1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright 2017 - Free Electrons
4 *
5 * Authors:
6 * Boris Brezillon <boris.brezillon@free-electrons.com>
7 * Peter Pan <peterpandong@micron.com>
8 */
9
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12
13 #include <linux/mtd/mtd.h>
14
15 /**
16 * struct nand_memory_organization - Memory organization structure
17 * @bits_per_cell: number of bits per NAND cell
18 * @pagesize: page size
19 * @oobsize: OOB area size
20 * @pages_per_eraseblock: number of pages per eraseblock
21 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
22 * @planes_per_lun: number of planes per LUN
23 * @luns_per_target: number of LUN per target (target is a synonym for die)
24 * @ntargets: total number of targets exposed by the NAND device
25 */
26 struct nand_memory_organization {
27 unsigned int bits_per_cell;
28 unsigned int pagesize;
29 unsigned int oobsize;
30 unsigned int pages_per_eraseblock;
31 unsigned int eraseblocks_per_lun;
32 unsigned int planes_per_lun;
33 unsigned int luns_per_target;
34 unsigned int ntargets;
35 };
36
37 #define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \
38 { \
39 .bits_per_cell = (bpc), \
40 .pagesize = (ps), \
41 .oobsize = (os), \
42 .pages_per_eraseblock = (ppe), \
43 .eraseblocks_per_lun = (epl), \
44 .planes_per_lun = (ppl), \
45 .luns_per_target = (lpt), \
46 .ntargets = (nt), \
47 }
48
49 /**
50 * struct nand_row_converter - Information needed to convert an absolute offset
51 * into a row address
52 * @lun_addr_shift: position of the LUN identifier in the row address
53 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
54 * address
55 */
56 struct nand_row_converter {
57 unsigned int lun_addr_shift;
58 unsigned int eraseblock_addr_shift;
59 };
60
61 /**
62 * struct nand_pos - NAND position object
63 * @target: the NAND target/die
64 * @lun: the LUN identifier
65 * @plane: the plane within the LUN
66 * @eraseblock: the eraseblock within the LUN
67 * @page: the page within the LUN
68 *
69 * These information are usually used by specific sub-layers to select the
70 * appropriate target/die and generate a row address to pass to the device.
71 */
72 struct nand_pos {
73 unsigned int target;
74 unsigned int lun;
75 unsigned int plane;
76 unsigned int eraseblock;
77 unsigned int page;
78 };
79
80 /**
81 * struct nand_page_io_req - NAND I/O request object
82 * @pos: the position this I/O request is targeting
83 * @dataoffs: the offset within the page
84 * @datalen: number of data bytes to read from/write to this page
85 * @databuf: buffer to store data in or get data from
86 * @ooboffs: the OOB offset within the page
87 * @ooblen: the number of OOB bytes to read from/write to this page
88 * @oobbuf: buffer to store OOB data in or get OOB data from
89 * @mode: one of the %MTD_OPS_XXX mode
90 *
91 * This object is used to pass per-page I/O requests to NAND sub-layers. This
92 * way all useful information are already formatted in a useful way and
93 * specific NAND layers can focus on translating these information into
94 * specific commands/operations.
95 */
96 struct nand_page_io_req {
97 struct nand_pos pos;
98 unsigned int dataoffs;
99 unsigned int datalen;
100 union {
101 const void *out;
102 void *in;
103 } databuf;
104 unsigned int ooboffs;
105 unsigned int ooblen;
106 union {
107 const void *out;
108 void *in;
109 } oobbuf;
110 int mode;
111 };
112
113 /**
114 * struct nand_ecc_req - NAND ECC requirements
115 * @strength: ECC strength
116 * @step_size: ECC step/block size
117 */
118 struct nand_ecc_req {
119 unsigned int strength;
120 unsigned int step_size;
121 };
122
123 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
124
125 /* nand_bbt option */
126 #define NANDDEV_BBT_USE_FLASH BIT(0)
127 #define NANDDEV_BBT_SCANNED BIT(1)
128
129 /* The maximum number of blocks to scan for a bbt */
130 #define NANDDEV_BBT_SCAN_MAXBLOCKS 4
131
132 /**
133 * struct nand_bbt - bad block table object
134 * @cache: in memory BBT cache
135 * @option: the option of BBT
136 * @version: current memory BBT cache version
137 */
138 struct nand_bbt {
139 unsigned long *cache;
140 unsigned int option;
141 unsigned int version;
142 };
143
144 struct nand_device;
145
146 /**
147 * struct nand_ops - NAND operations
148 * @erase: erase a specific block. No need to check if the block is bad before
149 * erasing, this has been taken care of by the generic NAND layer
150 * @markbad: mark a specific block bad. No need to check if the block is
151 * already marked bad, this has been taken care of by the generic
152 * NAND layer. This method should just write the BBM (Bad Block
153 * Marker) so that future call to struct_nand_ops->isbad() return
154 * true
155 * @isbad: check whether a block is bad or not. This method should just read
156 * the BBM and return whether the block is bad or not based on what it
157 * reads
158 *
159 * These are all low level operations that should be implemented by specialized
160 * NAND layers (SPI NAND, raw NAND, ...).
