xref: /optee_os/core/arch/arm/kernel/abort.c (revision abccd9090fb4e8b9e838ccc5deeac4f7d2c901fb)
1 /*
2  * Copyright (c) 2015, Linaro Limited
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <arm.h>
29 #include <kernel/abort.h>
30 #include <kernel/linker.h>
31 #include <kernel/misc.h>
32 #include <kernel/panic.h>
33 #include <kernel/tee_ta_manager.h>
34 #include <kernel/unwind.h>
35 #include <kernel/user_ta.h>
36 #include <mm/core_mmu.h>
37 #include <mm/mobj.h>
38 #include <mm/tee_pager.h>
39 #include <tee/tee_svc.h>
40 #include <trace.h>
41 
42 #include "thread_private.h"
43 
44 enum fault_type {
45 	FAULT_TYPE_USER_TA_PANIC,
46 	FAULT_TYPE_USER_TA_VFP,
47 	FAULT_TYPE_PAGEABLE,
48 	FAULT_TYPE_IGNORE,
49 };
50 
51 #ifdef CFG_UNWIND
52 
53 static void get_current_ta_exidx(uaddr_t *exidx, size_t *exidx_sz)
54 {
55 	struct tee_ta_session *s;
56 	struct user_ta_ctx *utc;
57 
58 	if (tee_ta_get_current_session(&s) != TEE_SUCCESS)
59 		panic();
60 
61 	utc = to_user_ta_ctx(s->ctx);
62 
63 	/* Only 32-bit TAs use .ARM.exidx/.ARM.extab exception handling */
64 	assert(utc->is_32bit);
65 
66 	*exidx = utc->exidx_start; /* NULL if TA has no unwind tables */
67 	if (*exidx)
68 		*exidx += utc->load_addr;
69 	*exidx_sz = utc->exidx_size;
70 }
71 
72 #ifdef ARM32
73 
74 /*
75  * Kernel or user mode unwind (32-bit execution state).
76  */
77 static void __print_stack_unwind_arm32(struct abort_info *ai)
78 {
79 	struct unwind_state_arm32 state;
80 	uaddr_t exidx;
81 	size_t exidx_sz;
82 	uint32_t mode = ai->regs->spsr & CPSR_MODE_MASK;
83 	uint32_t sp;
84 	uint32_t lr;
85 
86 	if (abort_is_user_exception(ai)) {
87 		get_current_ta_exidx(&exidx, &exidx_sz);
88 	} else {
89 		exidx = (vaddr_t)__exidx_start;
90 		exidx_sz = (vaddr_t)__exidx_end - (vaddr_t)__exidx_start;
91 	}
92 
93 	if (mode == CPSR_MODE_USR || mode == CPSR_MODE_SYS) {
94 		sp = ai->regs->usr_sp;
95 		lr = ai->regs->usr_lr;
96 	} else {
97 		sp = read_mode_sp(mode);
98 		lr = read_mode_lr(mode);
99 	}
100 
101 	memset(&state, 0, sizeof(state));
102 	state.registers[0] = ai->regs->r0;
103 	state.registers[1] = ai->regs->r1;
104 	state.registers[2] = ai->regs->r2;
105 	state.registers[3] = ai->regs->r3;
106 	state.registers[4] = ai->regs->r4;
107 	state.registers[5] = ai->regs->r5;
108 	state.registers[6] = ai->regs->r6;
109 	state.registers[7] = ai->regs->r7;
110 	state.registers[8] = ai->regs->r8;
111 	state.registers[9] = ai->regs->r9;
112 	state.registers[10] = ai->regs->r10;
113 	state.registers[11] = ai->regs->r11;
114 	state.registers[13] = sp;
115 	state.registers[14] = lr;
116 	state.registers[15] = ai->pc;
117 
118 	print_stack_arm32(TRACE_ERROR, &state, exidx, exidx_sz);
119 }
120 #else /* ARM32 */
121 
122 static void __print_stack_unwind_arm32(struct abort_info *ai __unused)
123 {
124 	struct unwind_state_arm32 state;
125 	uaddr_t exidx;
126 	size_t exidx_sz;
127 
128 	/* 64-bit kernel, hence 32-bit unwind must be for user mode */
129 	assert(abort_is_user_exception(ai));
130 
131 	get_current_ta_exidx(&exidx, &exidx_sz);
132 
133 	memset(&state, 0, sizeof(state));
134 	state.registers[0] = ai->regs->x0;
135 	state.registers[1] = ai->regs->x1;
136 	state.registers[2] = ai->regs->x2;
