa = ASAN_MAP_PA;
304 	size_t asz = ASAN_MAP_SZ;
305 
306 	if (core_is_buffer_outside(apa, asz, pool->lo, s))
307 		return;
308 
309 	/* Reserve the shadow area */
310 	if (!core_is_buffer_inside(apa, asz, pool->lo, s)) {
311 		if (apa < pool->lo) {
312 			/*
313 			 * ASAN buffer is overlapping with the beginning of
314 			 * the pool.
315 			 */
316 			asz -= pool->lo - apa;
317 			apa = pool->lo;
318 		} else {
319 			/*
320 			 * ASAN buffer is overlapping with the end of the
321 			 * pool.
322 			 */
323 			asz = pool->hi - apa;
324 		}
325 	}
326 	mm = tee_mm_alloc2(pool, apa, asz);
327 	assert(mm);
328 }
329 #else
330 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused)
331 {
332 }
333 #endif
334 
335 static void print_pager_pool_size(void)
336 {
337 	struct tee_pager_stats __maybe_unused stats;
338 
339 	tee_pager_get_stats(&stats);
340 	IMSG("Pager pool size: %zukB",
341 		stats.npages_all * SMALL_PAGE_SIZE / 1024);
342 }
343 
344 static void init_vcore(tee_mm_pool_t *mm_vcore)
345 {
346 	const vaddr_t begin = VCORE_START_VA;
347 	size_t size = TEE_RAM_VA_SIZE;
348 
349 #ifdef CFG_CORE_SANITIZE_KADDRESS
350 	/* Carve out asan memory, flat maped after core memory */
351 	if (begin + size > ASAN_SHADOW_PA)
352 		size = ASAN_MAP_PA - begin;
353 #endif
354 
355 	if (!tee_mm_init(mm_vcore, begin, size, SMALL_PAGE_SHIFT,
356 			 TEE_MM_POOL_NO_FLAGS))
357 		panic("tee_mm_vcore init failed");
358 }
359 
360 /*
361  * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
362  * The init part is also paged just as the rest of the normal paged code, with
363  * the difference that it's preloaded during boot. When the backing store
364  * is configured the entire paged binary is copied in place and then also
365  * the init part. Since the init part has been relocated (references to
366  * addresses updated to compensate for the new load address) this has to be
367  * undone for the hashes of those pages to match with the original binary.
368  *
369  * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
370  * unchanged.
371  */
372 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
373 {
374 #ifdef CFG_CORE_ASLR
375 	unsigned long *ptr = NULL;
376 	const uint32_t *reloc = NULL;
377 	const uint32_t *reloc_end = NULL;
378 	unsigned long offs = boot_mmu_config.load_offset;
379 	const struct boot_embdata *embdata = (const void *)__init_end;
380 	vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_RAM_START;
381 	vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_RAM_START;
382 
383 	reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
384 	reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
385 
386 	for (; reloc < reloc_end; reloc++) {
387 		if (*reloc < addr_start)
388 			continue;
389 		if (*reloc >= addr_end)
390 			break;
391 		ptr = (void *)(paged_store + *reloc - addr_start);
392 		*ptr -= offs;
393 	}
394 #endif
395 }
396 
397 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
398 				   void *store)
399 {
400 	const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
401 #ifdef CFG_CORE_ASLR
402 	unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
403 	const struct boot_embdata *embdata = (const void *)__init_end;
404 	const void *reloc = __init_end + embdata->reloc_offset;
405 
406 	return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
407 					 reloc, embdata->reloc_len, store);
408 #else
409 	return fobj_ro_paged_alloc(num_pages, hashes, store);
410 #endif
411 }
412 
413 static void init_runtime(unsigned long pageable_part)
414 {
415 	size_t n;
416 	size_t init_size = (size_t)(__init_end - __init_start);
417 	size_t pageable_start = (size_t)__pageable_start;
418 	size_t pageable_end = (size_t)__pageable_end;
419 	size_t pageable_size = pageable_end - pageable_start;
420 	vaddr_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE - TEE_LOAD_ADDR +
421 			     VCORE_START_VA;
422 	size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
423 			   TEE_SHA256_HASH_SIZE;
424 	const struct boot_embdata *embdata = (const void *)__init_end;
425 	const void *tmp_hashes = NULL;
426 	tee_mm_entry_t *mm = NULL;
427 	struct fobj *fobj = NULL;
428 	uint8_t *paged_store = NULL;
429 	uint8_t *hashes = NULL;
430 
431 	assert(pageable_size % SMALL_PAGE_SIZE == 0);
432 	assert(embdata->total_len >= embdata->hashes_offset +
433 				     embdata->hashes_len);
434 	assert(hash_size == embdata->hashes_len);
435 
436 	tmp_hashes = __init_end + embdata->hashes_offset;
437 
438 	init_asan();
439 
440 	/* Add heap2 first as heap1 may be too small as initial bget pool */
441 	malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
442 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
443 
444 	/*
445 	 * This needs to be initialized early to support address lookup
446 	 * in MEM_AREA_TEE_RAM
447 	 */
448 	tee_pager_early_init();
449 
450 	hashes = malloc(hash_size);
451 	IMSG_RAW("\n");
452 	IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
453 	assert(hashes);
454 	asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
455 
456 	/*
457 	 * Need tee_mm_sec_ddr initialized to be able to allocate secure
458 	 * DDR below.
