xref: /OK3568_Linux_fs/u-boot/lib/bch.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /*
2*4882a593Smuzhiyun  * Generic binary BCH encoding/decoding library
3*4882a593Smuzhiyun  *
4*4882a593Smuzhiyun  * SPDX-License-Identifier:	GPL-2.0
5*4882a593Smuzhiyun  *
6*4882a593Smuzhiyun  * Copyright © 2011 Parrot S.A.
7*4882a593Smuzhiyun  *
8*4882a593Smuzhiyun  * Author: Ivan Djelic <ivan.djelic@parrot.com>
9*4882a593Smuzhiyun  *
10*4882a593Smuzhiyun  * Description:
11*4882a593Smuzhiyun  *
12*4882a593Smuzhiyun  * This library provides runtime configurable encoding/decoding of binary
13*4882a593Smuzhiyun  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
14*4882a593Smuzhiyun  *
15*4882a593Smuzhiyun  * Call init_bch to get a pointer to a newly allocated bch_control structure for
16*4882a593Smuzhiyun  * the given m (Galois field order), t (error correction capability) and
17*4882a593Smuzhiyun  * (optional) primitive polynomial parameters.
18*4882a593Smuzhiyun  *
19*4882a593Smuzhiyun  * Call encode_bch to compute and store ecc parity bytes to a given buffer.
20*4882a593Smuzhiyun  * Call decode_bch to detect and locate errors in received data.
21*4882a593Smuzhiyun  *
22*4882a593Smuzhiyun  * On systems supporting hw BCH features, intermediate results may be provided
23*4882a593Smuzhiyun  * to decode_bch in order to skip certain steps. See decode_bch() documentation
24*4882a593Smuzhiyun  * for details.
25*4882a593Smuzhiyun  *
26*4882a593Smuzhiyun  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
27*4882a593Smuzhiyun  * parameters m and t; thus allowing extra compiler optimizations and providing
28*4882a593Smuzhiyun  * better (up to 2x) encoding performance. Using this option makes sense when
29*4882a593Smuzhiyun  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
30*4882a593Smuzhiyun  * on a particular NAND flash device.
31*4882a593Smuzhiyun  *
32*4882a593Smuzhiyun  * Algorithmic details:
33*4882a593Smuzhiyun  *
34*4882a593Smuzhiyun  * Encoding is performed by processing 32 input bits in parallel, using 4
35*4882a593Smuzhiyun  * remainder lookup tables.
36*4882a593Smuzhiyun  *
37*4882a593Smuzhiyun  * The final stage of decoding involves the following internal steps:
38*4882a593Smuzhiyun  * a. Syndrome computation
39*4882a593Smuzhiyun  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
40*4882a593Smuzhiyun  * c. Error locator root finding (by far the most expensive step)
41*4882a593Smuzhiyun  *
42*4882a593Smuzhiyun  * In this implementation, step c is not performed using the usual Chien search.
43*4882a593Smuzhiyun  * Instead, an alternative approach described in [1] is used. It consists in
44*4882a593Smuzhiyun  * factoring the error locator polynomial using the Berlekamp Trace algorithm
45*4882a593Smuzhiyun  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
46*4882a593Smuzhiyun  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
47*4882a593Smuzhiyun  * much better performance than Chien search for usual (m,t) values (typically
48*4882a593Smuzhiyun  * m >= 13, t < 32, see [1]).
49*4882a593Smuzhiyun  *
50*4882a593Smuzhiyun  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
51*4882a593Smuzhiyun  * of characteristic 2, in: Western European Workshop on Research in Cryptology
52*4882a593Smuzhiyun  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
53*4882a593Smuzhiyun  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
54*4882a593Smuzhiyun  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
55*4882a593Smuzhiyun  */
56*4882a593Smuzhiyun 
57*4882a593Smuzhiyun #ifndef USE_HOSTCC
58*4882a593Smuzhiyun #include <common.h>
59*4882a593Smuzhiyun #include <ubi_uboot.h>
60*4882a593Smuzhiyun 
61*4882a593Smuzhiyun #include <linux/bitops.h>
62*4882a593Smuzhiyun #else
63*4882a593Smuzhiyun #include <errno.h>
64*4882a593Smuzhiyun #if defined(__FreeBSD__)
65*4882a593Smuzhiyun #include <sys/endian.h>
66*4882a593Smuzhiyun #else
67*4882a593Smuzhiyun #include <endian.h>
68*4882a593Smuzhiyun #endif
69*4882a593Smuzhiyun #include <stdint.h>
70*4882a593Smuzhiyun #include <stdlib.h>
71*4882a593Smuzhiyun #include <string.h>
72*4882a593Smuzhiyun 
73*4882a593Smuzhiyun #undef cpu_to_be32
74*4882a593Smuzhiyun #define cpu_to_be32 htobe32
75*4882a593Smuzhiyun #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
76*4882a593Smuzhiyun #define kmalloc(size, flags)	malloc(size)
77*4882a593Smuzhiyun #define kzalloc(size, flags)	calloc(1, size)
78*4882a593Smuzhiyun #define kfree free
79*4882a593Smuzhiyun #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
80*4882a593Smuzhiyun #endif
81*4882a593Smuzhiyun 
82*4882a593Smuzhiyun #include <asm/byteorder.h>
83*4882a593Smuzhiyun #include <linux/bch.h>
84*4882a593Smuzhiyun 
85*4882a593Smuzhiyun #if defined(CONFIG_BCH_CONST_PARAMS)
86*4882a593Smuzhiyun #define GF_M(_p)               (CONFIG_BCH_CONST_M)
87*4882a593Smuzhiyun #define GF_T(_p)               (CONFIG_BCH_CONST_T)
88*4882a593Smuzhiyun #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
89*4882a593Smuzhiyun #else
90*4882a593Smuzhiyun #define GF_M(_p)               ((_p)->m)
91*4882a593Smuzhiyun #define GF_T(_p)               ((_p)->t)
92*4882a593Smuzhiyun #define GF_N(_p)               ((_p)->n)
93*4882a593Smuzhiyun #endif
94*4882a593Smuzhiyun 
95*4882a593Smuzhiyun #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
96*4882a593Smuzhiyun #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
97*4882a593Smuzhiyun 
98*4882a593Smuzhiyun #ifndef dbg
99*4882a593Smuzhiyun #define dbg(_fmt, args...)     do {} while (0)
100*4882a593Smuzhiyun #endif
101*4882a593Smuzhiyun 
102*4882a593Smuzhiyun /*
103*4882a593Smuzhiyun  * represent a polynomial over GF(2^m)
104*4882a593Smuzhiyun  */
105*4882a593Smuzhiyun struct gf_poly {
106*4882a593Smuzhiyun 	unsigned int deg;    /* polynomial degree */
107*4882a593Smuzhiyun 	unsigned int c[0];   /* polynomial terms */
108*4882a593Smuzhiyun };
109*4882a593Smuzhiyun 
110*4882a593Smuzhiyun /* given its degree, compute a polynomial size in bytes */
111*4882a593Smuzhiyun #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
112*4882a593Smuzhiyun 
113*4882a593Smuzhiyun /* polynomial of degree 1 */
114*4882a593Smuzhiyun struct gf_poly_deg1 {
115*4882a593Smuzhiyun 	struct gf_poly poly;
116*4882a593Smuzhiyun 	unsigned int   c[2];
117*4882a593Smuzhiyun };
118*4882a593Smuzhiyun 
119*4882a593Smuzhiyun #ifdef USE_HOSTCC
120*4882a593Smuzhiyun #if !defined(__DragonFly__) && !defined(__FreeBSD__)
fls(int x)121*4882a593Smuzhiyun static int fls(int x)
122*4882a593Smuzhiyun {
123*4882a593Smuzhiyun 	int r = 32;
124*4882a593Smuzhiyun 
125*4882a593Smuzhiyun 	if (!x)
126*4882a593Smuzhiyun 		return 0;
127*4882a593Smuzhiyun 	if (!(x & 0xffff0000u)) {
128*4882a593Smuzhiyun 		x <<= 16;
129*4882a593Smuzhiyun 		r -= 16;
130*4882a593Smuzhiyun 	}
131*4882a593Smuzhiyun 	if (!(x & 0xff000000u)) {
132*4882a593Smuzhiyun 		x <<= 8;
133*4882a593Smuzhiyun 		r -= 8;
134*4882a593Smuzhiyun 	}
135*4882a593Smuzhiyun 	if (!(x & 0xf0000000u)) {
136*4882a593Smuzhiyun 		x <<= 4;
137*4882a593Smuzhiyun 		r -= 4;
138*4882a593Smuzhiyun 	}
139*4882a593Smuzhiyun 	if (!(x & 0xc0000000u)) {
140*4882a593Smuzhiyun 		x <<= 2;
141*4882a593Smuzhiyun 		r -= 2;
142*4882a593Smuzhiyun 	}
143*4882a593Smuzhiyun 	if (!(x & 0x80000000u)) {
144*4882a593Smuzhiyun 		x <<= 1;
145*4882a593Smuzhiyun 		r -= 1;
146*4882a593Smuzhiyun 	}
147*4882a593Smuzhiyun 	return r;
148*4882a593Smuzhiyun }
149*4882a593Smuzhiyun #endif
150*4882a593Smuzhiyun #endif
151*4882a593Smuzhiyun 
152*4882a593Smuzhiyun /*
153*4882a593Smuzhiyun  * same as encode_bch(), but process input data one byte at a time
154*4882a593Smuzhiyun  */
encode_bch_unaligned(struct bch_control * bch,const unsigned char * data,unsigned int len,uint32_t * ecc)155*4882a593Smuzhiyun static void encode_bch_unaligned(struct bch_control *bch,
156*4882a593Smuzhiyun 				 const unsigned char *data, unsigned int len,
157*4882a593Smuzhiyun 				 uint32_t *ecc)
158*4882a593Smuzhiyun {
159*4882a593Smuzhiyun 	int i;
160*4882a593Smuzhiyun 	const uint32_t *p;
161*4882a593Smuzhiyun 	const int l = BCH_ECC_WORDS(bch)-1;
162*4882a593Smuzhiyun 
163*4882a593Smuzhiyun 	while (len--) {
164*4882a593Smuzhiyun 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
165*4882a593Smuzhiyun 
166*4882a593Smuzhiyun 		for (i = 0; i < l; i++)
167*4882a593Smuzhiyun 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
168*4882a593Smuzhiyun 
169*4882a593Smuzhiyun 		ecc[l] = (ecc[l] << 8)^(*p);
170*4882a593Smuzhiyun 	}
171*4882a593Smuzhiyun }
172*4882a593Smuzhiyun 
173*4882a593Smuzhiyun /*
174*4882a593Smuzhiyun  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
175*4882a593Smuzhiyun  */
load_ecc8(struct bch_control * bch,uint32_t * dst,const uint8_t * src)176*4882a593Smuzhiyun static void load_ecc8(struct bch_control *bch, uint32_t *dst,
177*4882a593Smuzhiyun 		      const uint8_t *src)
178*4882a593Smuzhiyun {
179*4882a593Smuzhiyun 	uint8_t pad[4] = {0, 0, 0, 0};
180*4882a593Smuzhiyun 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
181*4882a593Smuzhiyun 
182*4882a593Smuzhiyun 	for (i = 0; i < nwords; i++, src += 4)
183*4882a593Smuzhiyun 		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
184*4882a593Smuzhiyun 
185*4882a593Smuzhiyun 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
186*4882a593Smuzhiyun 	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
187*4882a593Smuzhiyun }
188*4882a593Smuzhiyun 
189*4882a593Smuzhiyun /*
190*4882a593Smuzhiyun  * convert 32-bit ecc words to ecc bytes
191*4882a593Smuzhiyun  */
store_ecc8(struct bch_control * bch,uint8_t * dst,const uint32_t * src)192*4882a593Smuzhiyun static void store_ecc8(struct bch_control *bch, uint8_t *dst,
193*4882a593Smuzhiyun 		       const uint32_t *src)
194*4882a593Smuzhiyun {
195*4882a593Smuzhiyun 	uint8_t pad[4];
196*4882a593Smuzhiyun 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
197*4882a593Smuzhiyun 
198*4882a593Smuzhiyun 	for (i = 0; i < nwords; i++) {
199*4882a593Smuzhiyun 		*dst++ = (src[i] >> 24);
200*4882a593Smuzhiyun 		*dst++ = (src[i] >> 16) & 0xff;
201*4882a593Smuzhiyun 		*dst++ = (src[i] >>  8) & 0xff;
202*4882a593Smuzhiyun 		*dst++ = (src[i] >>  0) & 0xff;
203*4882a593Smuzhiyun 	}
204*4882a593Smuzhiyun 	pad[0] = (src[nwords] >> 24);
205*4882a593Smuzhiyun 	pad[1] = (src[nwords] >> 16) & 0xff;
206*4882a593Smuzhiyun 	pad[2] = (src[nwords] >>  8) & 0xff;
207*4882a593Smuzhiyun 	pad[3] = (src[nwords] >>  0) & 0xff;
208*4882a593Smuzhiyun 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
209*4882a593Smuzhiyun }
210*4882a593Smuzhiyun 
211*4882a593Smuzhiyun /**
212*4882a593Smuzhiyun  * encode_bch - calculate BCH ecc parity of data
213*4882a593Smuzhiyun  * @bch:   BCH control structure
214*4882a593Smuzhiyun  * @data:  data to encode
215*4882a593Smuzhiyun  * @len:   data length in bytes
216*4882a593Smuzhiyun  * @ecc:   ecc parity data, must be initialized by caller
217*4882a593Smuzhiyun  *
218*4882a593Smuzhiyun  * The @ecc parity array is used both as input and output parameter, in order to
219*4882a593Smuzhiyun  * allow incremental computations. It should be of the size indicated by member
220*4882a593Smuzhiyun  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
221*4882a593Smuzhiyun  *
222*4882a593Smuzhiyun  * The exact number of computed ecc parity bits is given by member @ecc_bits of
223*4882a593Smuzhiyun  * @bch; it may be less than m*t for large values of t.