137 	state.registers[3] = ai->regs->x3;
138 	state.registers[4] = ai->regs->x4;
139 	state.registers[5] = ai->regs->x5;
140 	state.registers[6] = ai->regs->x6;
141 	state.registers[7] = ai->regs->x7;
142 	state.registers[8] = ai->regs->x8;
143 	state.registers[9] = ai->regs->x9;
144 	state.registers[10] = ai->regs->x10;
145 	state.registers[11] = ai->regs->x11;
146 
147 	state.registers[13] = ai->regs->x13;
148 	state.registers[14] = ai->regs->x14;
149 	state.registers[15] = ai->pc;
150 
151 	print_stack_arm32(TRACE_ERROR, &state, exidx, exidx_sz);
152 }
153 #endif /* ARM32 */
154 #ifdef ARM64
155 /* Kernel or user mode unwind (64-bit execution state) */
156 static void __print_stack_unwind_arm64(struct abort_info *ai)
157 {
158 	struct unwind_state_arm64 state;
159 	uaddr_t stack;
160 	size_t stack_size;
161 
162 	if (abort_is_user_exception(ai)) {
163 		struct tee_ta_session *s;
164 		struct user_ta_ctx *utc;
165 
166 		if (tee_ta_get_current_session(&s) != TEE_SUCCESS)
167 			panic();
168 
169 		utc = to_user_ta_ctx(s->ctx);
170 		/* User stack */
171 		stack = (uaddr_t)utc->mmu->regions[0].va;
172 		stack_size = utc->mobj_stack->size;
173 	} else {
174 		/* Kernel stack */
175 		stack = thread_stack_start();
176 		stack_size = thread_stack_size();
177 	}
178 
179 	memset(&state, 0, sizeof(state));
180 	state.pc = ai->regs->elr;
181 	state.fp = ai->regs->x29;
182 
183 	print_stack_arm64(TRACE_ERROR, &state, stack, stack_size);
184 }
185 #else
186 static void __print_stack_unwind_arm64(struct abort_info *ai __unused)
187 {
188 
189 }
190 #endif /*ARM64*/
191 #else /* CFG_UNWIND */
192 static void __print_stack_unwind_arm32(struct abort_info *ai __unused)
193 {
194 }
195 
196 static void __print_stack_unwind_arm64(struct abort_info *ai __unused)
197 {
198 }
199 #endif /* CFG_UNWIND */
200 
201 static __maybe_unused const char *abort_type_to_str(uint32_t abort_type)
202 {
203 	if (abort_type == ABORT_TYPE_DATA)
204 		return "data";
205 	if (abort_type == ABORT_TYPE_PREFETCH)
206 		return "prefetch";
207 	return "undef";
208 }
209 
210 static __maybe_unused const char *fault_to_str(uint32_t abort_type,
211 			uint32_t fault_descr)
212 {
213 	/* fault_descr is only valid for data or prefetch abort */
214 	if (abort_type != ABORT_TYPE_DATA && abort_type != ABORT_TYPE_PREFETCH)
215 		return "";
216 
217 	switch (core_mmu_get_fault_type(fault_descr)) {
218 	case CORE_MMU_FAULT_ALIGNMENT:
219 		return " (alignment fault)";
220 	case CORE_MMU_FAULT_TRANSLATION:
221 		return " (translation fault)";
222 	case CORE_MMU_FAULT_READ_PERMISSION:
223 		return " (read permission fault)";
224 	case CORE_MMU_FAULT_WRITE_PERMISSION:
225 		return " (write permission fault)";
226 	default:
227 		return "";
228 	}
229 }
230 
231 static __maybe_unused void
232 __print_abort_info(struct abort_info *ai __maybe_unused,
233 		   const char *ctx __maybe_unused)
234 {
235 #ifdef ARM32
236 	uint32_t mode = ai->regs->spsr & CPSR_MODE_MASK;
237 	__maybe_unused uint32_t sp;
238 	__maybe_unused uint32_t lr;
239 
240 	if (mode == CPSR_MODE_USR || mode == CPSR_MODE_SYS) {
241 		sp = ai->regs->usr_sp;
242 		lr = ai->regs->usr_lr;
243 	} else {
244 		sp = read_mode_sp(mode);