459 	 */
460 	core_mmu_init_ta_ram();
461 
462 	carve_out_asan_mem(&tee_mm_sec_ddr);
463 
464 	mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size);
465 	assert(mm);
466 	paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
467 				   pageable_size);
468 	/*
469 	 * Load pageable part in the dedicated allocated area:
470 	 * - Move pageable non-init part into pageable area. Note bootloader
471 	 *   may have loaded it anywhere in TA RAM hence use memmove().
472 	 * - Copy pageable init part from current location into pageable area.
473 	 */
474 	memmove(paged_store + init_size,
475 		phys_to_virt(pageable_part,
476 			     core_mmu_get_type_by_pa(pageable_part),
477 			     __pageable_part_end - __pageable_part_start),
478 		__pageable_part_end - __pageable_part_start);
479 	asan_memcpy_unchecked(paged_store, __init_start, init_size);
480 	/*
481 	 * Undo eventual relocation for the init part so the hash checks
482 	 * can pass.
483 	 */
484 	undo_init_relocation(paged_store);
485 
486 	/* Check that hashes of what's in pageable area is OK */
487 	DMSG("Checking hashes of pageable area");
488 	for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
489 		const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
490 		const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
491 		TEE_Result res;
492 
493 		DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
494 		res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
495 		if (res != TEE_SUCCESS) {
496 			EMSG("Hash failed for page %zu at %p: res 0x%x",
497 			     n, (void *)page, res);
498 			panic();
499 		}
500 	}
501 
502 	/*
503 	 * Assert prepaged init sections are page aligned so that nothing
504 	 * trails uninited at the end of the premapped init area.
505 	 */
506 	assert(!(init_size & SMALL_PAGE_MASK));
507 
508 	/*
509 	 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
510 	 * is supplied to tee_pager_init() below.
511 	 */
512 	init_vcore(&tee_mm_vcore);
513 
514 	/*
515 	 * Assign alias area for pager end of the small page block the rest
516 	 * of the binary is loaded into. We're taking more than needed, but
517 	 * we're guaranteed to not need more than the physical amount of
518 	 * TZSRAM.
519 	 */
520 	mm = tee_mm_alloc2(&tee_mm_vcore,
521 			   (vaddr_t)tee_mm_vcore.lo +
522 			   tee_mm_vcore.size - TZSRAM_SIZE,
523 			   TZSRAM_SIZE);
524 	assert(mm);
525 	tee_pager_set_alias_area(mm);
526 
527 	/*
528 	 * Claim virtual memory which isn't paged.
529 	 * Linear memory (flat map core memory) ends there.
530 	 */
531 	mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA,
532 			   (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
533 	assert(mm);
534 
535 	/*
536 	 * Allocate virtual memory for the pageable area and let the pager
537 	 * take charge of all the pages already assigned to that memory.
538 	 */
539 	mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start,
540 			   pageable_size);
541 	assert(mm);
542 	fobj = ro_paged_alloc(mm, hashes, paged_store);
543 	assert(fobj);
544 	tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
545 				  fobj);
546 	fobj_put(fobj);
547 
548 	tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
549 	tee_pager_add_pages(pageable_start + init_size,
550 			    (pageable_size - init_size) / SMALL_PAGE_SIZE,
551 			    true);
552 	if (pageable_end < tzsram_end)
553 		tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
554 						   SMALL_PAGE_SIZE, true);
555 
556 	/*
557 	 * There may be physical pages in TZSRAM before the core load address.
558 	 * These pages can be added to the physical pages pool of the pager.
559 	 * This setup may happen when a the secure bootloader runs in TZRAM
560 	 * and its memory can be reused by OP-TEE once boot stages complete.
561 	 */
562 	tee_pager_add_pages(tee_mm_vcore.lo,
563 			(VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE,
564 			true);
565 
566 	print_pager_pool_size();
567 }
568 #else
569 
570 static void init_runtime(unsigned long pageable_part __unused)
571 {
572 	init_asan();
573 
574 	/*
575 	 * By default whole OP-TEE uses malloc, so we need to initialize
576 	 * it early. But, when virtualization is enabled, malloc is used
577 	 * only by TEE runtime, so malloc should be initialized later, for
578 	 * every virtual partition separately. Core code uses nex_malloc
579 	 * instead.