161 */
162 struct nand_ops {
163 int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
164 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
165 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
166 };
167
168 /**
169 * struct nand_device - NAND device
170 * @mtd: MTD instance attached to the NAND device
171 * @memorg: memory layout
172 * @eccreq: ECC requirements
173 * @rowconv: position to row address converter
174 * @bbt: bad block table info
175 * @ops: NAND operations attached to the NAND device
176 *
177 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
178 * should declare their own NAND object embedding a nand_device struct (that's
179 * how inheritance is done).
180 * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
181 * at device detection time to reflect the NAND device
182 * capabilities/requirements. Once this is done nanddev_init() can be called.
183 * It will take care of converting NAND information into MTD ones, which means
184 * the specialized NAND layers should never manually tweak
185 * struct_nand_device->mtd except for the ->_read/write() hooks.
186 */
187 struct nand_device {
188 struct mtd_info *mtd;
189 struct nand_memory_organization memorg;
190 struct nand_ecc_req eccreq;
191 struct nand_row_converter rowconv;
192 struct nand_bbt bbt;
193 const struct nand_ops *ops;
194 };
195
196 /**
197 * struct nand_io_iter - NAND I/O iterator
198 * @req: current I/O request
199 * @oobbytes_per_page: maximum number of OOB bytes per page
200 * @dataleft: remaining number of data bytes to read/write
201 * @oobleft: remaining number of OOB bytes to read/write
202 *
203 * Can be used by specialized NAND layers to iterate over all pages covered
204 * by an MTD I/O request, which should greatly simplifies the boiler-plate
205 * code needed to read/write data from/to a NAND device.
206 */
207 struct nand_io_iter {
208 struct nand_page_io_req req;
209 unsigned int oobbytes_per_page;
210 unsigned int dataleft;
211 unsigned int oobleft;
212 };
213
214 /**
215 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
216 * @mtd: MTD instance
217 *
218 * Return: the NAND device embedding @mtd.
219 */
mtd_to_nanddev(struct mtd_info * mtd)220 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
221 {
222 return mtd->priv;
223 }
224
225 /**
226 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
227 * @nand: NAND device
228 *
229 * Return: the MTD device embedded in @nand.
230 */
nanddev_to_mtd(struct nand_device * nand)231 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
232 {
233 return nand->mtd;
234 }
235
236 /*
237 * nanddev_bits_per_cell() - Get the number of bits per cell
238 * @nand: NAND device
239 *
240 * Return: the number of bits per cell.
241 */
nanddev_bits_per_cell(const struct nand_device * nand)242 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
243 {
244 return nand->memorg.bits_per_cell;
245 }
246
247 /**
248 * nanddev_page_size() - Get NAND page size
249 * @nand: NAND device
250 *
251 * Return: the page size.
252 */
nanddev_page_size(const struct nand_device * nand)253 static inline size_t nanddev_page_size(const struct nand_device *nand)
254 {
255 return nand->memorg.pagesize;
256 }
257
258 /**
259 * nanddev_per_page_oobsize() - Get NAND OOB size
260 * @nand: NAND device
261 *
262 * Return: the OOB size.
263 */
264 static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device * nand)265 nanddev_per_page_oobsize(const struct nand_device *nand)
266 {
267 return nand->memorg.oobsize;
268 }
269
270 /**
271 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
272 * @nand: NAND device
273 *
274 * Return: the number of pages per eraseblock.
275 */
276 static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device * nand)277 nanddev_pages_per_eraseblock(const struct nand_device *nand)
278 {
279 return nand->memorg.pages_per_eraseblock;
280 }
281
282 /**
283 * nanddev_per_page_oobsize() - Get NAND erase block size
284 * @nand: NAND device
285 *
286 * Return: the eraseblock size.
287 */
nanddev_eraseblock_size(const struct nand_device * nand)288 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
289 {
290 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
291 }
292
293 /**
294 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
295 * @nand: NAND device
296 *
297 * Return: the number of eraseblocks per LUN.
298 */
299 static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device * nand)300 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
301 {
302 return nand->memorg.eraseblocks_per_lun;
303 }
304
305 /**
306 * nanddev_target_size() - Get the total size provided by a single target/die
307 * @nand: NAND device
308 *
309 * Return: the total size exposed by a single target/die in bytes.
310 */
nanddev_target_size(const struct nand_device * nand)311 static inline u64 nanddev_target_size(const struct nand_device *nand)
312 {
313 return (u64)nand->memorg.luns_per_target *
314 nand->memorg.eraseblocks_per_lun *
315 nand->memorg.pages_per_eraseblock *
316 nand->memorg.pagesize;
317 }
318
319 /**
320 * nanddev_ntarget() - Get the total of targets
321 * @nand: NAND device
322 *
323 * Return: the number of targets/dies exposed by @nand.