245 		lr = read_mode_lr(mode);
246 	}
247 #endif /*ARM32*/
248 
249 	EMSG_RAW("");
250 	EMSG_RAW("%s %s-abort at address 0x%" PRIxVA "%s",
251 		ctx, abort_type_to_str(ai->abort_type), ai->va,
252 		fault_to_str(ai->abort_type, ai->fault_descr));
253 #ifdef ARM32
254 	EMSG_RAW(" fsr 0x%08x  ttbr0 0x%08x  ttbr1 0x%08x  cidr 0x%X",
255 		 ai->fault_descr, read_ttbr0(), read_ttbr1(),
256 		 read_contextidr());
257 	EMSG_RAW(" cpu #%zu          cpsr 0x%08x",
258 		 get_core_pos(), ai->regs->spsr);
259 	EMSG_RAW(" r0 0x%08x      r4 0x%08x    r8 0x%08x   r12 0x%08x",
260 		 ai->regs->r0, ai->regs->r4, ai->regs->r8, ai->regs->ip);
261 	EMSG_RAW(" r1 0x%08x      r5 0x%08x    r9 0x%08x    sp 0x%08x",
262 		 ai->regs->r1, ai->regs->r5, ai->regs->r9, sp);
263 	EMSG_RAW(" r2 0x%08x      r6 0x%08x   r10 0x%08x    lr 0x%08x",
264 		 ai->regs->r2, ai->regs->r6, ai->regs->r10, lr);
265 	EMSG_RAW(" r3 0x%08x      r7 0x%08x   r11 0x%08x    pc 0x%08x",
266 		 ai->regs->r3, ai->regs->r7, ai->regs->r11, ai->pc);
267 #endif /*ARM32*/
268 #ifdef ARM64
269 	EMSG_RAW(" esr 0x%08x  ttbr0 0x%08" PRIx64 "   ttbr1 0x%08" PRIx64
270 		 "   cidr 0x%X", ai->fault_descr, read_ttbr0_el1(),
271 		 read_ttbr1_el1(), read_contextidr_el1());
272 	EMSG_RAW(" cpu #%zu          cpsr 0x%08x",
273 		 get_core_pos(), (uint32_t)ai->regs->spsr);
274 	EMSG_RAW(" x0  %016" PRIx64 " x1  %016" PRIx64,
275 		 ai->regs->x0, ai->regs->x1);
276 	EMSG_RAW(" x2  %016" PRIx64 " x3  %016" PRIx64,
277 		 ai->regs->x2, ai->regs->x3);
278 	EMSG_RAW(" x4  %016" PRIx64 " x5  %016" PRIx64,
279 		 ai->regs->x4, ai->regs->x5);
280 	EMSG_RAW(" x6  %016" PRIx64 " x7  %016" PRIx64,
281 		 ai->regs->x6, ai->regs->x7);
282 	EMSG_RAW(" x8  %016" PRIx64 " x9  %016" PRIx64,
283 		 ai->regs->x8, ai->regs->x9);
284 	EMSG_RAW(" x10 %016" PRIx64 " x11 %016" PRIx64,
285 		 ai->regs->x10, ai->regs->x11);
286 	EMSG_RAW(" x12 %016" PRIx64 " x13 %016" PRIx64,
287 		 ai->regs->x12, ai->regs->x13);
288 	EMSG_RAW(" x14 %016" PRIx64 " x15 %016" PRIx64,
289 		 ai->regs->x14, ai->regs->x15);
290 	EMSG_RAW(" x16 %016" PRIx64 " x17 %016" PRIx64,
291 		 ai->regs->x16, ai->regs->x17);
292 	EMSG_RAW(" x18 %016" PRIx64 " x19 %016" PRIx64,
293 		 ai->regs->x18, ai->regs->x19);
294 	EMSG_RAW(" x20 %016" PRIx64 " x21 %016" PRIx64,
295 		 ai->regs->x20, ai->regs->x21);
296 	EMSG_RAW(" x22 %016" PRIx64 " x23 %016" PRIx64,
297 		 ai->regs->x22, ai->regs->x23);
298 	EMSG_RAW(" x24 %016" PRIx64 " x25 %016" PRIx64,
299 		 ai->regs->x24, ai->regs->x25);
300 	EMSG_RAW(" x26 %016" PRIx64 " x27 %016" PRIx64,
301 		 ai->regs->x26, ai->regs->x27);
302 	EMSG_RAW(" x28 %016" PRIx64 " x29 %016" PRIx64,
303 		 ai->regs->x28, ai->regs->x29);
304 	EMSG_RAW(" x30 %016" PRIx64 " elr %016" PRIx64,
305 		 ai->regs->x30, ai->regs->elr);
306 	EMSG_RAW(" sp_el0 %016" PRIx64, ai->regs->sp_el0);
307 #endif /*ARM64*/
308 }
309 
310 #if defined(ARM32)
311 static const bool kernel_is32bit = true;
312 #elif defined(ARM64)
313 static const bool kernel_is32bit;
314 #endif
315 
316 /*
317  * Print abort info and (optionally) stack dump to the console
318  * @ai user-mode or kernel-mode abort info. If user mode, the current session
319  * must be the one of the TA that caused the abort.