580 	 */
581 #ifdef CFG_VIRTUALIZATION
582 	nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
583 					      __nex_heap_start);
584 #else
585 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
586 #endif
587 
588 	IMSG_RAW("\n");
589 }
590 #endif
591 
592 void *get_dt(void)
593 {
594 	void *fdt = get_embedded_dt();
595 
596 	if (!fdt)
597 		fdt = get_external_dt();
598 
599 	return fdt;
600 }
601 
602 #if defined(CFG_EMBED_DTB)
603 void *get_embedded_dt(void)
604 {
605 	static bool checked;
606 
607 	assert(cpu_mmu_enabled());
608 
609 	if (!checked) {
610 		IMSG("Embedded DTB found");
611 
612 		if (fdt_check_header(embedded_secure_dtb))
613 			panic("Invalid embedded DTB");
614 
615 		checked = true;
616 	}
617 
618 	return embedded_secure_dtb;
619 }
620 #else
621 void *get_embedded_dt(void)
622 {
623 	return NULL;
624 }
625 #endif /*CFG_EMBED_DTB*/
626 
627 #if defined(CFG_DT)
628 void *get_external_dt(void)
629 {
630 	if (!IS_ENABLED(CFG_EXTERNAL_DT))
631 		return NULL;
632 
633 	assert(cpu_mmu_enabled());
634 	return external_dt.blob;
635 }
636 
637 static TEE_Result release_external_dt(void)
638 {
639 	int ret = 0;
640 
641 	if (!IS_ENABLED(CFG_EXTERNAL_DT))
642 		return TEE_SUCCESS;
643 
644 	if (!external_dt.blob)
645 		return TEE_SUCCESS;
646 
647 	ret = fdt_pack(external_dt.blob);
648 	if (ret < 0) {
649 		EMSG("Failed to pack Device Tree at 0x%" PRIxPA ": error %d",
650 		     virt_to_phys(external_dt.blob), ret);
651 		panic();
652 	}
653 
654 	if (core_mmu_remove_mapping(MEM_AREA_EXT_DT, external_dt.blob,
655 				    CFG_DTB_MAX_SIZE))
656 		panic("Failed to remove temporary Device Tree mapping");
657 
658 	/* External DTB no more reached, reset pointer to invalid */
659 	external_dt.blob = NULL;
660 
661 	return TEE_SUCCESS;
662 }
663 boot_final(release_external_dt);
664 
665 #ifdef _CFG_USE_DTB_OVERLAY
666 static int add_dt_overlay_fragment(struct dt_descriptor *dt, int ioffs)
667 {
668 	char frag[32];
669 	int offs;
670 	int ret;
671 
672 	snprintf(frag, sizeof(frag), "fragment@%d", dt->frag_id);
673 	offs = fdt_add_subnode(dt->blob, ioffs, frag);
674 	if (offs < 0)
675 		return offs;
676 
677 	dt->frag_id += 1;
678 
679 	ret = fdt_setprop_string(dt->blob, offs, "target-path", "/");
680 	if (ret < 0)
681 		return -1;
682 
683 	return fdt_add_subnode(dt->blob, offs, "__overlay__");
684 }
685 
686 static int init_dt_overlay(struct dt_descriptor *dt, int __maybe_unused dt_size)
687 {
688 	int fragment;
689 
690 	if (IS_ENABLED(CFG_EXTERNAL_DTB_OVERLAY)) {
691 		if (!fdt_check_header(dt->blob)) {
692 			fdt_for_each_subnode(fragment, dt->blob, 0)
693 				dt->frag_id += 1;
694 			return 0;
695 		}
696 	}
697 
698 	return fdt_create_empty_tree(dt->blob, dt_size);
699 }
700 #else
701 static int add_dt_overlay_fragment(struct dt_descriptor *dt __unused, int offs)
702 {
703 	return offs;
704 }
705 
706 static int init_dt_overlay(struct dt_descriptor *dt __unused,
707 			   int dt_size __unused)
708 {
709 	return 0;
710 }
711 #endif /* _CFG_USE_DTB_OVERLAY */
712 
713 static int add_dt_path_subnode(struct dt_descriptor *dt, const char *path,
714 			       const char *subnode)
715 {
716 	int offs;
717 
718 	offs = fdt_path_offset(dt->blob, path);
719 	if (offs < 0)
720 		return -1;
721 	offs = add_dt_overlay_fragment(dt, offs);
722 	if (offs < 0)
723 		return -1;
724 	offs = fdt_add_subnode(dt->blob, offs, subnode);
725 	if (offs < 0)
726 		return -1;
727 	return offs;
728 }
729 
730 static int add_optee_dt_node(struct dt_descriptor *dt)
731 {
732 	int offs;
733 	int ret;
734 
735 	if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
736 		DMSG("OP-TEE Device Tree node already exists!");
737 		return 0;
738 	}
739 
740 	offs = fdt_path_offset(dt->blob, "/firmware");
741 	if (offs < 0) {
742 		offs = add_dt_path_subnode(dt, "/", "firmware");
743 		if (offs < 0)
744 			return -1;
745 	}
746 
747 	offs = fdt_add_subnode(dt->blob, offs, "optee");
748 	if (offs < 0)
749 		return -1;
750 
751 	ret = fdt_setprop_string(dt->blob, offs, "compatible",
752 				 "linaro,optee-tz");
753 	if (ret < 0)
754 		return -1;
755 	ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
756 	if (ret < 0)
757 		return -1;
758 	if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
759 		/*
760 		 * The format of the interrupt property is defined by the
761 		 * binding of the interrupt domain root. In this case it's
762 		 * one Arm GIC v1, v2 or v3 so we must be compatible with
763 		 * these.