224*4882a593Smuzhiyun  */
encode_bch(struct bch_control * bch,const uint8_t * data,unsigned int len,uint8_t * ecc)225*4882a593Smuzhiyun void encode_bch(struct bch_control *bch, const uint8_t *data,
226*4882a593Smuzhiyun 		unsigned int len, uint8_t *ecc)
227*4882a593Smuzhiyun {
228*4882a593Smuzhiyun 	const unsigned int l = BCH_ECC_WORDS(bch)-1;
229*4882a593Smuzhiyun 	unsigned int i, mlen;
230*4882a593Smuzhiyun 	unsigned long m;
231*4882a593Smuzhiyun 	uint32_t w, r[l+1];
232*4882a593Smuzhiyun 	const uint32_t * const tab0 = bch->mod8_tab;
233*4882a593Smuzhiyun 	const uint32_t * const tab1 = tab0 + 256*(l+1);
234*4882a593Smuzhiyun 	const uint32_t * const tab2 = tab1 + 256*(l+1);
235*4882a593Smuzhiyun 	const uint32_t * const tab3 = tab2 + 256*(l+1);
236*4882a593Smuzhiyun 	const uint32_t *pdata, *p0, *p1, *p2, *p3;
237*4882a593Smuzhiyun 
238*4882a593Smuzhiyun 	if (ecc) {
239*4882a593Smuzhiyun 		/* load ecc parity bytes into internal 32-bit buffer */
240*4882a593Smuzhiyun 		load_ecc8(bch, bch->ecc_buf, ecc);
241*4882a593Smuzhiyun 	} else {
242*4882a593Smuzhiyun 		memset(bch->ecc_buf, 0, sizeof(r));
243*4882a593Smuzhiyun 	}
244*4882a593Smuzhiyun 
245*4882a593Smuzhiyun 	/* process first unaligned data bytes */
246*4882a593Smuzhiyun 	m = ((unsigned long)data) & 3;
247*4882a593Smuzhiyun 	if (m) {
248*4882a593Smuzhiyun 		mlen = (len < (4-m)) ? len : 4-m;
249*4882a593Smuzhiyun 		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
250*4882a593Smuzhiyun 		data += mlen;
251*4882a593Smuzhiyun 		len  -= mlen;
252*4882a593Smuzhiyun 	}
253*4882a593Smuzhiyun 
254*4882a593Smuzhiyun 	/* process 32-bit aligned data words */
255*4882a593Smuzhiyun 	pdata = (uint32_t *)data;
256*4882a593Smuzhiyun 	mlen  = len/4;
257*4882a593Smuzhiyun 	data += 4*mlen;
258*4882a593Smuzhiyun 	len  -= 4*mlen;
259*4882a593Smuzhiyun 	memcpy(r, bch->ecc_buf, sizeof(r));
260*4882a593Smuzhiyun 
261*4882a593Smuzhiyun 	/*
262*4882a593Smuzhiyun 	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
263*4882a593Smuzhiyun 	 *
264*4882a593Smuzhiyun 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
265*4882a593Smuzhiyun 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
266*4882a593Smuzhiyun 	 *                               tttttttt  mod g = r0 (precomputed)
267*4882a593Smuzhiyun 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
268*4882a593Smuzhiyun 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
269*4882a593Smuzhiyun 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
270*4882a593Smuzhiyun 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
271*4882a593Smuzhiyun 	 */
272*4882a593Smuzhiyun 	while (mlen--) {
273*4882a593Smuzhiyun 		/* input data is read in big-endian format */
274*4882a593Smuzhiyun 		w = r[0]^cpu_to_be32(*pdata++);
275*4882a593Smuzhiyun 		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
276*4882a593Smuzhiyun 		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
277*4882a593Smuzhiyun 		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
278*4882a593Smuzhiyun 		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
279*4882a593Smuzhiyun 
280*4882a593Smuzhiyun 		for (i = 0; i < l; i++)
281*4882a593Smuzhiyun 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
282*4882a593Smuzhiyun 
283*4882a593Smuzhiyun 		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
284*4882a593Smuzhiyun 	}
285*4882a593Smuzhiyun 	memcpy(bch->ecc_buf, r, sizeof(r));
286*4882a593Smuzhiyun 
287*4882a593Smuzhiyun 	/* process last unaligned bytes */
288*4882a593Smuzhiyun 	if (len)
289*4882a593Smuzhiyun 		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
290*4882a593Smuzhiyun 
291*4882a593Smuzhiyun 	/* store ecc parity bytes into original parity buffer */
292*4882a593Smuzhiyun 	if (ecc)
293*4882a593Smuzhiyun 		store_ecc8(bch, ecc, bch->ecc_buf);
294*4882a593Smuzhiyun }
295*4882a593Smuzhiyun 
modulo(struct bch_control * bch,unsigned int v)296*4882a593Smuzhiyun static inline int modulo(struct bch_control *bch, unsigned int v)
297*4882a593Smuzhiyun {
298*4882a593Smuzhiyun 	const unsigned int n = GF_N(bch);
299*4882a593Smuzhiyun 	while (v >= n) {
300*4882a593Smuzhiyun 		v -= n;
301*4882a593Smuzhiyun 		v = (v & n) + (v >> GF_M(bch));
302*4882a593Smuzhiyun 	}
303*4882a593Smuzhiyun 	return v;
304*4882a593Smuzhiyun }
305*4882a593Smuzhiyun 
306*4882a593Smuzhiyun /*
307*4882a593Smuzhiyun  * shorter and faster modulo function, only works when v < 2N.