320  * @stack_dump true to show a stack trace
321  */
322 static void __abort_print(struct abort_info *ai, bool stack_dump)
323 {
324 	bool is_32bit;
325 	bool paged_ta = false;
326 
327 	if (abort_is_user_exception(ai)) {
328 		struct tee_ta_session *s;
329 		struct user_ta_ctx *utc;
330 
331 		if (tee_ta_get_current_session(&s) != TEE_SUCCESS)
332 			panic();
333 
334 		utc = to_user_ta_ctx(s->ctx);
335 		is_32bit = utc->is_32bit;
336 #ifdef CFG_PAGED_USER_TA
337 		/*
338 		 * We don't want to unwind paged TAs, because we currently
339 		 * don't handle page faults that could occur when accessing the
340 		 * TA memory (unwind tables for instance).
341 		 */
342 		paged_ta = true;
343 #endif
344 
345 		__print_abort_info(ai, "User TA");
346 		tee_ta_dump_current();
347 	} else {
348 		is_32bit = kernel_is32bit;
349 
350 		__print_abort_info(ai, "Core");
351 	}
352 
353 	if (!stack_dump || paged_ta)
354 		return;
355 
356 	if (is_32bit)
357 		__print_stack_unwind_arm32(ai);
358 	else
359 		__print_stack_unwind_arm64(ai);
360 }
361 
362 void abort_print(struct abort_info *ai)
363 {
364 	__abort_print(ai, false);
365 }
366 
367 void abort_print_error(struct abort_info *ai)
368 {
369 	__abort_print(ai, true);
370 }
371 
372 #ifdef ARM32
373 static void set_abort_info(uint32_t abort_type, struct thread_abort_regs *regs,
374 		struct abort_info *ai)
375 {
376 	switch (abort_type) {
377 	case ABORT_TYPE_DATA:
378 		ai->fault_descr = read_dfsr();
379 		ai->va = read_dfar();
380 		break;
381 	case ABORT_TYPE_PREFETCH:
382 		ai->fault_descr = read_ifsr();
383 		ai->va = read_ifar();
384 		break;
385 	default:
386 		ai->fault_descr = 0;
387 		ai->va = regs->elr;
388 		break;
389 	}
390 	ai->abort_type = abort_type;
391 	ai->pc = regs->elr;
392 	ai->regs = regs;
393 }
394 #endif /*ARM32*/
395 
396 #ifdef ARM64
397 static void set_abort_info(uint32_t abort_type __unused,
398 		struct thread_abort_regs *regs, struct abort_info *ai)
399 {
400 	ai->fault_descr = read_esr_el1();
401 	switch ((ai->fault_descr >> ESR_EC_SHIFT) & ESR_EC_MASK) {
402 	case ESR_EC_IABT_EL0:
403 	case ESR_EC_IABT_EL1:
404 		ai->abort_type = ABORT_TYPE_PREFETCH;
405 		ai->va = read_far_el1();
406 		break;
407 	case ESR_EC_DABT_EL0:
408 	case ESR_EC_DABT_EL1:
409 	case ESR_EC_SP_ALIGN:
410 		ai->abort_type = ABORT_TYPE_DATA;
411 		ai->va = read_far_el1();
412 		break;
413 	default:
414 		ai->abort_type = ABORT_TYPE_UNDEF;
415 		ai->va = regs->elr;
416 	}
417 	ai->pc = regs->elr;
418 	ai->regs = regs;
419 }
420 #endif /*ARM64*/
421 
422 #ifdef ARM32
423 static void handle_user_ta_panic(struct abort_info *ai)
424 {
425 	/*
426 	 * It was a user exception, stop user execution and return
427 	 * to TEE Core.