764 		 *
765 		 * An SPI type of interrupt is indicated with a 0 in the
766 		 * first cell.
767 		 *
768 		 * The interrupt number goes in the second cell where
769 		 * SPIs ranges from 0 to 987.
770 		 *
771 		 * Flags are passed in the third cell where a 1 means edge
772 		 * triggered.
773 		 */
774 		const uint32_t gic_spi = 0;
775 		const uint32_t irq_type_edge = 1;
776 		uint32_t val[] = {
777 			TEE_U32_TO_BIG_ENDIAN(gic_spi),
778 			TEE_U32_TO_BIG_ENDIAN(CFG_CORE_ASYNC_NOTIF_GIC_INTID -
779 					      GIC_SPI_BASE),
780 			TEE_U32_TO_BIG_ENDIAN(irq_type_edge),
781 		};
782 
783 		ret = fdt_setprop(dt->blob, offs, "interrupts", val,
784 				  sizeof(val));
785 		if (ret < 0)
786 			return -1;
787 	}
788 	return 0;
789 }
790 
791 #ifdef CFG_PSCI_ARM32
792 static int append_psci_compatible(void *fdt, int offs, const char *str)
793 {
794 	return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
795 }
796 
797 static int dt_add_psci_node(struct dt_descriptor *dt)
798 {
799 	int offs;
800 
801 	if (fdt_path_offset(dt->blob, "/psci") >= 0) {
802 		DMSG("PSCI Device Tree node already exists!");
803 		return 0;
804 	}
805 
806 	offs = add_dt_path_subnode(dt, "/", "psci");
807 	if (offs < 0)
808 		return -1;
809 	if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
810 		return -1;
811 	if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
812 		return -1;
813 	if (append_psci_compatible(dt->blob, offs, "arm,psci"))
814 		return -1;
815 	if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
816 		return -1;
817 	if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
818 		return -1;
819 	if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
820 		return -1;
821 	if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
822 		return -1;
823 	if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
824 		return -1;
825 	if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
826 		return -1;
827 	return 0;
828 }
829 
830 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
831 				    const char *prefix)
832 {
833 	const size_t prefix_len = strlen(prefix);
834 	size_t l;
835 	int plen;
836 	const char *prop;
837 
838 	prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
839 	if (!prop)
840 		return -1;
841 
842 	while (plen > 0) {
843 		if (memcmp(prop, prefix, prefix_len) == 0)
844 			return 0; /* match */
845 
846 		l = strlen(prop) + 1;
847 		prop += l;
848 		plen -= l;
849 	}
850 
851 	return -1;
852 }
853 
854 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
855 {
856 	int offs = 0;
857 
858 	while (1) {
859 		offs = fdt_next_node(dt->blob, offs, NULL);
860 		if (offs < 0)
861 			break;
862 		if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
863 			continue; /* already set */
864 		if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
865 			continue; /* no compatible */
866 		if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
867 			return -1;
868 		/* Need to restart scanning as offsets may have changed */
869 		offs = 0;
870 	}
871 	return 0;
872 }
873 
874 static int config_psci(struct dt_descriptor *dt)
875 {
876 	if (dt_add_psci_node(dt))
877 		return -1;
878 	return dt_add_psci_cpu_enable_methods(dt);
879 }
880 #else
881 static int config_psci(struct dt_descriptor *dt __unused)
882 {
883 	return 0;
884 }
885 #endif /*CFG_PSCI_ARM32*/
886 
887 static void set_dt_val(void *data, uint32_t cell_size, uint64_t val)
888 {
889 	if (cell_size == 1) {
890 		fdt32_t v = cpu_to_fdt32((uint32_t)val);
891 
892 		memcpy(data, &v, sizeof(v));
893 	} else {
894 		fdt64_t v = cpu_to_fdt64(val);
895 
896 		memcpy(data, &v, sizeof(v));
897 	}
898 }
899 
900 static int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name,
901 			       paddr_t pa, size_t size)
902 {
903 	int offs = 0;
904 	int ret = 0;
905 	int addr_size = -1;
906 	int len_size = -1;
907 	bool found = true;
908 	char subnode_name[80] = { 0 };
909 
910 	offs = fdt_path_offset(dt->blob, "/reserved-memory");
911 
912 	if (offs < 0) {
913 		found = false;
914 		offs = 0;
915 	}
916 