308*4882a593Smuzhiyun  */
mod_s(struct bch_control * bch,unsigned int v)309*4882a593Smuzhiyun static inline int mod_s(struct bch_control *bch, unsigned int v)
310*4882a593Smuzhiyun {
311*4882a593Smuzhiyun 	const unsigned int n = GF_N(bch);
312*4882a593Smuzhiyun 	return (v < n) ? v : v-n;
313*4882a593Smuzhiyun }
314*4882a593Smuzhiyun 
deg(unsigned int poly)315*4882a593Smuzhiyun static inline int deg(unsigned int poly)
316*4882a593Smuzhiyun {
317*4882a593Smuzhiyun 	/* polynomial degree is the most-significant bit index */
318*4882a593Smuzhiyun 	return fls(poly)-1;
319*4882a593Smuzhiyun }
320*4882a593Smuzhiyun 
parity(unsigned int x)321*4882a593Smuzhiyun static inline int parity(unsigned int x)
322*4882a593Smuzhiyun {
323*4882a593Smuzhiyun 	/*
324*4882a593Smuzhiyun 	 * public domain code snippet, lifted from
325*4882a593Smuzhiyun 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
326*4882a593Smuzhiyun 	 */
327*4882a593Smuzhiyun 	x ^= x >> 1;
328*4882a593Smuzhiyun 	x ^= x >> 2;
329*4882a593Smuzhiyun 	x = (x & 0x11111111U) * 0x11111111U;
330*4882a593Smuzhiyun 	return (x >> 28) & 1;
331*4882a593Smuzhiyun }
332*4882a593Smuzhiyun 
333*4882a593Smuzhiyun /* Galois field basic operations: multiply, divide, inverse, etc. */
334*4882a593Smuzhiyun 
gf_mul(struct bch_control * bch,unsigned int a,unsigned int b)335*4882a593Smuzhiyun static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
336*4882a593Smuzhiyun 				  unsigned int b)
337*4882a593Smuzhiyun {
338*4882a593Smuzhiyun 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
339*4882a593Smuzhiyun 					       bch->a_log_tab[b])] : 0;
340*4882a593Smuzhiyun }
341*4882a593Smuzhiyun 
gf_sqr(struct bch_control * bch,unsigned int a)342*4882a593Smuzhiyun static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
343*4882a593Smuzhiyun {
344*4882a593Smuzhiyun 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
345*4882a593Smuzhiyun }
346*4882a593Smuzhiyun 
gf_div(struct bch_control * bch,unsigned int a,unsigned int b)347*4882a593Smuzhiyun static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
348*4882a593Smuzhiyun 				  unsigned int b)
349*4882a593Smuzhiyun {
350*4882a593Smuzhiyun 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
351*4882a593Smuzhiyun 					GF_N(bch)-bch->a_log_tab[b])] : 0;
352*4882a593Smuzhiyun }
353*4882a593Smuzhiyun 
gf_inv(struct bch_control * bch,unsigned int a)354*4882a593Smuzhiyun static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
355*4882a593Smuzhiyun {
356*4882a593Smuzhiyun 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
357*4882a593Smuzhiyun }
358*4882a593Smuzhiyun 
a_pow(struct bch_control * bch,int i)359*4882a593Smuzhiyun static inline unsigned int a_pow(struct bch_control *bch, int i)
360*4882a593Smuzhiyun {
361*4882a593Smuzhiyun 	return bch->a_pow_tab[modulo(bch, i)];
362*4882a593Smuzhiyun }
363*4882a593Smuzhiyun 
a_log(struct bch_control * bch,unsigned int x)364*4882a593Smuzhiyun static inline int a_log(struct bch_control *bch, unsigned int x)
365*4882a593Smuzhiyun {
366*4882a593Smuzhiyun 	return bch->a_log_tab[x];
367*4882a593Smuzhiyun }
368*4882a593Smuzhiyun 
a_ilog(struct bch_control * bch,unsigned int x)369*4882a593Smuzhiyun static inline int a_ilog(struct bch_control *bch, unsigned int x)
370*4882a593Smuzhiyun {
371*4882a593Smuzhiyun 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
372*4882a593Smuzhiyun }
373*4882a593Smuzhiyun 
374*4882a593Smuzhiyun /*
375*4882a593Smuzhiyun  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
376*4882a593Smuzhiyun  */
compute_syndromes(struct bch_control * bch,uint32_t * ecc,unsigned int * syn)377*4882a593Smuzhiyun static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
378*4882a593Smuzhiyun 			      unsigned int *syn)
379*4882a593Smuzhiyun {
380*4882a593Smuzhiyun 	int i, j, s;
381*4882a593Smuzhiyun 	unsigned int m;
382*4882a593Smuzhiyun 	uint32_t poly;
383*4882a593Smuzhiyun 	const int t = GF_T(bch);
384*4882a593Smuzhiyun 
385*4882a593Smuzhiyun 	s = bch->ecc_bits;
386*4882a593Smuzhiyun 
387*4882a593Smuzhiyun 	/* make sure extra bits in last ecc word are cleared */
388*4882a593Smuzhiyun 	m = ((unsigned int)s) & 31;
389*4882a593Smuzhiyun 	if (m)
390*4882a593Smuzhiyun 		ecc[s/32] &= ~((1u << (32-m))-1);
391*4882a593Smuzhiyun 	memset(syn, 0, 2*t*sizeof(*syn));
392*4882a593Smuzhiyun 
393*4882a593Smuzhiyun 	/* compute v(a^j) for j=1 .. 2t-1 */
394*4882a593Smuzhiyun 	do {
395*4882a593Smuzhiyun 		poly = *ecc++;
396*4882a593Smuzhiyun 		s -= 32;
397*4882a593Smuzhiyun 		while (poly) {
398*4882a593Smuzhiyun 			i = deg(poly);
399*4882a593Smuzhiyun 			for (j = 0; j < 2*t; j += 2)
400*4882a593Smuzhiyun 				syn[j] ^= a_pow(bch, (j+1)*(i+s));
401*4882a593Smuzhiyun 
402*4882a593Smuzhiyun 			poly ^= (1 << i);
403*4882a593Smuzhiyun 		}
404*4882a593Smuzhiyun 	} while (s > 0);
405*4882a593Smuzhiyun 
406*4882a593Smuzhiyun 	/* v(a^(2j)) = v(a^j)^2 */
407*4882a593Smuzhiyun 	for (j = 0; j < t; j++)
408*4882a593Smuzhiyun 		syn[2*j+1] = gf_sqr(bch, syn[j]);
409*4882a593Smuzhiyun }
410*4882a593Smuzhiyun 
gf_poly_copy(struct gf_poly * dst,struct gf_poly * src)411*4882a593Smuzhiyun static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
412*4882a593Smuzhiyun {
413*4882a593Smuzhiyun 	memcpy(dst, src, GF_POLY_SZ(src->deg));
414*4882a593Smuzhiyun }
415*4882a593Smuzhiyun 
compute_error_locator_polynomial(struct bch_control * bch,const unsigned int * syn)416*4882a593Smuzhiyun static int compute_error_locator_polynomial(struct bch_control *bch,
417*4882a593Smuzhiyun 					    const unsigned int *syn)
418*4882a593Smuzhiyun {
419*4882a593Smuzhiyun 	const unsigned int t = GF_T(bch);
420*4882a593Smuzhiyun 	const unsigned int n = GF_N(bch);
421*4882a593Smuzhiyun 	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
422*4882a593Smuzhiyun 	struct gf_poly *elp = bch->elp;
423*4882a593Smuzhiyun 	struct gf_poly *pelp = bch->poly_2t[0];
424*4882a593Smuzhiyun 	struct gf_poly *elp_copy = bch->poly_2t[1];
425*4882a593Smuzhiyun 	int k, pp = -1;
426*4882a593Smuzhiyun 
427*4882a593Smuzhiyun 	memset(pelp, 0, GF_POLY_SZ(2*t));
428*4882a593Smuzhiyun 	memset(elp, 0, GF_POLY_SZ(2*t));
429*4882a593Smuzhiyun 
430*4882a593Smuzhiyun 	pelp->deg = 0;
431*4882a593Smuzhiyun 	pelp->c[0] = 1;
432*4882a593Smuzhiyun 	elp->deg = 0;
433*4882a593Smuzhiyun 	elp->c[0] = 1;
434*4882a593Smuzhiyun 
435*4882a593Smuzhiyun 	/* use simplified binary Berlekamp-Massey algorithm */
436*4882a593Smuzhiyun 	for (i = 0; (i < t) && (elp->deg <= t); i++) {
437*4882a593Smuzhiyun 		if (d) {
438*4882a593Smuzhiyun 			k = 2*i-pp;
439*4882a593Smuzhiyun 			gf_poly_copy(elp_copy, elp);
440*4882a593Smuzhiyun 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
441*4882a593Smuzhiyun 			tmp = a_log(bch, d)+n-a_log(bch, pd);
442*4882a593Smuzhiyun 			for (j = 0; j <= pelp->deg; j++) {
443*4882a593Smuzhiyun 				if (pelp->c[j]) {
444*4882a593Smuzhiyun 					l = a_log(bch, pelp->c[j]);
445*4882a593Smuzhiyun 					elp->c[j+k] ^= a_pow(bch, tmp+l);
446*4882a593Smuzhiyun 				}
447*4882a593Smuzhiyun 			}
448*4882a593Smuzhiyun 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
449*4882a593Smuzhiyun 			tmp = pelp->deg+k;
450*4882a593Smuzhiyun 			if (tmp > elp->deg) {
451*4882a593Smuzhiyun 				elp->deg = tmp;
452*4882a593Smuzhiyun 				gf_poly_copy(pelp, elp_copy);
453*4882a593Smuzhiyun 				pd = d;
454*4882a593Smuzhiyun 				pp = 2*i;
455*4882a593Smuzhiyun 			}
456*4882a593Smuzhiyun 		}
457*4882a593Smuzhiyun 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
458*4882a593Smuzhiyun 		if (i < t-1) {
459*4882a593Smuzhiyun 			d = syn[2*i+2];
460*4882a593Smuzhiyun 			for (j = 1; j <= elp->deg; j++)
461*4882a593Smuzhiyun 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
462*4882a593Smuzhiyun 		}
463*4882a593Smuzhiyun 	}
464*4882a593Smuzhiyun 	dbg("elp=%s\n", gf_poly_str(elp));
465*4882a593Smuzhiyun 	return (elp->deg > t) ? -1 : (int)elp->deg;
466*4882a593Smuzhiyun }
467*4882a593Smuzhiyun 
468*4882a593Smuzhiyun /*
469*4882a593Smuzhiyun  * solve a m x m linear system in GF(2) with an expected number of solutions,
470*4882a593Smuzhiyun  * and return the number of found solutions
471*4882a593Smuzhiyun  */
solve_linear_system(struct bch_control * bch,unsigned int * rows,unsigned int * sol,int nsol)472*4882a593Smuzhiyun static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
473*4882a593Smuzhiyun 			       unsigned int *sol, int nsol)
474*4882a593Smuzhiyun {
475*4882a593Smuzhiyun 	const int m = GF_M(bch);
476*4882a593Smuzhiyun 	unsigned int tmp, mask;
477*4882a593Smuzhiyun 	int rem, c, r, p, k, param[m];
478*4882a593Smuzhiyun 
479*4882a593Smuzhiyun 	k = 0;
480*4882a593Smuzhiyun 	mask = 1 << m;
481*4882a593Smuzhiyun 
482*4882a593Smuzhiyun 	/* Gaussian elimination */
483*4882a593Smuzhiyun 	for (c = 0; c < m; c++) {
484*4882a593Smuzhiyun 		rem = 0;
485*4882a593Smuzhiyun 		p = c-k;
486*4882a593Smuzhiyun 		/* find suitable row for elimination */
487*4882a593Smuzhiyun 		for (r = p; r < m; r++) {
488*4882a593Smuzhiyun 			if (rows[r] & mask) {
489*4882a593Smuzhiyun 				if (r != p) {
490*4882a593Smuzhiyun 					tmp = rows[r];
491*4882a593Smuzhiyun 					rows[r] = rows[p];
492*4882a593Smuzhiyun 					rows[p] = tmp;
493*4882a593Smuzhiyun 				}
494*4882a593Smuzhiyun 				rem = r+1;
495*4882a593Smuzhiyun 				break;
496*4882a593Smuzhiyun 			}
497*4882a593Smuzhiyun 		}
498*4882a593Smuzhiyun 		if (rem) {
499*4882a593Smuzhiyun 			/* perform elimination on remaining rows */
500*4882a593Smuzhiyun 			tmp = rows[p];
501*4882a593Smuzhiyun 			for (r = rem; r < m; r++) {
502*4882a593Smuzhiyun 				if (rows[r] & mask)
503*4882a593Smuzhiyun 					rows[r] ^= tmp;
504*4882a593Smuzhiyun 			}
505*4882a593Smuzhiyun 		} else {
506*4882a593Smuzhiyun 			/* elimination not needed, store defective row index */
507*4882a593Smuzhiyun 			param[k++] = c;
508*4882a593Smuzhiyun 		}
509*4882a593Smuzhiyun 		mask >>= 1;
510*4882a593Smuzhiyun 	}
511*4882a593Smuzhiyun 	/* rewrite system, inserting fake parameter rows */
512*4882a593Smuzhiyun 	if (k > 0) {
513*4882a593Smuzhiyun 		p = k;
514*4882a593Smuzhiyun 		for (r = m-1; r >= 0; r--) {
515*4882a593Smuzhiyun 			if ((r > m-1-k) && rows[r])
516*4882a593Smuzhiyun 				/* system has no solution */
517*4882a593Smuzhiyun 				return 0;
518*4882a593Smuzhiyun 
519*4882a593Smuzhiyun 			rows[r] = (p && (r == param[p-1])) ?