428 	 */
429 	ai->regs->r0 = TEE_ERROR_TARGET_DEAD;
430 	ai->regs->r1 = true;
431 	ai->regs->r2 = 0xdeadbeef;
432 	ai->regs->elr = (uint32_t)thread_unwind_user_mode;
433 	ai->regs->spsr &= CPSR_FIA;
434 	ai->regs->spsr &= ~CPSR_MODE_MASK;
435 	ai->regs->spsr |= CPSR_MODE_SVC;
436 	/* Select Thumb or ARM mode */
437 	if (ai->regs->elr & 1)
438 		ai->regs->spsr |= CPSR_T;
439 	else
440 		ai->regs->spsr &= ~CPSR_T;
441 }
442 #endif /*ARM32*/
443 
444 #ifdef ARM64
445 static void handle_user_ta_panic(struct abort_info *ai)
446 {
447 	uint32_t daif;
448 
449 	/*
450 	 * It was a user exception, stop user execution and return
451 	 * to TEE Core.
452 	 */
453 	ai->regs->x0 = TEE_ERROR_TARGET_DEAD;
454 	ai->regs->x1 = true;
455 	ai->regs->x2 = 0xdeadbeef;
456 	ai->regs->elr = (vaddr_t)thread_unwind_user_mode;
457 	ai->regs->sp_el0 = thread_get_saved_thread_sp();
458 
459 	daif = (ai->regs->spsr >> SPSR_32_AIF_SHIFT) & SPSR_32_AIF_MASK;
460 	/* XXX what about DAIF_D? */
461 	ai->regs->spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, daif);
462 }
463 #endif /*ARM64*/
464 
465 #ifdef CFG_WITH_VFP
466 static void handle_user_ta_vfp(void)
467 {
468 	struct tee_ta_session *s;
469 
470 	if (tee_ta_get_current_session(&s) != TEE_SUCCESS)
471 		panic();
472 
473 	thread_user_enable_vfp(&to_user_ta_ctx(s->ctx)->vfp);
474 }
475 #endif /*CFG_WITH_VFP*/
476 
477 #ifdef CFG_WITH_USER_TA
478 #ifdef ARM32
479 /* Returns true if the exception originated from user mode */
480 bool abort_is_user_exception(struct abort_info *ai)
481 {
482 	return (ai->regs->spsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
483 }
484 #endif /*ARM32*/
485 
486 #ifdef ARM64
487 /* Returns true if the exception originated from user mode */
488 bool abort_is_user_exception(struct abort_info *ai)
489 {
490 	uint32_t spsr = ai->regs->spsr;
491 
492 	if (spsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
493 		return true;
494 	if (((spsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
495 	    SPSR_64_MODE_EL0)
496 		return true;
497 	return false;
498 }
499 #endif /*ARM64*/
500 #else /*CFG_WITH_USER_TA*/
501 bool abort_is_user_exception(struct abort_info *ai __unused)
502 {
503 	return false;
504 }
505 #endif /*CFG_WITH_USER_TA*/
506 
507 #if defined(CFG_WITH_VFP) && defined(CFG_WITH_USER_TA)
508 #ifdef ARM32
509 
510 #define T32_INSTR(w1, w0) \
511 	((((uint32_t)(w0) & 0xffff) << 16) | ((uint32_t)(w1) & 0xffff))
512 
513 #define T32_VTRANS32_MASK	T32_INSTR(0xff << 8, (7 << 9) | 1 << 4)
514 #define T32_VTRANS32_VAL	T32_INSTR(0xee << 8, (5 << 9) | 1 << 4)
515 
516 #define T32_VTRANS64_MASK	T32_INSTR((0xff << 8) | (7 << 5), 7 << 9)
517 #define T32_VTRANS64_VAL	T32_INSTR((0xec << 8) | (2 << 5), 5 << 9)
518 