917 	if (IS_ENABLED(_CFG_USE_DTB_OVERLAY)) {
918 		len_size = sizeof(paddr_t) / sizeof(uint32_t);
919 		addr_size = sizeof(paddr_t) / sizeof(uint32_t);
920 	} else {
921 		len_size = fdt_size_cells(dt->blob, offs);
922 		if (len_size < 0)
923 			return -1;
924 		addr_size = fdt_address_cells(dt->blob, offs);
925 		if (addr_size < 0)
926 			return -1;
927 	}
928 
929 	if (!found) {
930 		offs = add_dt_path_subnode(dt, "/", "reserved-memory");
931 		if (offs < 0)
932 			return -1;
933 		ret = fdt_setprop_cell(dt->blob, offs, "#address-cells",
934 				       addr_size);
935 		if (ret < 0)
936 			return -1;
937 		ret = fdt_setprop_cell(dt->blob, offs, "#size-cells", len_size);
938 		if (ret < 0)
939 			return -1;
940 		ret = fdt_setprop(dt->blob, offs, "ranges", NULL, 0);
941 		if (ret < 0)
942 			return -1;
943 	}
944 
945 	ret = snprintf(subnode_name, sizeof(subnode_name),
946 		       "%s@%" PRIxPA, name, pa);
947 	if (ret < 0 || ret >= (int)sizeof(subnode_name))
948 		DMSG("truncated node \"%s@%" PRIxPA"\"", name, pa);
949 	offs = fdt_add_subnode(dt->blob, offs, subnode_name);
950 	if (offs >= 0) {
951 		uint32_t data[FDT_MAX_NCELLS * 2];
952 
953 		set_dt_val(data, addr_size, pa);
954 		set_dt_val(data + addr_size, len_size, size);
955 		ret = fdt_setprop(dt->blob, offs, "reg", data,
956 				  sizeof(uint32_t) * (addr_size + len_size));
957 		if (ret < 0)
958 			return -1;
959 		ret = fdt_setprop(dt->blob, offs, "no-map", NULL, 0);
960 		if (ret < 0)
961 			return -1;
962 	} else {
963 		return -1;
964 	}
965 	return 0;
966 }
967 
968 #ifdef CFG_CORE_DYN_SHM
969 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs,
970 				       uint32_t cell_size)
971 {
972 	uint64_t rv = 0;
973 
974 	if (cell_size == 1) {
975 		uint32_t v;
976 
977 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
978 		*offs += sizeof(v);
979 		rv = fdt32_to_cpu(v);
980 	} else {
981 		uint64_t v;
982 
983 		memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
984 		*offs += sizeof(v);
985 		rv = fdt64_to_cpu(v);
986 	}
987 
988 	return rv;
989 }
990 
991 /*
992  * Find all non-secure memory from DT. Memory marked inaccessible by Secure
993  * World is ignored since it could not be mapped to be used as dynamic shared
994  * memory.
995  */
996 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem)
997 {
998 	const uint8_t *prop = NULL;
999 	uint64_t a = 0;
1000 	uint64_t l = 0;
1001 	size_t prop_offs = 0;
1002 	size_t prop_len = 0;
1003 	int elems_total = 0;
1004 	int addr_size = 0;
1005 	int len_size = 0;
1006 	int offs = 0;
1007 	size_t n = 0;
1008 	int len = 0;
1009 
1010 	addr_size = fdt_address_cells(fdt, 0);
1011 	if (addr_size < 0)
1012 		return 0;
1013 
1014 	len_size = fdt_size_cells(fdt, 0);
1015 	if (len_size < 0)
1016 		return 0;
1017 
1018 	while (true) {
1019 		offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type",
1020 						     "memory",
1021 						     sizeof("memory"));
1022 		if (offs < 0)
1023 			break;
1024 
1025 		if (_fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC |
1026 						   DT_STATUS_OK_SEC))
1027 			continue;
1028 
1029 		prop = fdt_getprop(fdt, offs, "reg", &len);
1030 		if (!prop)
1031 			continue;
1032 
1033 		prop_len = len;
1034 		for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) {
1035 			a = get_dt_val_and_advance(prop, &prop_offs, addr_size);
1036 			if (prop_offs >= prop_len) {
1037 				n--;
1038 				break;
1039 			}
1040 
1041 			l = get_dt_val_and_advance(prop, &prop_offs, len_size);
1042 			if (mem) {
1043 				mem->type = MEM_AREA_DDR_OVERALL;
1044 				mem->addr = a;
1045 				mem->size = l;
1046 				mem++;
1047 			}
1048 		}
1049 
1050 		elems_total += n;
1051 	}
1052 
1053 	return elems_total;
1054 }
1055 
1056 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems)
1057 {
1058 	struct core_mmu_phys_mem *mem = NULL;
1059 	int elems_total = 0;
1060 
1061 	elems_total = get_nsec_memory_helper(fdt, NULL);
1062 	if (elems_total <= 0)
1063 		return NULL;
1064 
1065 	mem = nex_calloc(elems_total, sizeof(*mem));
1066 	if (!mem)