520*4882a593Smuzhiyun 				p--, 1u << (m-r) : rows[r-p];
521*4882a593Smuzhiyun 		}
522*4882a593Smuzhiyun 	}
523*4882a593Smuzhiyun 
524*4882a593Smuzhiyun 	if (nsol != (1 << k))
525*4882a593Smuzhiyun 		/* unexpected number of solutions */
526*4882a593Smuzhiyun 		return 0;
527*4882a593Smuzhiyun 
528*4882a593Smuzhiyun 	for (p = 0; p < nsol; p++) {
529*4882a593Smuzhiyun 		/* set parameters for p-th solution */
530*4882a593Smuzhiyun 		for (c = 0; c < k; c++)
531*4882a593Smuzhiyun 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
532*4882a593Smuzhiyun 
533*4882a593Smuzhiyun 		/* compute unique solution */
534*4882a593Smuzhiyun 		tmp = 0;
535*4882a593Smuzhiyun 		for (r = m-1; r >= 0; r--) {
536*4882a593Smuzhiyun 			mask = rows[r] & (tmp|1);
537*4882a593Smuzhiyun 			tmp |= parity(mask) << (m-r);
538*4882a593Smuzhiyun 		}
539*4882a593Smuzhiyun 		sol[p] = tmp >> 1;
540*4882a593Smuzhiyun 	}
541*4882a593Smuzhiyun 	return nsol;
542*4882a593Smuzhiyun }
543*4882a593Smuzhiyun 
544*4882a593Smuzhiyun /*
545*4882a593Smuzhiyun  * this function builds and solves a linear system for finding roots of a degree
546*4882a593Smuzhiyun  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
547*4882a593Smuzhiyun  */
find_affine4_roots(struct bch_control * bch,unsigned int a,unsigned int b,unsigned int c,unsigned int * roots)548*4882a593Smuzhiyun static int find_affine4_roots(struct bch_control *bch, unsigned int a,
549*4882a593Smuzhiyun 			      unsigned int b, unsigned int c,
550*4882a593Smuzhiyun 			      unsigned int *roots)
551*4882a593Smuzhiyun {
552*4882a593Smuzhiyun 	int i, j, k;
553*4882a593Smuzhiyun 	const int m = GF_M(bch);
554*4882a593Smuzhiyun 	unsigned int mask = 0xff, t, rows[16] = {0,};
555*4882a593Smuzhiyun 
556*4882a593Smuzhiyun 	j = a_log(bch, b);
557*4882a593Smuzhiyun 	k = a_log(bch, a);
558*4882a593Smuzhiyun 	rows[0] = c;
559*4882a593Smuzhiyun 
560*4882a593Smuzhiyun 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
561*4882a593Smuzhiyun 	for (i = 0; i < m; i++) {
562*4882a593Smuzhiyun 		rows[i+1] = bch->a_pow_tab[4*i]^
563*4882a593Smuzhiyun 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
564*4882a593Smuzhiyun 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
565*4882a593Smuzhiyun 		j++;
566*4882a593Smuzhiyun 		k += 2;
567*4882a593Smuzhiyun 	}
568*4882a593Smuzhiyun 	/*
569*4882a593Smuzhiyun 	 * transpose 16x16 matrix before passing it to linear solver
570*4882a593Smuzhiyun 	 * warning: this code assumes m < 16
571*4882a593Smuzhiyun 	 */
572*4882a593Smuzhiyun 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
573*4882a593Smuzhiyun 		for (k = 0; k < 16; k = (k+j+1) & ~j) {
574*4882a593Smuzhiyun 			t = ((rows[k] >> j)^rows[k+j]) & mask;
575*4882a593Smuzhiyun 			rows[k] ^= (t << j);
576*4882a593Smuzhiyun 			rows[k+j] ^= t;
577*4882a593Smuzhiyun 		}
578*4882a593Smuzhiyun 	}
579*4882a593Smuzhiyun 	return solve_linear_system(bch, rows, roots, 4);
580*4882a593Smuzhiyun }
581*4882a593Smuzhiyun 
582*4882a593Smuzhiyun /*
583*4882a593Smuzhiyun  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
584*4882a593Smuzhiyun  */
find_poly_deg1_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)585*4882a593Smuzhiyun static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
586*4882a593Smuzhiyun 				unsigned int *roots)
587*4882a593Smuzhiyun {
588*4882a593Smuzhiyun 	int n = 0;
589*4882a593Smuzhiyun 
590*4882a593Smuzhiyun 	if (poly->c[0])
591*4882a593Smuzhiyun 		/* poly[X] = bX+c with c!=0, root=c/b */
592*4882a593Smuzhiyun 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
593*4882a593Smuzhiyun 				   bch->a_log_tab[poly->c[1]]);
594*4882a593Smuzhiyun 	return n;
595*4882a593Smuzhiyun }
596*4882a593Smuzhiyun 
597*4882a593Smuzhiyun /*
598*4882a593Smuzhiyun  * compute roots of a degree 2 polynomial over GF(2^m)
599*4882a593Smuzhiyun  */
find_poly_deg2_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)600*4882a593Smuzhiyun static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
601*4882a593Smuzhiyun 				unsigned int *roots)
602*4882a593Smuzhiyun {
603*4882a593Smuzhiyun 	int n = 0, i, l0, l1, l2;
604*4882a593Smuzhiyun 	unsigned int u, v, r;
605*4882a593Smuzhiyun 
606*4882a593Smuzhiyun 	if (poly->c[0] && poly->c[1]) {
607*4882a593Smuzhiyun 
608*4882a593Smuzhiyun 		l0 = bch->a_log_tab[poly->c[0]];
609*4882a593Smuzhiyun 		l1 = bch->a_log_tab[poly->c[1]];
610*4882a593Smuzhiyun 		l2 = bch->a_log_tab[poly->c[2]];
611*4882a593Smuzhiyun 
612*4882a593Smuzhiyun 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
613*4882a593Smuzhiyun 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
614*4882a593Smuzhiyun 		/*
615*4882a593Smuzhiyun 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
616*4882a593Smuzhiyun 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
617*4882a593Smuzhiyun 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
618*4882a593Smuzhiyun 		 * i.e. r and r+1 are roots iff Tr(u)=0
619*4882a593Smuzhiyun 		 */
620*4882a593Smuzhiyun 		r = 0;
621*4882a593Smuzhiyun 		v = u;
622*4882a593Smuzhiyun 		while (v) {
623*4882a593Smuzhiyun 			i = deg(v);
624*4882a593Smuzhiyun 			r ^= bch->xi_tab[i];
625*4882a593Smuzhiyun 			v ^= (1 << i);
626*4882a593Smuzhiyun 		}
627*4882a593Smuzhiyun 		/* verify root */
628*4882a593Smuzhiyun 		if ((gf_sqr(bch, r)^r) == u) {
629*4882a593Smuzhiyun 			/* reverse z=a/bX transformation and compute log(1/r) */
630*4882a593Smuzhiyun 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
631*4882a593Smuzhiyun 					    bch->a_log_tab[r]+l2);
632*4882a593Smuzhiyun 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
633*4882a593Smuzhiyun 					    bch->a_log_tab[r^1]+l2);
634*4882a593Smuzhiyun 		}
635*4882a593Smuzhiyun 	}
636*4882a593Smuzhiyun 	return n;
637*4882a593Smuzhiyun }
638*4882a593Smuzhiyun 
639*4882a593Smuzhiyun /*
640*4882a593Smuzhiyun  * compute roots of a degree 3 polynomial over GF(2^m)
641*4882a593Smuzhiyun  */
find_poly_deg3_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)642*4882a593Smuzhiyun static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
643*4882a593Smuzhiyun 				unsigned int *roots)
644*4882a593Smuzhiyun {
645*4882a593Smuzhiyun 	int i, n = 0;
646*4882a593Smuzhiyun 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
647*4882a593Smuzhiyun 
648*4882a593Smuzhiyun 	if (poly->c[0]) {
649*4882a593Smuzhiyun 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
650*4882a593Smuzhiyun 		e3 = poly->c[3];
651*4882a593Smuzhiyun 		c2 = gf_div(bch, poly->c[0], e3);
652*4882a593Smuzhiyun 		b2 = gf_div(bch, poly->c[1], e3);
653*4882a593Smuzhiyun 		a2 = gf_div(bch, poly->c[2], e3);
654*4882a593Smuzhiyun 
655*4882a593Smuzhiyun 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
656*4882a593Smuzhiyun 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
657*4882a593Smuzhiyun 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
658*4882a593Smuzhiyun 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
659*4882a593Smuzhiyun 
660*4882a593Smuzhiyun 		/* find the 4 roots of this affine polynomial */
661*4882a593Smuzhiyun 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
662*4882a593Smuzhiyun 			/* remove a2 from final list of roots */
663*4882a593Smuzhiyun 			for (i = 0; i < 4; i++) {
664*4882a593Smuzhiyun 				if (tmp[i] != a2)
665*4882a593Smuzhiyun 					roots[n++] = a_ilog(bch, tmp[i]);
666*4882a593Smuzhiyun 			}
667*4882a593Smuzhiyun 		}
668*4882a593Smuzhiyun 	}
669*4882a593Smuzhiyun 	return n;
670*4882a593Smuzhiyun }
671*4882a593Smuzhiyun 
672*4882a593Smuzhiyun /*
673*4882a593Smuzhiyun  * compute roots of a degree 4 polynomial over GF(2^m)
674*4882a593Smuzhiyun  */
find_poly_deg4_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)675*4882a593Smuzhiyun static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
676*4882a593Smuzhiyun 				unsigned int *roots)
677*4882a593Smuzhiyun {
678*4882a593Smuzhiyun 	int i, l, n = 0;
679*4882a593Smuzhiyun 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
680*4882a593Smuzhiyun 
681*4882a593Smuzhiyun 	if (poly->c[0] == 0)
682*4882a593Smuzhiyun 		return 0;
683*4882a593Smuzhiyun 
684*4882a593Smuzhiyun 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
685*4882a593Smuzhiyun 	e4 = poly->c[4];
686*4882a593Smuzhiyun 	d = gf_div(bch, poly->c[0], e4);
687*4882a593Smuzhiyun 	c = gf_div(bch, poly->c[1], e4);
688*4882a593Smuzhiyun 	b = gf_div(bch, poly->c[2], e4);