519 #define T32_VLDST_MASK		T32_INSTR((0xff << 8) | (1 << 4), 0)
520 #define T32_VLDST_VAL		T32_INSTR( 0xf9 << 8            , 0)
521 
522 #define T32_VXLDST_MASK		T32_INSTR(0xfc << 8, 7 << 9)
523 #define T32_VXLDST_VAL		T32_INSTR(0xec << 8, 5 << 9)
524 
525 #define T32_VPROC_MASK		T32_INSTR(0xef << 8, 0)
526 #define T32_VPROC_VAL		T32_VPROC_MASK
527 
528 #define A32_INSTR(x)		((uint32_t)(x))
529 
530 #define A32_VTRANS32_MASK	A32_INSTR(SHIFT_U32(0xf, 24) | \
531 					  SHIFT_U32(7, 9) | BIT32(4))
532 #define A32_VTRANS32_VAL	A32_INSTR(SHIFT_U32(0xe, 24) | \
533 					  SHIFT_U32(5, 9) | BIT32(4))
534 
535 #define A32_VTRANS64_MASK	A32_INSTR(SHIFT_U32(0x7f, 21) | SHIFT_U32(7, 9))
536 #define A32_VTRANS64_VAL	A32_INSTR(SHIFT_U32(0x62, 21) | SHIFT_U32(5, 9))
537 
538 #define A32_VLDST_MASK		A32_INSTR(SHIFT_U32(0xff, 24) | BIT32(20))
539 #define A32_VLDST_VAL		A32_INSTR(SHIFT_U32(0xf4, 24))
540 #define A32_VXLDST_MASK		A32_INSTR(SHIFT_U32(7, 25) | SHIFT_U32(7, 9))
541 #define A32_VXLDST_VAL		A32_INSTR(SHIFT_U32(6, 25) | SHIFT_U32(5, 9))
542 
543 #define A32_VPROC_MASK		A32_INSTR(SHIFT_U32(0x7f, 25))
544 #define A32_VPROC_VAL		A32_INSTR(SHIFT_U32(0x79, 25))
545 
546 static bool is_vfp_fault(struct abort_info *ai)
547 {
548 	TEE_Result res;
549 	uint32_t instr;
550 
551 	if ((ai->abort_type != ABORT_TYPE_UNDEF) || vfp_is_enabled())
552 		return false;
553 
554 	res = tee_svc_copy_from_user(&instr, (void *)ai->pc, sizeof(instr));
555 	if (res != TEE_SUCCESS)
556 		return false;
557 
558 	if (ai->regs->spsr & CPSR_T) {
559 		/* Thumb mode */
560 		return ((instr & T32_VTRANS32_MASK) == T32_VTRANS32_VAL) ||
561 		       ((instr & T32_VTRANS64_MASK) == T32_VTRANS64_VAL) ||
562 		       ((instr & T32_VLDST_MASK) == T32_VLDST_VAL) ||
563 		       ((instr & T32_VXLDST_MASK) == T32_VXLDST_VAL) ||
564 		       ((instr & T32_VPROC_MASK) == T32_VPROC_VAL);
565 	} else {
566 		/* ARM mode */
567 		return ((instr & A32_VTRANS32_MASK) == A32_VTRANS32_VAL) ||
568 		       ((instr & A32_VTRANS64_MASK) == A32_VTRANS64_VAL) ||
569 		       ((instr & A32_VLDST_MASK) == A32_VLDST_VAL) ||
570 		       ((instr & A32_VXLDST_MASK) == A32_VXLDST_VAL) ||
571 		       ((instr & A32_VPROC_MASK) == A32_VPROC_VAL);
572 	}
573 }
574 #endif /*ARM32*/
575 
576 #ifdef ARM64
577 static bool is_vfp_fault(struct abort_info *ai)
578 {
579 	switch ((ai->fault_descr >> ESR_EC_SHIFT) & ESR_EC_MASK) {
580 	case ESR_EC_FP_ASIMD:
581 	case ESR_EC_AARCH32_FP:
582 	case ESR_EC_AARCH64_FP:
583 		return true;
584 	default:
585 		return false;
586 	}
587 }
588 #endif /*ARM64*/
589 #else /*CFG_WITH_VFP && CFG_WITH_USER_TA*/
590 static bool is_vfp_fault(struct abort_info *ai __unused)
591 {
592 	return false;
593 }
594 #endif  /*CFG_WITH_VFP && CFG_WITH_USER_TA*/