1067 		panic();
1068 
1069 	elems_total = get_nsec_memory_helper(fdt, mem);
1070 	assert(elems_total > 0);
1071 
1072 	*nelems = elems_total;
1073 
1074 	return mem;
1075 }
1076 #endif /*CFG_CORE_DYN_SHM*/
1077 
1078 #ifdef CFG_CORE_RESERVED_SHM
1079 static int mark_static_shm_as_reserved(struct dt_descriptor *dt)
1080 {
1081 	vaddr_t shm_start;
1082 	vaddr_t shm_end;
1083 
1084 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end);
1085 	if (shm_start != shm_end)
1086 		return add_res_mem_dt_node(dt, "optee_shm",
1087 					   virt_to_phys((void *)shm_start),
1088 					   shm_end - shm_start);
1089 
1090 	DMSG("No SHM configured");
1091 	return -1;
1092 }
1093 #endif /*CFG_CORE_RESERVED_SHM*/
1094 
1095 static void init_external_dt(unsigned long phys_dt)
1096 {
1097 	struct dt_descriptor *dt = &external_dt;
1098 	void *fdt;
1099 	int ret;
1100 
1101 	if (!IS_ENABLED(CFG_EXTERNAL_DT))
1102 		return;
1103 
1104 	if (!phys_dt) {
1105 		/*
1106 		 * No need to panic as we're not using the DT in OP-TEE
1107 		 * yet, we're only adding some nodes for normal world use.
1108 		 * This makes the switch to using DT easier as we can boot
1109 		 * a newer OP-TEE with older boot loaders. Once we start to
1110 		 * initialize devices based on DT we'll likely panic
1111 		 * instead of returning here.
1112 		 */
1113 		IMSG("No non-secure external DT");
1114 		return;
1115 	}
1116 
1117 	fdt = core_mmu_add_mapping(MEM_AREA_EXT_DT, phys_dt, CFG_DTB_MAX_SIZE);
1118 	if (!fdt)
1119 		panic("Failed to map external DTB");
1120 
1121 	dt->blob = fdt;
1122 
1123 	ret = init_dt_overlay(dt, CFG_DTB_MAX_SIZE);
1124 	if (ret < 0) {
1125 		EMSG("Device Tree Overlay init fail @ %#lx: error %d", phys_dt,
1126 		     ret);
1127 		panic();
1128 	}
1129 
1130 	ret = fdt_open_into(fdt, fdt, CFG_DTB_MAX_SIZE);
1131 	if (ret < 0) {
1132 		EMSG("Invalid Device Tree at %#lx: error %d", phys_dt, ret);
1133 		panic();
1134 	}
1135 
1136 	IMSG("Non-secure external DT found");
1137 }
1138 
1139 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
1140 {
1141 	return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
1142 				   CFG_TZDRAM_SIZE);
1143 }
1144 
1145 static void update_external_dt(void)
1146 {
1147 	struct dt_descriptor *dt = &external_dt;
1148 
1149 	if (!IS_ENABLED(CFG_EXTERNAL_DT))
1150 		return;
1151 
1152 	if (!dt->blob)
1153 		return;
1154 
1155 	if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
1156 		panic("Failed to add OP-TEE Device Tree node");
1157 
1158 	if (config_psci(dt))
1159 		panic("Failed to config PSCI");
1160 
1161 #ifdef CFG_CORE_RESERVED_SHM
1162 	if (mark_static_shm_as_reserved(dt))
1163 		panic("Failed to config non-secure memory");
1164 #endif
1165 
1166 	if (mark_tzdram_as_reserved(dt))
1167 		panic("Failed to config secure memory");
1168 }
1169 #else /*CFG_DT*/
1170 void *get_external_dt(void)
1171 {
1172 	return NULL;
1173 }
1174 
1175 static void init_external_dt(unsigned long phys_dt __unused)
1176 {
1177 }
1178 
1179 static void update_external_dt(void)
1180 {
1181 }
1182 
1183 #ifdef CFG_CORE_DYN_SHM
1184 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused,
1185 						 size_t *nelems __unused)
1186 {
1187 	return NULL;
1188 }
1189 #endif /*CFG_CORE_DYN_SHM*/
1190 #endif /*!CFG_DT*/
1191 
1192 #ifdef CFG_CORE_DYN_SHM
1193 static void discover_nsec_memory(void)
1194 {
1195 	struct core_mmu_phys_mem *mem;
1196 	const struct core_mmu_phys_mem *mem_begin = NULL;
1197 	const struct core_mmu_phys_mem *mem_end = NULL;
1198 	size_t nelems;
1199 	void *fdt = get_external_dt();
1200 
1201 	if (fdt) {
1202 		mem = get_nsec_memory(fdt, &nelems);
1203 		if (mem) {
1204 			core_mmu_set_discovered_nsec_ddr(mem, nelems);
1205 			return;
1206 		}
1207 
1208 		DMSG("No non-secure memory found in FDT");
1209 	}
1210 
1211 	mem_begin = phys_ddr_overall_begin;
1212 	mem_end = phys_ddr_overall_end;
1213 	nelems = mem_end - mem_begin;
1214 	if (nelems) {
1215 		/*
1216 		 * Platform cannot use both register_ddr() and the now
1217 		 * deprecated register_dynamic_shm().