689*4882a593Smuzhiyun 	a = gf_div(bch, poly->c[3], e4);
690*4882a593Smuzhiyun 
691*4882a593Smuzhiyun 	/* use Y=1/X transformation to get an affine polynomial */
692*4882a593Smuzhiyun 	if (a) {
693*4882a593Smuzhiyun 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
694*4882a593Smuzhiyun 		if (c) {
695*4882a593Smuzhiyun 			/* compute e such that e^2 = c/a */
696*4882a593Smuzhiyun 			f = gf_div(bch, c, a);
697*4882a593Smuzhiyun 			l = a_log(bch, f);
698*4882a593Smuzhiyun 			l += (l & 1) ? GF_N(bch) : 0;
699*4882a593Smuzhiyun 			e = a_pow(bch, l/2);
700*4882a593Smuzhiyun 			/*
701*4882a593Smuzhiyun 			 * use transformation z=X+e:
702*4882a593Smuzhiyun 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
703*4882a593Smuzhiyun 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
704*4882a593Smuzhiyun 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
705*4882a593Smuzhiyun 			 * z^4 + az^3 +     b'z^2 + d'
706*4882a593Smuzhiyun 			 */
707*4882a593Smuzhiyun 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
708*4882a593Smuzhiyun 			b = gf_mul(bch, a, e)^b;
709*4882a593Smuzhiyun 		}
710*4882a593Smuzhiyun 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
711*4882a593Smuzhiyun 		if (d == 0)
712*4882a593Smuzhiyun 			/* assume all roots have multiplicity 1 */
713*4882a593Smuzhiyun 			return 0;
714*4882a593Smuzhiyun 
715*4882a593Smuzhiyun 		c2 = gf_inv(bch, d);
716*4882a593Smuzhiyun 		b2 = gf_div(bch, a, d);
717*4882a593Smuzhiyun 		a2 = gf_div(bch, b, d);
718*4882a593Smuzhiyun 	} else {
719*4882a593Smuzhiyun 		/* polynomial is already affine */
720*4882a593Smuzhiyun 		c2 = d;
721*4882a593Smuzhiyun 		b2 = c;
722*4882a593Smuzhiyun 		a2 = b;
723*4882a593Smuzhiyun 	}
724*4882a593Smuzhiyun 	/* find the 4 roots of this affine polynomial */
725*4882a593Smuzhiyun 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
726*4882a593Smuzhiyun 		for (i = 0; i < 4; i++) {
727*4882a593Smuzhiyun 			/* post-process roots (reverse transformations) */
728*4882a593Smuzhiyun 			f = a ? gf_inv(bch, roots[i]) : roots[i];
729*4882a593Smuzhiyun 			roots[i] = a_ilog(bch, f^e);
730*4882a593Smuzhiyun 		}
731*4882a593Smuzhiyun 		n = 4;
732*4882a593Smuzhiyun 	}
733*4882a593Smuzhiyun 	return n;
734*4882a593Smuzhiyun }
735*4882a593Smuzhiyun 
736*4882a593Smuzhiyun /*
737*4882a593Smuzhiyun  * build monic, log-based representation of a polynomial
738*4882a593Smuzhiyun  */
gf_poly_logrep(struct bch_control * bch,const struct gf_poly * a,int * rep)739*4882a593Smuzhiyun static void gf_poly_logrep(struct bch_control *bch,
740*4882a593Smuzhiyun 			   const struct gf_poly *a, int *rep)
741*4882a593Smuzhiyun {
742*4882a593Smuzhiyun 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
743*4882a593Smuzhiyun 
744*4882a593Smuzhiyun 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
745*4882a593Smuzhiyun 	for (i = 0; i < d; i++)
746*4882a593Smuzhiyun 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
747*4882a593Smuzhiyun }
748*4882a593Smuzhiyun 
749*4882a593Smuzhiyun /*
750*4882a593Smuzhiyun  * compute polynomial Euclidean division remainder in GF(2^m)[X]
751*4882a593Smuzhiyun  */
gf_poly_mod(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,int * rep)752*4882a593Smuzhiyun static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
753*4882a593Smuzhiyun 			const struct gf_poly *b, int *rep)
754*4882a593Smuzhiyun {
755*4882a593Smuzhiyun 	int la, p, m;
756*4882a593Smuzhiyun 	unsigned int i, j, *c = a->c;
757*4882a593Smuzhiyun 	const unsigned int d = b->deg;
758*4882a593Smuzhiyun 
759*4882a593Smuzhiyun 	if (a->deg < d)
760*4882a593Smuzhiyun 		return;
761*4882a593Smuzhiyun 
762*4882a593Smuzhiyun 	/* reuse or compute log representation of denominator */
763*4882a593Smuzhiyun 	if (!rep) {
764*4882a593Smuzhiyun 		rep = bch->cache;
765*4882a593Smuzhiyun 		gf_poly_logrep(bch, b, rep);
766*4882a593Smuzhiyun 	}
767*4882a593Smuzhiyun 
768*4882a593Smuzhiyun 	for (j = a->deg; j >= d; j--) {
769*4882a593Smuzhiyun 		if (c[j]) {
770*4882a593Smuzhiyun 			la = a_log(bch, c[j]);
771*4882a593Smuzhiyun 			p = j-d;
772*4882a593Smuzhiyun 			for (i = 0; i < d; i++, p++) {
773*4882a593Smuzhiyun 				m = rep[i];
774*4882a593Smuzhiyun 				if (m >= 0)
775*4882a593Smuzhiyun 					c[p] ^= bch->a_pow_tab[mod_s(bch,
776*4882a593Smuzhiyun 								     m+la)];
777*4882a593Smuzhiyun 			}
778*4882a593Smuzhiyun 		}
779*4882a593Smuzhiyun 	}
780*4882a593Smuzhiyun 	a->deg = d-1;
781*4882a593Smuzhiyun 	while (!c[a->deg] && a->deg)
782*4882a593Smuzhiyun 		a->deg--;
783*4882a593Smuzhiyun }
784*4882a593Smuzhiyun 
785*4882a593Smuzhiyun /*
786*4882a593Smuzhiyun  * compute polynomial Euclidean division quotient in GF(2^m)[X]
787*4882a593Smuzhiyun  */
gf_poly_div(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,struct gf_poly * q)788*4882a593Smuzhiyun static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
789*4882a593Smuzhiyun 			const struct gf_poly *b, struct gf_poly *q)
790*4882a593Smuzhiyun {
791*4882a593Smuzhiyun 	if (a->deg >= b->deg) {
792*4882a593Smuzhiyun 		q->deg = a->deg-b->deg;
793*4882a593Smuzhiyun 		/* compute a mod b (modifies a) */
794*4882a593Smuzhiyun 		gf_poly_mod(bch, a, b, NULL);
795*4882a593Smuzhiyun 		/* quotient is stored in upper part of polynomial a */
796*4882a593Smuzhiyun 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
797*4882a593Smuzhiyun 	} else {
798*4882a593Smuzhiyun 		q->deg = 0;
799*4882a593Smuzhiyun 		q->c[0] = 0;
800*4882a593Smuzhiyun 	}
801*4882a593Smuzhiyun }
802*4882a593Smuzhiyun 
803*4882a593Smuzhiyun /*
804*4882a593Smuzhiyun  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
805*4882a593Smuzhiyun  */
gf_poly_gcd(struct bch_control * bch,struct gf_poly * a,struct gf_poly * b)806*4882a593Smuzhiyun static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
807*4882a593Smuzhiyun 				   struct gf_poly *b)
808*4882a593Smuzhiyun {
809*4882a593Smuzhiyun 	struct gf_poly *tmp;
810*4882a593Smuzhiyun 
811*4882a593Smuzhiyun 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
812*4882a593Smuzhiyun 
813*4882a593Smuzhiyun 	if (a->deg < b->deg) {
814*4882a593Smuzhiyun 		tmp = b;
815*4882a593Smuzhiyun 		b = a;
816*4882a593Smuzhiyun 		a = tmp;
817*4882a593Smuzhiyun 	}
818*4882a593Smuzhiyun 
819*4882a593Smuzhiyun 	while (b->deg > 0) {
820*4882a593Smuzhiyun 		gf_poly_mod(bch, a, b, NULL);
821*4882a593Smuzhiyun 		tmp = b;
822*4882a593Smuzhiyun 		b = a;
823*4882a593Smuzhiyun 		a = tmp;
824*4882a593Smuzhiyun 	}
825*4882a593Smuzhiyun 
826*4882a593Smuzhiyun 	dbg("%s\n", gf_poly_str(a));
827*4882a593Smuzhiyun 
828*4882a593Smuzhiyun 	return a;
829*4882a593Smuzhiyun }
830*4882a593Smuzhiyun 
831*4882a593Smuzhiyun /*
832*4882a593Smuzhiyun  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
833*4882a593Smuzhiyun  * This is used in Berlekamp Trace algorithm for splitting polynomials
834*4882a593Smuzhiyun  */
compute_trace_bk_mod(struct bch_control * bch,int k,const struct gf_poly * f,struct gf_poly * z,struct gf_poly * out)835*4882a593Smuzhiyun static void compute_trace_bk_mod(struct bch_control *bch, int k,
836*4882a593Smuzhiyun 				 const struct gf_poly *f, struct gf_poly *z,
837*4882a593Smuzhiyun 				 struct gf_poly *out)
838*4882a593Smuzhiyun {
839*4882a593Smuzhiyun 	const int m = GF_M(bch);
840*4882a593Smuzhiyun 	int i, j;
841*4882a593Smuzhiyun 
842*4882a593Smuzhiyun 	/* z contains z^2j mod f */
843*4882a593Smuzhiyun 	z->deg = 1;
844*4882a593Smuzhiyun 	z->c[0] = 0;
845*4882a593Smuzhiyun 	z->c[1] = bch->a_pow_tab[k];
846*4882a593Smuzhiyun 
847*4882a593Smuzhiyun 	out->deg = 0;
848*4882a593Smuzhiyun 	memset(out, 0, GF_POLY_SZ(f->deg));
849*4882a593Smuzhiyun 
850*4882a593Smuzhiyun 	/* compute f log representation only once */
851*4882a593Smuzhiyun 	gf_poly_logrep(bch, f, bch->cache);
852*4882a593Smuzhiyun 
853*4882a593Smuzhiyun 	for (i = 0; i < m; i++) {
854*4882a593Smuzhiyun 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
855*4882a593Smuzhiyun 		for (j = z->deg; j >= 0; j--) {
856*4882a593Smuzhiyun 			out->c[j] ^= z->c[j];
857*4882a593Smuzhiyun 			z->c[2*j] = gf_sqr(bch, z->c[j]);
858*4882a593Smuzhiyun 			z->c[2*j+1] = 0;
859*4882a593Smuzhiyun 		}
860*4882a593Smuzhiyun 		if (z->deg > out->deg)
861*4882a593Smuzhiyun 			out->deg = z->deg;
862*4882a593Smuzhiyun 
863*4882a593Smuzhiyun 		if (i < m-1) {
864*4882a593Smuzhiyun 			z->deg *= 2;
865*4882a593Smuzhiyun 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