595 
596 static enum fault_type get_fault_type(struct abort_info *ai)
597 {
598 	if (abort_is_user_exception(ai)) {
599 		if (is_vfp_fault(ai))
600 			return FAULT_TYPE_USER_TA_VFP;
601 #ifndef CFG_WITH_PAGER
602 		return FAULT_TYPE_USER_TA_PANIC;
603 #endif
604 	}
605 
606 	if (thread_is_from_abort_mode()) {
607 		abort_print_error(ai);
608 		panic("[abort] abort in abort handler (trap CPU)");
609 	}
610 
611 	if (ai->abort_type == ABORT_TYPE_UNDEF) {
612 		if (abort_is_user_exception(ai))
613 			return FAULT_TYPE_USER_TA_PANIC;
614 		abort_print_error(ai);
615 		panic("[abort] undefined abort (trap CPU)");
616 	}
617 
618 	switch (core_mmu_get_fault_type(ai->fault_descr)) {
619 	case CORE_MMU_FAULT_ALIGNMENT:
620 		if (abort_is_user_exception(ai))
621 			return FAULT_TYPE_USER_TA_PANIC;
622 		abort_print_error(ai);
623 		panic("[abort] alignement fault!  (trap CPU)");
624 		break;
625 
626 	case CORE_MMU_FAULT_ACCESS_BIT:
627 		if (abort_is_user_exception(ai))
628 			return FAULT_TYPE_USER_TA_PANIC;
629 		abort_print_error(ai);
630 		panic("[abort] access bit fault!  (trap CPU)");
631 		break;
632 
633 	case CORE_MMU_FAULT_DEBUG_EVENT:
634 		abort_print(ai);
635 		DMSG("[abort] Ignoring debug event!");
636 		return FAULT_TYPE_IGNORE;
637 
638 	case CORE_MMU_FAULT_TRANSLATION:
639 	case CORE_MMU_FAULT_WRITE_PERMISSION:
640 	case CORE_MMU_FAULT_READ_PERMISSION:
641 		return FAULT_TYPE_PAGEABLE;
642 
643 	case CORE_MMU_FAULT_ASYNC_EXTERNAL:
644 		abort_print(ai);
645 		DMSG("[abort] Ignoring async external abort!");
646 		return FAULT_TYPE_IGNORE;
647 
648 	case CORE_MMU_FAULT_OTHER:
649 	default:
650 		abort_print(ai);
651 		DMSG("[abort] Unhandled fault!");
652 		return FAULT_TYPE_IGNORE;
653 	}
654 }
655 
656 void abort_handler(uint32_t abort_type, struct thread_abort_regs *regs)
657 {
658 	struct abort_info ai;
659 	bool handled;
660 
661 	set_abort_info(abort_type, regs, &ai);
662 
663 	switch (get_fault_type(&ai)) {
664 	case FAULT_TYPE_IGNORE:
665 		break;
666 	case FAULT_TYPE_USER_TA_PANIC:
667 		DMSG("[abort] abort in User mode (TA will panic)");
668 		abort_print_error(&ai);
669 		vfp_disable();
670 		handle_user_ta_panic(&ai);
671 		break;
672 #ifdef CFG_WITH_VFP
673 	case FAULT_TYPE_USER_TA_VFP:
674 		handle_user_ta_vfp();
675 		break;
676 #endif
677 	case FAULT_TYPE_PAGEABLE:
678 	default:
679 		thread_kernel_save_vfp();
680 		handled = tee_pager_handle_fault(&ai);
681 		thread_kernel_restore_vfp();
682 		if (!handled) {
683 			abort_print_error(&ai);
684 			if (!abort_is_user_exception(&ai))
685 				panic("unhandled pageable abort");
686 			DMSG("[abort] abort in User mode (TA will panic)");
687 			vfp_disable();
688 			handle_user_ta_panic(&ai);
689 		}
690 		break;
691 	}
692 }
693