1218 		 */
1219 		assert(phys_ddr_overall_compat_begin ==
1220 		       phys_ddr_overall_compat_end);
1221 	} else {
1222 		mem_begin = phys_ddr_overall_compat_begin;
1223 		mem_end = phys_ddr_overall_compat_end;
1224 		nelems = mem_end - mem_begin;
1225 		if (!nelems)
1226 			return;
1227 		DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead");
1228 	}
1229 
1230 	mem = nex_calloc(nelems, sizeof(*mem));
1231 	if (!mem)
1232 		panic();
1233 
1234 	memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems);
1235 	core_mmu_set_discovered_nsec_ddr(mem, nelems);
1236 }
1237 #else /*CFG_CORE_DYN_SHM*/
1238 static void discover_nsec_memory(void)
1239 {
1240 }
1241 #endif /*!CFG_CORE_DYN_SHM*/
1242 
1243 #ifdef CFG_VIRTUALIZATION
1244 static TEE_Result virt_init_heap(void)
1245 {
1246 	/* We need to initialize pool for every virtual guest partition */
1247 	malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
1248 
1249 	return TEE_SUCCESS;
1250 }
1251 preinit_early(virt_init_heap);
1252 #endif
1253 
1254 void init_tee_runtime(void)
1255 {
1256 #ifndef CFG_WITH_PAGER
1257 	/* Pager initializes TA RAM early */
1258 	core_mmu_init_ta_ram();
1259 #endif
1260 	/*
1261 	 * With virtualization we call this function when creating the
1262 	 * OP-TEE partition instead.
1263 	 */
1264 	if (!IS_ENABLED(CFG_VIRTUALIZATION))
1265 		call_preinitcalls();
1266 	call_initcalls();
1267 
1268 	/*
1269 	 * These two functions uses crypto_rng_read() to initialize the
1270 	 * pauth keys. Once call_initcalls() returns we're guaranteed that
1271 	 * crypto_rng_read() is ready to be used.
1272 	 */
1273 	thread_init_core_local_pauth_keys();
1274 	thread_init_thread_pauth_keys();
1275 }
1276 
1277 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
1278 {
1279 	thread_init_core_local_stacks();
1280 	/*
1281 	 * Mask asynchronous exceptions before switch to the thread vector
1282 	 * as the thread handler requires those to be masked while
1283 	 * executing with the temporary stack. The thread subsystem also
1284 	 * asserts that the foreign interrupts are blocked when using most of
1285 	 * its functions.
1286 	 */
1287 	thread_set_exceptions(THREAD_EXCP_ALL);
1288 	primary_save_cntfrq();
1289 	init_vfp_sec();
1290 	/*
1291 	 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
1292 	 * set a current thread right now to avoid a chicken-and-egg problem
1293 	 * (thread_init_boot_thread() sets the current thread but needs
1294 	 * things set by init_runtime()).
1295 	 */
1296 	thread_get_core_local()->curr_thread = 0;
1297 	init_runtime(pageable_part);
1298 
1299 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
1300 		/*
1301 		 * Virtualization: We can't initialize threads right now because
1302 		 * threads belong to "tee" part and will be initialized
1303 		 * separately per each new virtual guest. So, we'll clear
1304 		 * "curr_thread" and call it done.
1305 		 */
1306 		thread_get_core_local()->curr_thread = -1;
1307 	} else {
1308 		thread_init_boot_thread();
1309 	}
1310 	thread_init_primary();
1311 	thread_init_per_cpu();
1312 	init_sec_mon(nsec_entry);
1313 }
1314 
1315 /*
1316  * Note: this function is weak just to make it possible to exclude it from
1317  * the unpaged area.