866*4882a593Smuzhiyun 			gf_poly_mod(bch, z, f, bch->cache);
867*4882a593Smuzhiyun 		}
868*4882a593Smuzhiyun 	}
869*4882a593Smuzhiyun 	while (!out->c[out->deg] && out->deg)
870*4882a593Smuzhiyun 		out->deg--;
871*4882a593Smuzhiyun 
872*4882a593Smuzhiyun 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
873*4882a593Smuzhiyun }
874*4882a593Smuzhiyun 
875*4882a593Smuzhiyun /*
876*4882a593Smuzhiyun  * factor a polynomial using Berlekamp Trace algorithm (BTA)
877*4882a593Smuzhiyun  */
factor_polynomial(struct bch_control * bch,int k,struct gf_poly * f,struct gf_poly ** g,struct gf_poly ** h)878*4882a593Smuzhiyun static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
879*4882a593Smuzhiyun 			      struct gf_poly **g, struct gf_poly **h)
880*4882a593Smuzhiyun {
881*4882a593Smuzhiyun 	struct gf_poly *f2 = bch->poly_2t[0];
882*4882a593Smuzhiyun 	struct gf_poly *q  = bch->poly_2t[1];
883*4882a593Smuzhiyun 	struct gf_poly *tk = bch->poly_2t[2];
884*4882a593Smuzhiyun 	struct gf_poly *z  = bch->poly_2t[3];
885*4882a593Smuzhiyun 	struct gf_poly *gcd;
886*4882a593Smuzhiyun 
887*4882a593Smuzhiyun 	dbg("factoring %s...\n", gf_poly_str(f));
888*4882a593Smuzhiyun 
889*4882a593Smuzhiyun 	*g = f;
890*4882a593Smuzhiyun 	*h = NULL;
891*4882a593Smuzhiyun 
892*4882a593Smuzhiyun 	/* tk = Tr(a^k.X) mod f */
893*4882a593Smuzhiyun 	compute_trace_bk_mod(bch, k, f, z, tk);
894*4882a593Smuzhiyun 
895*4882a593Smuzhiyun 	if (tk->deg > 0) {
896*4882a593Smuzhiyun 		/* compute g = gcd(f, tk) (destructive operation) */
897*4882a593Smuzhiyun 		gf_poly_copy(f2, f);
898*4882a593Smuzhiyun 		gcd = gf_poly_gcd(bch, f2, tk);
899*4882a593Smuzhiyun 		if (gcd->deg < f->deg) {
900*4882a593Smuzhiyun 			/* compute h=f/gcd(f,tk); this will modify f and q */
901*4882a593Smuzhiyun 			gf_poly_div(bch, f, gcd, q);
902*4882a593Smuzhiyun 			/* store g and h in-place (clobbering f) */
903*4882a593Smuzhiyun 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
904*4882a593Smuzhiyun 			gf_poly_copy(*g, gcd);
905*4882a593Smuzhiyun 			gf_poly_copy(*h, q);
906*4882a593Smuzhiyun 		}
907*4882a593Smuzhiyun 	}
908*4882a593Smuzhiyun }
909*4882a593Smuzhiyun 
910*4882a593Smuzhiyun /*
911*4882a593Smuzhiyun  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
912*4882a593Smuzhiyun  * file for details
913*4882a593Smuzhiyun  */
find_poly_roots(struct bch_control * bch,unsigned int k,struct gf_poly * poly,unsigned int * roots)914*4882a593Smuzhiyun static int find_poly_roots(struct bch_control *bch, unsigned int k,
915*4882a593Smuzhiyun 			   struct gf_poly *poly, unsigned int *roots)
916*4882a593Smuzhiyun {
917*4882a593Smuzhiyun 	int cnt;
918*4882a593Smuzhiyun 	struct gf_poly *f1, *f2;
919*4882a593Smuzhiyun 
920*4882a593Smuzhiyun 	switch (poly->deg) {
921*4882a593Smuzhiyun 		/* handle low degree polynomials with ad hoc techniques */
922*4882a593Smuzhiyun 	case 1:
923*4882a593Smuzhiyun 		cnt = find_poly_deg1_roots(bch, poly, roots);
924*4882a593Smuzhiyun 		break;
925*4882a593Smuzhiyun 	case 2:
926*4882a593Smuzhiyun 		cnt = find_poly_deg2_roots(bch, poly, roots);
927*4882a593Smuzhiyun 		break;
928*4882a593Smuzhiyun 	case 3:
929*4882a593Smuzhiyun 		cnt = find_poly_deg3_roots(bch, poly, roots);
930*4882a593Smuzhiyun 		break;
931*4882a593Smuzhiyun 	case 4:
932*4882a593Smuzhiyun 		cnt = find_poly_deg4_roots(bch, poly, roots);
933*4882a593Smuzhiyun 		break;
934*4882a593Smuzhiyun 	default:
935*4882a593Smuzhiyun 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
936*4882a593Smuzhiyun 		cnt = 0;
937*4882a593Smuzhiyun 		if (poly->deg && (k <= GF_M(bch))) {
938*4882a593Smuzhiyun 			factor_polynomial(bch, k, poly, &f1, &f2);
939*4882a593Smuzhiyun 			if (f1)
940*4882a593Smuzhiyun 				cnt += find_poly_roots(bch, k+1, f1, roots);
941*4882a593Smuzhiyun 			if (f2)
942*4882a593Smuzhiyun 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
943*4882a593Smuzhiyun 		}
944*4882a593Smuzhiyun 		break;
945*4882a593Smuzhiyun 	}
946*4882a593Smuzhiyun 	return cnt;
947*4882a593Smuzhiyun }
948*4882a593Smuzhiyun 
949*4882a593Smuzhiyun #if defined(USE_CHIEN_SEARCH)
950*4882a593Smuzhiyun /*
951*4882a593Smuzhiyun  * exhaustive root search (Chien) implementation - not used, included only for
952*4882a593Smuzhiyun  * reference/comparison tests
953*4882a593Smuzhiyun  */
chien_search(struct bch_control * bch,unsigned int len,struct gf_poly * p,unsigned int * roots)954*4882a593Smuzhiyun static int chien_search(struct bch_control *bch, unsigned int len,
955*4882a593Smuzhiyun 			struct gf_poly *p, unsigned int *roots)
956*4882a593Smuzhiyun {
957*4882a593Smuzhiyun 	int m;
958*4882a593Smuzhiyun 	unsigned int i, j, syn, syn0, count = 0;
959*4882a593Smuzhiyun 	const unsigned int k = 8*len+bch->ecc_bits;
960*4882a593Smuzhiyun 
961*4882a593Smuzhiyun 	/* use a log-based representation of polynomial */
962*4882a593Smuzhiyun 	gf_poly_logrep(bch, p, bch->cache);
963*4882a593Smuzhiyun 	bch->cache[p->deg] = 0;
964*4882a593Smuzhiyun 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
965*4882a593Smuzhiyun 
966*4882a593Smuzhiyun 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
967*4882a593Smuzhiyun 		/* compute elp(a^i) */
968*4882a593Smuzhiyun 		for (j = 1, syn = syn0; j <= p->deg; j++) {
969*4882a593Smuzhiyun 			m = bch->cache[j];
970*4882a593Smuzhiyun 			if (m >= 0)
971*4882a593Smuzhiyun 				syn ^= a_pow(bch, m+j*i);
972*4882a593Smuzhiyun 		}
973*4882a593Smuzhiyun 		if (syn == 0) {
974*4882a593Smuzhiyun 			roots[count++] = GF_N(bch)-i;
975*4882a593Smuzhiyun 			if (count == p->deg)
976*4882a593Smuzhiyun 				break;
977*4882a593Smuzhiyun 		}
978*4882a593Smuzhiyun 	}
979*4882a593Smuzhiyun 	return (count == p->deg) ? count : 0;
980*4882a593Smuzhiyun }
981*4882a593Smuzhiyun #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
982*4882a593Smuzhiyun #endif /* USE_CHIEN_SEARCH */
983*4882a593Smuzhiyun 
984*4882a593Smuzhiyun /**
985*4882a593Smuzhiyun  * decode_bch - decode received codeword and find bit error locations
986*4882a593Smuzhiyun  * @bch:      BCH control structure
987*4882a593Smuzhiyun  * @data:     received data, ignored if @calc_ecc is provided
988*4882a593Smuzhiyun  * @len:      data length in bytes, must always be provided
989*4882a593Smuzhiyun  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
990*4882a593Smuzhiyun  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
991*4882a593Smuzhiyun  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
992*4882a593Smuzhiyun  * @errloc:   output array of error locations
993*4882a593Smuzhiyun  *
994*4882a593Smuzhiyun  * Returns:
995*4882a593Smuzhiyun  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
996*4882a593Smuzhiyun  *  invalid parameters were provided
997*4882a593Smuzhiyun  *
998*4882a593Smuzhiyun  * Depending on the available hw BCH support and the need to compute @calc_ecc
999*4882a593Smuzhiyun  * separately (using encode_bch()), this function should be called with one of
1000*4882a593Smuzhiyun  * the following parameter configurations -
1001*4882a593Smuzhiyun  *
1002*4882a593Smuzhiyun  * by providing @data and @recv_ecc only:
1003*4882a593Smuzhiyun  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1004*4882a593Smuzhiyun  *
1005*4882a593Smuzhiyun  * by providing @recv_ecc and @calc_ecc:
1006*4882a593Smuzhiyun  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1007*4882a593Smuzhiyun  *
1008*4882a593Smuzhiyun  * by providing ecc = recv_ecc XOR calc_ecc:
1009*4882a593Smuzhiyun  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1010*4882a593Smuzhiyun  *
1011*4882a593Smuzhiyun  * by providing syndrome results @syn:
1012*4882a593Smuzhiyun  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1013*4882a593Smuzhiyun  *
1014*4882a593Smuzhiyun  * Once decode_bch() has successfully returned with a positive value, error
1015*4882a593Smuzhiyun  * locations returned in array @errloc should be interpreted as follows -
1016*4882a593Smuzhiyun  *
1017*4882a593Smuzhiyun  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1018*4882a593Smuzhiyun  * data correction)
1019*4882a593Smuzhiyun  *
1020*4882a593Smuzhiyun  * if (errloc[n] < 8*len), then n-th error is located in data and can be
1021*4882a593Smuzhiyun  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1022*4882a593Smuzhiyun  *
1023*4882a593Smuzhiyun  * Note that this function does not perform any data correction by itself, it
1024*4882a593Smuzhiyun  * merely indicates error locations.
1025*4882a593Smuzhiyun  */
decode_bch(struct bch_control * bch,const uint8_t * data,unsigned int len,const uint8_t * recv_ecc,const uint8_t * calc_ecc,const unsigned int * syn,unsigned int * errloc)1026*4882a593Smuzhiyun int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1027*4882a593Smuzhiyun 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1028*4882a593Smuzhiyun 	       const unsigned int *syn, unsigned int *errloc)
1029*4882a593Smuzhiyun {
1030*4882a593Smuzhiyun 	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1031*4882a593Smuzhiyun 	unsigned int nbits;
1032*4882a593Smuzhiyun 	int i, err, nroots;
1033*4882a593Smuzhiyun 	uint32_t sum;
1034*4882a593Smuzhiyun 
1035*4882a593Smuzhiyun 	/* sanity check: make sure data length can be handled */
1036*4882a593Smuzhiyun 	if (8*len > (bch->n-bch->ecc_bits))
1037*4882a593Smuzhiyun 		return -EINVAL;
1038*4882a593Smuzhiyun 
1039*4882a593Smuzhiyun 	/* if caller does not provide syndromes, compute them */
1040*4882a593Smuzhiyun 	if (!syn) {
1041*4882a593Smuzhiyun 		if (!calc_ecc) {
1042*4882a593Smuzhiyun 			/* compute received data ecc into an internal buffer */
1043*4882a593Smuzhiyun 			if (!data || !recv_ecc)
1044*4882a593Smuzhiyun 				return -EINVAL;
1045*4882a593Smuzhiyun 			encode_bch(bch, data, len, NULL);
1046*4882a593Smuzhiyun 		} else {
1047*4882a593Smuzhiyun 			/* load provided calculated ecc */
1048*4882a593Smuzhiyun 			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1049*4882a593Smuzhiyun 		}
1050*4882a593Smuzhiyun 		/* load received ecc or assume it was XORed in calc_ecc */
1051*4882a593Smuzhiyun 		if (recv_ecc) {
1052*4882a593Smuzhiyun 			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1053*4882a593Smuzhiyun 			/* XOR received and calculated ecc */
1054*4882a593Smuzhiyun 			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1055*4882a593Smuzhiyun 				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1056*4882a593Smuzhiyun 				sum |= bch->ecc_buf[i];
1057*4882a593Smuzhiyun 			}
1058*4882a593Smuzhiyun 			if (!sum)
1059*4882a593Smuzhiyun 				/* no error found */
1060*4882a593Smuzhiyun 				return 0;
1061*4882a593Smuzhiyun 		}
1062*4882a593Smuzhiyun 		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1063*4882a593Smuzhiyun 		syn = bch->syn;
1064*4882a593Smuzhiyun 	}
1065*4882a593Smuzhiyun 
1066*4882a593Smuzhiyun 	err = compute_error_locator_polynomial(bch, syn);
1067*4882a593Smuzhiyun 	if (err > 0) {
1068*4882a593Smuzhiyun 		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1069*4882a593Smuzhiyun 		if (err != nroots)
1070*4882a593Smuzhiyun 			err = -1;
1071*4882a593Smuzhiyun 	}
1072*4882a593Smuzhiyun 	if (err > 0) {
1073*4882a593Smuzhiyun 		/* post-process raw error locations for easier correction */
1074*4882a593Smuzhiyun 		nbits = (len*8)+bch->ecc_bits;
1075*4882a593Smuzhiyun 		for (i = 0; i < err; i++) {
1076*4882a593Smuzhiyun 			if (errloc[i] >= nbits) {
1077*4882a593Smuzhiyun 				err = -1;
1078*4882a593Smuzhiyun 				break;
1079*4882a593Smuzhiyun 			}
1080*4882a593Smuzhiyun 			errloc[i] = nbits-1-errloc[i];
1081*4882a593Smuzhiyun 			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1082*4882a593Smuzhiyun 		}
1083*4882a593Smuzhiyun 	}
1084*4882a593Smuzhiyun 	return (err >= 0) ? err : -EBADMSG;
1085*4882a593Smuzhiyun }
1086*4882a593Smuzhiyun 
1087*4882a593Smuzhiyun /*
1088*4882a593Smuzhiyun  * generate Galois field lookup tables
1089*4882a593Smuzhiyun  */
build_gf_tables(struct bch_control * bch,unsigned int poly)1090*4882a593Smuzhiyun static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1091*4882a593Smuzhiyun {
1092*4882a593Smuzhiyun 	unsigned int i, x = 1;
1093*4882a593Smuzhiyun 	const unsigned int k = 1 << deg(poly);
1094*4882a593Smuzhiyun 
1095*4882a593Smuzhiyun 	/* primitive polynomial must be of degree m */
1096*4882a593Smuzhiyun 	if (k != (1u << GF_M(bch)))
1097*4882a593Smuzhiyun 		return -1;
1098*4882a593Smuzhiyun 
1099*4882a593Smuzhiyun 	for (i = 0; i < GF_N(bch); i++) {
1100*4882a593Smuzhiyun 		bch->a_pow_tab[i] = x;
1101*4882a593Smuzhiyun 		bch->a_log_tab[x] = i;
1102*4882a593Smuzhiyun 		if (i && (x == 1))
1103*4882a593Smuzhiyun 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1104*4882a593Smuzhiyun 			return -1;
1105*4882a593Smuzhiyun 		x <<= 1;
1106*4882a593Smuzhiyun 		if (x & k)
1107*4882a593Smuzhiyun 			x ^= poly;
1108*4882a593Smuzhiyun 	}
1109*4882a593Smuzhiyun 	bch->a_pow_tab[GF_N(bch)] = 1;
1110*4882a593Smuzhiyun 	bch->a_log_tab[0] = 0;
1111*4882a593Smuzhiyun 
1112*4882a593Smuzhiyun 	return 0;
1113*4882a593Smuzhiyun }
1114*4882a593Smuzhiyun 
1115*4882a593Smuzhiyun /*
1116*4882a593Smuzhiyun  * compute generator polynomial remainder tables for fast encoding
1117*4882a593Smuzhiyun  */
build_mod8_tables(struct bch_control * bch,const uint32_t * g)1118*4882a593Smuzhiyun static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1119*4882a593Smuzhiyun {
1120*4882a593Smuzhiyun 	int i, j, b, d;
1121*4882a593Smuzhiyun 	uint32_t data, hi, lo, *tab;
1122*4882a593Smuzhiyun 	const int l = BCH_ECC_WORDS(bch);
1123*4882a593Smuzhiyun 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1124*4882a593Smuzhiyun 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1125*4882a593Smuzhiyun 
1126*4882a593Smuzhiyun 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1127*4882a593Smuzhiyun 
1128*4882a593Smuzhiyun 	for (i = 0; i < 256; i++) {
1129*4882a593Smuzhiyun 		/* p(X)=i is a small polynomial of weight <= 8 */
1130*4882a593Smuzhiyun 		for (b = 0; b < 4; b++) {
1131*4882a593Smuzhiyun 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1132*4882a593Smuzhiyun 			tab = bch->mod8_tab + (b*256+i)*l;
1133*4882a593Smuzhiyun 			data = i << (8*b);
1134*4882a593Smuzhiyun 			while (data) {
1135*4882a593Smuzhiyun 				d = deg(data);
1136*4882a593Smuzhiyun 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1137*4882a593Smuzhiyun 				data ^= g[0] >> (31-d);
1138*4882a593Smuzhiyun 				for (j = 0; j < ecclen; j++) {
1139*4882a593Smuzhiyun 					hi = (d < 31) ? g[j] << (d+1) : 0;
1140*4882a593Smuzhiyun 					lo = (j+1 < plen) ?
1141*4882a593Smuzhiyun 						g[j+1] >> (31-d) : 0;
1142*4882a593Smuzhiyun 					tab[j] ^= hi|lo;
1143*4882a593Smuzhiyun 				}
1144*4882a593Smuzhiyun 			}
1145*4882a593Smuzhiyun 		}
1146*4882a593Smuzhiyun 	}
1147*4882a593Smuzhiyun }
1148*4882a593Smuzhiyun 
1149*4882a593Smuzhiyun /*
1150*4882a593Smuzhiyun  * build a base for factoring degree 2 polynomials
1151*4882a593Smuzhiyun  */
build_deg2_base(struct bch_control * bch)1152*4882a593Smuzhiyun static int build_deg2_base(struct bch_control *bch)
1153*4882a593Smuzhiyun {
1154*4882a593Smuzhiyun 	const int m = GF_M(bch);
1155*4882a593Smuzhiyun 	int i, j, r;
1156*4882a593Smuzhiyun 	unsigned int sum, x, y, remaining, ak = 0, xi[m];
1157*4882a593Smuzhiyun 
1158*4882a593Smuzhiyun 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1159*4882a593Smuzhiyun 	for (i = 0; i < m; i++) {
1160*4882a593Smuzhiyun 		for (j = 0, sum = 0; j < m; j++)
1161*4882a593Smuzhiyun 			sum ^= a_pow(bch, i*(1 << j));
1162*4882a593Smuzhiyun 
1163*4882a593Smuzhiyun 		if (sum) {
1164*4882a593Smuzhiyun 			ak = bch->a_pow_tab[i];
1165*4882a593Smuzhiyun 			break;
1166*4882a593Smuzhiyun 		}
1167*4882a593Smuzhiyun 	}
1168*4882a593Smuzhiyun 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1169*4882a593Smuzhiyun 	remaining = m;
1170*4882a593Smuzhiyun 	memset(xi, 0, sizeof(xi));
1171*4882a593Smuzhiyun 
1172*4882a593Smuzhiyun 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1173*4882a593Smuzhiyun 		y = gf_sqr(bch, x)^x;
1174*4882a593Smuzhiyun 		for (i = 0; i < 2; i++) {
1175*4882a593Smuzhiyun 			r = a_log(bch, y);
1176*4882a593Smuzhiyun 			if (y && (r < m) && !xi[r]) {
1177*4882a593Smuzhiyun 				bch->xi_tab[r] = x;
1178*4882a593Smuzhiyun 				xi[r] = 1;
1179*4882a593Smuzhiyun 				remaining--;
1180*4882a593Smuzhiyun 				dbg("x%d = %x\n", r, x);
1181*4882a593Smuzhiyun 				break;
1182*4882a593Smuzhiyun 			}
1183*4882a593Smuzhiyun 			y ^= ak;
1184*4882a593Smuzhiyun 		}
1185*4882a593Smuzhiyun 	}
1186*4882a593Smuzhiyun 	/* should not happen but check anyway */
1187*4882a593Smuzhiyun 	return remaining ? -1 : 0;
1188*4882a593Smuzhiyun }
1189*4882a593Smuzhiyun 
bch_alloc(size_t size,int * err)1190*4882a593Smuzhiyun static void *bch_alloc(size_t size, int *err)
1191*4882a593Smuzhiyun {
1192*4882a593Smuzhiyun 	void *ptr;
1193*4882a593Smuzhiyun 
1194*4882a593Smuzhiyun 	ptr = kmalloc(size, GFP_KERNEL);
1195*4882a593Smuzhiyun 	if (ptr == NULL)
1196*4882a593Smuzhiyun 		*err = 1;
1197*4882a593Smuzhiyun 	return ptr;
1198*4882a593Smuzhiyun }
1199*4882a593Smuzhiyun 
1200*4882a593Smuzhiyun /*
1201*4882a593Smuzhiyun  * compute generator polynomial for given (m,t) parameters.