1318  */
1319 void __weak boot_init_primary_late(unsigned long fdt)
1320 {
1321 	init_external_dt(fdt);
1322 	tpm_map_log_area(get_external_dt());
1323 	discover_nsec_memory();
1324 	update_external_dt();
1325 	configure_console_from_dt();
1326 
1327 	IMSG("OP-TEE version: %s", core_v_str);
1328 	if (IS_ENABLED(CFG_WARN_INSECURE)) {
1329 		IMSG("WARNING: This OP-TEE configuration might be insecure!");
1330 		IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1331 	}
1332 	IMSG("Primary CPU initializing");
1333 #ifdef CFG_CORE_ASLR
1334 	DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1335 	     (unsigned long)boot_mmu_config.load_offset, VCORE_START_VA);
1336 #endif
1337 	if (IS_ENABLED(CFG_MEMTAG))
1338 		DMSG("Memory tagging %s",
1339 		     memtag_is_enabled() ?  "enabled" : "disabled");
1340 
1341 	main_init_gic();
1342 	init_vfp_nsec();
1343 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
1344 		IMSG("Initializing virtualization support");
1345 		core_mmu_init_virtualization();
1346 	} else {
1347 		init_tee_runtime();
1348 	}
1349 	call_finalcalls();
1350 	IMSG("Primary CPU switching to normal world boot");
1351 }
1352 
1353 static void init_secondary_helper(unsigned long nsec_entry)
1354 {
1355 	IMSG("Secondary CPU %zu initializing", get_core_pos());
1356 
1357 	/*
1358 	 * Mask asynchronous exceptions before switch to the thread vector
1359 	 * as the thread handler requires those to be masked while
1360 	 * executing with the temporary stack. The thread subsystem also
1361 	 * asserts that the foreign interrupts are blocked when using most of
1362 	 * its functions.
1363 	 */
1364 	thread_set_exceptions(THREAD_EXCP_ALL);
1365 
1366 	secondary_init_cntfrq();
1367 	thread_init_per_cpu();
1368 	init_sec_mon(nsec_entry);
1369 	main_secondary_init_gic();
1370 	init_vfp_sec();
1371 	init_vfp_nsec();
1372 
1373 	IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1374 }
1375 
1376 /*
1377  * Note: this function is weak just to make it possible to exclude it from
1378  * the unpaged area so that it lies in the init area.
1379  */
1380 void __weak boot_init_primary_early(unsigned long pageable_part,
1381 				    unsigned long nsec_entry __maybe_unused)
1382 {
1383 	unsigned long e = PADDR_INVALID;
1384 
1385 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
1386 	e = nsec_entry;
1387 #endif
1388 
1389 	init_primary(pageable_part, e);
1390 }
1391 
1392 #if defined(CFG_WITH_ARM_TRUSTED_FW)
1393 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1394 				  unsigned long a1 __unused)
1395 {
1396 	init_secondary_helper(PADDR_INVALID);
1397 	return 0;
1398 }
1399 #else
1400 void boot_init_secondary(unsigned long nsec_entry)
1401 {
1402 	init_secondary_helper(nsec_entry);
1403 }
1404 #endif
1405 
1406 #if defined(CFG_BOOT_SECONDARY_REQUEST)
1407 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1408 			    uintptr_t context_id)
1409 {
1410 	ns_entry_contexts[core_idx].entry_point = entry;
1411 	ns_entry_contexts[core_idx].context_id = context_id;
1412 	dsb_ishst();
1413 }
1414 
1415 int boot_core_release(size_t core_idx, paddr_t entry)
1416 {
1417 	if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1418 		return -1;
1419 
1420 	ns_entry_contexts[core_idx].entry_point = entry;
1421 	dmb();
1422 	spin_table[core_idx] = 1;
1423 	dsb();
1424 	sev();
1425 
1426 	return 0;
1427 }
1428 
1429 /*
1430  * spin until secondary boot request, then returns with
1431  * the secondary core entry address.
1432  */
1433 struct ns_entry_context *boot_core_hpen(void)
1434 {
1435 #ifdef CFG_PSCI_ARM32
1436 	return &ns_entry_contexts[get_core_pos()];
1437 #else
1438 	do {
1439 		wfe();
1440 	} while (!spin_table[get_core_pos()]);
1441 	dmb();
1442 	return &ns_entry_contexts[get_core_pos()];
1443 #endif
1444 }
1445 #endif
1446 
1447 #if defined(CFG_CORE_ASLR)
1448 #if defined(CFG_DT)
1449 unsigned long __weak get_aslr_seed(void *fdt)
1450 {
1451 	int rc = fdt_check_header(fdt);
1452 	const uint64_t *seed = NULL;
1453 	int offs = 0;
1454 	int len = 0;
1455 
1456 	if (rc) {
1457 		DMSG("Bad fdt: %d", rc);
1458 		goto err;
1459 	}
1460 
1461 	offs =  fdt_path_offset(fdt, "/secure-chosen");
1462 	if (offs < 0) {
1463 		DMSG("Cannot find /secure-chosen");
1464 		goto err;
1465 	}
1466 	seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1467 	if (!seed || len != sizeof(*seed)) {
1468 		DMSG("Cannot find valid kaslr-seed");
1469 		goto err;
1470 	}
1471 
1472 	return fdt64_to_cpu(*seed);
1473 
1474 err:
1475 	/* Try platform implementation */
1476 	return plat_get_aslr_seed();
1477 }
1478 #else /*!CFG_DT*/
1479 unsigned long __weak get_aslr_seed(void *fdt __unused)
1480 {
1481 	/* Try platform implementation */
1482 	return plat_get_aslr_seed();
1483 }
1484 #endif /*!CFG_DT*/
1485 #endif /*CFG_CORE_ASLR*/
1486