1202*4882a593Smuzhiyun  */
compute_generator_polynomial(struct bch_control * bch)1203*4882a593Smuzhiyun static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1204*4882a593Smuzhiyun {
1205*4882a593Smuzhiyun 	const unsigned int m = GF_M(bch);
1206*4882a593Smuzhiyun 	const unsigned int t = GF_T(bch);
1207*4882a593Smuzhiyun 	int n, err = 0;
1208*4882a593Smuzhiyun 	unsigned int i, j, nbits, r, word, *roots;
1209*4882a593Smuzhiyun 	struct gf_poly *g;
1210*4882a593Smuzhiyun 	uint32_t *genpoly;
1211*4882a593Smuzhiyun 
1212*4882a593Smuzhiyun 	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1213*4882a593Smuzhiyun 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1214*4882a593Smuzhiyun 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1215*4882a593Smuzhiyun 
1216*4882a593Smuzhiyun 	if (err) {
1217*4882a593Smuzhiyun 		kfree(genpoly);
1218*4882a593Smuzhiyun 		genpoly = NULL;
1219*4882a593Smuzhiyun 		goto finish;
1220*4882a593Smuzhiyun 	}
1221*4882a593Smuzhiyun 
1222*4882a593Smuzhiyun 	/* enumerate all roots of g(X) */
1223*4882a593Smuzhiyun 	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1224*4882a593Smuzhiyun 	for (i = 0; i < t; i++) {
1225*4882a593Smuzhiyun 		for (j = 0, r = 2*i+1; j < m; j++) {
1226*4882a593Smuzhiyun 			roots[r] = 1;
1227*4882a593Smuzhiyun 			r = mod_s(bch, 2*r);
1228*4882a593Smuzhiyun 		}
1229*4882a593Smuzhiyun 	}
1230*4882a593Smuzhiyun 	/* build generator polynomial g(X) */
1231*4882a593Smuzhiyun 	g->deg = 0;
1232*4882a593Smuzhiyun 	g->c[0] = 1;
1233*4882a593Smuzhiyun 	for (i = 0; i < GF_N(bch); i++) {
1234*4882a593Smuzhiyun 		if (roots[i]) {
1235*4882a593Smuzhiyun 			/* multiply g(X) by (X+root) */
1236*4882a593Smuzhiyun 			r = bch->a_pow_tab[i];
1237*4882a593Smuzhiyun 			g->c[g->deg+1] = 1;
1238*4882a593Smuzhiyun 			for (j = g->deg; j > 0; j--)
1239*4882a593Smuzhiyun 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1240*4882a593Smuzhiyun 
1241*4882a593Smuzhiyun 			g->c[0] = gf_mul(bch, g->c[0], r);
1242*4882a593Smuzhiyun 			g->deg++;
1243*4882a593Smuzhiyun 		}
1244*4882a593Smuzhiyun 	}
1245*4882a593Smuzhiyun 	/* store left-justified binary representation of g(X) */
1246*4882a593Smuzhiyun 	n = g->deg+1;
1247*4882a593Smuzhiyun 	i = 0;
1248*4882a593Smuzhiyun 
1249*4882a593Smuzhiyun 	while (n > 0) {
1250*4882a593Smuzhiyun 		nbits = (n > 32) ? 32 : n;
1251*4882a593Smuzhiyun 		for (j = 0, word = 0; j < nbits; j++) {
1252*4882a593Smuzhiyun 			if (g->c[n-1-j])
1253*4882a593Smuzhiyun 				word |= 1u << (31-j);
1254*4882a593Smuzhiyun 		}
1255*4882a593Smuzhiyun 		genpoly[i++] = word;
1256*4882a593Smuzhiyun 		n -= nbits;
1257*4882a593Smuzhiyun 	}
1258*4882a593Smuzhiyun 	bch->ecc_bits = g->deg;
1259*4882a593Smuzhiyun 
1260*4882a593Smuzhiyun finish:
1261*4882a593Smuzhiyun 	kfree(g);
1262*4882a593Smuzhiyun 	kfree(roots);
1263*4882a593Smuzhiyun 
1264*4882a593Smuzhiyun 	return genpoly;
1265*4882a593Smuzhiyun }
1266*4882a593Smuzhiyun 
1267*4882a593Smuzhiyun /**
1268*4882a593Smuzhiyun  * init_bch - initialize a BCH encoder/decoder
1269*4882a593Smuzhiyun  * @m:          Galois field order, should be in the range 5-15
1270*4882a593Smuzhiyun  * @t:          maximum error correction capability, in bits
1271*4882a593Smuzhiyun  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1272*4882a593Smuzhiyun  *
1273*4882a593Smuzhiyun  * Returns:
1274*4882a593Smuzhiyun  *  a newly allocated BCH control structure if successful, NULL otherwise
1275*4882a593Smuzhiyun  *
1276*4882a593Smuzhiyun  * This initialization can take some time, as lookup tables are built for fast
1277*4882a593Smuzhiyun  * encoding/decoding; make sure not to call this function from a time critical
1278*4882a593Smuzhiyun  * path. Usually, init_bch() should be called on module/driver init and
1279*4882a593Smuzhiyun  * free_bch() should be called to release memory on exit.
1280*4882a593Smuzhiyun  *
1281*4882a593Smuzhiyun  * You may provide your own primitive polynomial of degree @m in argument
1282*4882a593Smuzhiyun  * @prim_poly, or let init_bch() use its default polynomial.
1283*4882a593Smuzhiyun  *
1284*4882a593Smuzhiyun  * Once init_bch() has successfully returned a pointer to a newly allocated
1285*4882a593Smuzhiyun  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1286*4882a593Smuzhiyun  * the structure.
1287*4882a593Smuzhiyun  */
init_bch(int m,int t,unsigned int prim_poly)1288*4882a593Smuzhiyun struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1289*4882a593Smuzhiyun {
1290*4882a593Smuzhiyun 	int err = 0;
1291*4882a593Smuzhiyun 	unsigned int i, words;
1292*4882a593Smuzhiyun 	uint32_t *genpoly;
1293*4882a593Smuzhiyun 	struct bch_control *bch = NULL;
1294*4882a593Smuzhiyun 
1295*4882a593Smuzhiyun 	const int min_m = 5;
1296*4882a593Smuzhiyun 	const int max_m = 15;
1297*4882a593Smuzhiyun 
1298*4882a593Smuzhiyun 	/* default primitive polynomials */
1299*4882a593Smuzhiyun 	static const unsigned int prim_poly_tab[] = {
1300*4882a593Smuzhiyun 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1301*4882a593Smuzhiyun 		0x402b, 0x8003,
1302*4882a593Smuzhiyun 	};
1303*4882a593Smuzhiyun 
1304*4882a593Smuzhiyun #if defined(CONFIG_BCH_CONST_PARAMS)
1305*4882a593Smuzhiyun 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1306*4882a593Smuzhiyun 		printk(KERN_ERR "bch encoder/decoder was configured to support "
1307*4882a593Smuzhiyun 		       "parameters m=%d, t=%d only!\n",
1308*4882a593Smuzhiyun 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1309*4882a593Smuzhiyun 		goto fail;
1310*4882a593Smuzhiyun 	}
1311*4882a593Smuzhiyun #endif
1312*4882a593Smuzhiyun 	if ((m < min_m) || (m > max_m))
1313*4882a593Smuzhiyun 		/*
1314*4882a593Smuzhiyun 		 * values of m greater than 15 are not currently supported;
1315*4882a593Smuzhiyun 		 * supporting m > 15 would require changing table base type
1316*4882a593Smuzhiyun 		 * (uint16_t) and a small patch in matrix transposition
1317*4882a593Smuzhiyun 		 */
1318*4882a593Smuzhiyun 		goto fail;
1319*4882a593Smuzhiyun 
1320*4882a593Smuzhiyun 	/* sanity checks */
1321*4882a593Smuzhiyun 	if ((t < 1) || (m*t >= ((1 << m)-1)))
1322*4882a593Smuzhiyun 		/* invalid t value */
1323*4882a593Smuzhiyun 		goto fail;
1324*4882a593Smuzhiyun 
1325*4882a593Smuzhiyun 	/* select a primitive polynomial for generating GF(2^m) */
1326*4882a593Smuzhiyun 	if (prim_poly == 0)
1327*4882a593Smuzhiyun 		prim_poly = prim_poly_tab[m-min_m];
1328*4882a593Smuzhiyun 
1329*4882a593Smuzhiyun 	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1330*4882a593Smuzhiyun 	if (bch == NULL)
1331*4882a593Smuzhiyun 		goto fail;
1332*4882a593Smuzhiyun 
1333*4882a593Smuzhiyun 	bch->m = m;
1334*4882a593Smuzhiyun 	bch->t = t;
1335*4882a593Smuzhiyun 	bch->n = (1 << m)-1;
1336*4882a593Smuzhiyun 	words  = DIV_ROUND_UP(m*t, 32);
1337*4882a593Smuzhiyun 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1338*4882a593Smuzhiyun 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1339*4882a593Smuzhiyun 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1340*4882a593Smuzhiyun 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1341*4882a593Smuzhiyun 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1342*4882a593Smuzhiyun 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1343*4882a593Smuzhiyun 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1344*4882a593Smuzhiyun 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1345*4882a593Smuzhiyun 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1346*4882a593Smuzhiyun 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1347*4882a593Smuzhiyun 
1348*4882a593Smuzhiyun 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1349*4882a593Smuzhiyun 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1350*4882a593Smuzhiyun 
1351*4882a593Smuzhiyun 	if (err)
1352*4882a593Smuzhiyun 		goto fail;
1353*4882a593Smuzhiyun 
1354*4882a593Smuzhiyun 	err = build_gf_tables(bch, prim_poly);
1355*4882a593Smuzhiyun 	if (err)
1356*4882a593Smuzhiyun 		goto fail;
1357*4882a593Smuzhiyun 
1358*4882a593Smuzhiyun 	/* use generator polynomial for computing encoding tables */
1359*4882a593Smuzhiyun 	genpoly = compute_generator_polynomial(bch);
1360*4882a593Smuzhiyun 	if (genpoly == NULL)
1361*4882a593Smuzhiyun 		goto fail;
1362*4882a593Smuzhiyun 
1363*4882a593Smuzhiyun 	build_mod8_tables(bch, genpoly);
1364*4882a593Smuzhiyun 	kfree(genpoly);
1365*4882a593Smuzhiyun 
1366*4882a593Smuzhiyun 	err = build_deg2_base(bch);
1367*4882a593Smuzhiyun 	if (err)
1368*4882a593Smuzhiyun 		goto fail;
1369*4882a593Smuzhiyun 
1370*4882a593Smuzhiyun 	return bch;
1371*4882a593Smuzhiyun 
1372*4882a593Smuzhiyun fail:
1373*4882a593Smuzhiyun 	free_bch(bch);
1374*4882a593Smuzhiyun 	return NULL;
1375*4882a593Smuzhiyun }
1376*4882a593Smuzhiyun 
1377*4882a593Smuzhiyun /**
1378*4882a593Smuzhiyun  *  free_bch - free the BCH control structure
1379*4882a593Smuzhiyun  *  @bch:    BCH control structure to release
1380*4882a593Smuzhiyun  */
free_bch(struct bch_control * bch)1381*4882a593Smuzhiyun void free_bch(struct bch_control *bch)
1382*4882a593Smuzhiyun {
1383*4882a593Smuzhiyun 	unsigned int i;
1384*4882a593Smuzhiyun 
1385*4882a593Smuzhiyun 	if (bch) {
1386*4882a593Smuzhiyun 		kfree(bch->a_pow_tab);
1387*4882a593Smuzhiyun 		kfree(bch->a_log_tab);
1388*4882a593Smuzhiyun 		kfree(bch->mod8_tab);
1389*4882a593Smuzhiyun 		kfree(bch->ecc_buf);
1390*4882a593Smuzhiyun 		kfree(bch->ecc_buf2);
1391*4882a593Smuzhiyun 		kfree(bch->xi_tab);
1392*4882a593Smuzhiyun 		kfree(bch->syn);
1393*4882a593Smuzhiyun 		kfree(bch->cache);
1394*4882a593Smuzhiyun 		kfree(bch->elp);
1395*4882a593Smuzhiyun 
1396*4882a593Smuzhiyun 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1397*4882a593Smuzhiyun 			kfree(bch->poly_2t[i]);
1398*4882a593Smuzhiyun 
1399*4882a593Smuzhiyun 		kfree(bch);
1400*4882a593Smuzhiyun 	}
1401*4882a593Smuzhiyun }
1402