324 */
nanddev_ntargets(const struct nand_device * nand)325 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
326 {
327 return nand->memorg.ntargets;
328 }
329
330 /**
331 * nanddev_neraseblocks() - Get the total number of erasablocks
332 * @nand: NAND device
333 *
334 * Return: the total number of eraseblocks exposed by @nand.
335 */
nanddev_neraseblocks(const struct nand_device * nand)336 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
337 {
338 return nand->memorg.ntargets * nand->memorg.luns_per_target *
339 nand->memorg.eraseblocks_per_lun;
340 }
341
342 /**
343 * nanddev_size() - Get NAND size
344 * @nand: NAND device
345 *
346 * Return: the total size (in bytes) exposed by @nand.
347 */
nanddev_size(const struct nand_device * nand)348 static inline u64 nanddev_size(const struct nand_device *nand)
349 {
350 return nanddev_target_size(nand) * nanddev_ntargets(nand);
351 }
352
353 /**
354 * nanddev_get_memorg() - Extract memory organization info from a NAND device
355 * @nand: NAND device
356 *
357 * This can be used by the upper layer to fill the memorg info before calling
358 * nanddev_init().
359 *
360 * Return: the memorg object embedded in the NAND device.
361 */
362 static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device * nand)363 nanddev_get_memorg(struct nand_device *nand)
364 {
365 return &nand->memorg;
366 }
367
368 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
369 struct module *owner);
370 void nanddev_cleanup(struct nand_device *nand);
371
372 /**
373 * nanddev_register() - Register a NAND device
374 * @nand: NAND device
375 *
376 * Register a NAND device.
377 * This function is just a wrapper around mtd_device_register()
378 * registering the MTD device embedded in @nand.
379 *
380 * Return: 0 in case of success, a negative error code otherwise.
381 */
nanddev_register(struct nand_device * nand)382 static inline int nanddev_register(struct nand_device *nand)
383 {
384 return mtd_device_register(nand->mtd, NULL, 0);
385 }
386
387 /**
388 * nanddev_unregister() - Unregister a NAND device
389 * @nand: NAND device
390 *
391 * Unregister a NAND device.
392 * This function is just a wrapper around mtd_device_unregister()
393 * unregistering the MTD device embedded in @nand.
394 *
395 * Return: 0 in case of success, a negative error code otherwise.
396 */
nanddev_unregister(struct nand_device * nand)397 static inline int nanddev_unregister(struct nand_device *nand)
398 {
399 return mtd_device_unregister(nand->mtd);
400 }
401
402 /**
403 * nanddev_set_of_node() - Attach a DT node to a NAND device
404 * @nand: NAND device
405 * @np: DT node
406 *
407 * Attach a DT node to a NAND device.
408 */
nanddev_set_of_node(struct nand_device * nand,const struct device_node * np)409 static inline void nanddev_set_of_node(struct nand_device *nand,
410 const struct device_node *np)
411 {
412 mtd_set_of_node(nand->mtd, np);
413 }
414
415 /**
416 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
417 * @nand: NAND device
418 *
419 * Return: the DT node attached to @nand.
420 */
nanddev_get_of_node(struct nand_device * nand)421 static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
422 {
423 return mtd_get_of_node(nand->mtd);
424 }
425
426 /**
427 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
428 * @nand: NAND device
429 * @offs: absolute NAND offset (usually passed by the MTD layer)
430 * @pos: a NAND position object to fill in
431 *
432 * Converts @offs into a nand_pos representation.
433 *
434 * Return: the offset within the NAND page pointed by @pos.
435 */
nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)436 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
437 loff_t offs,
438 struct nand_pos *pos)
439 {
440 unsigned int pageoffs;
441 u64 tmp = offs;
442
443 pageoffs = do_div(tmp, nand->memorg.pagesize);
444 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
445 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
446 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
447 pos->lun = do_div(tmp, nand->memorg.luns_per_target);
448 pos->target = tmp;
449
450 return pageoffs;
451 }
452
453 /**
454 * nanddev_pos_cmp() - Compare two NAND positions
455 * @a: First NAND position
456 * @b: Second NAND position
457 *
458 * Compares two NAND positions.
459 *
460 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
461 */
nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)462 static inline int nanddev_pos_cmp(const struct nand_pos *a,
463 const struct nand_pos *b)
464 {
465 if (a->target != b->target)
466 return a->target < b->target ? -1 : 1;
467
468 if (a->lun != b->lun)
469 return a->lun < b->lun ? -1 : 1;
470
471 if (a->eraseblock != b->eraseblock)
472 return a->eraseblock < b->eraseblock ? -1 : 1;
473
474 if (a->page != b->page)
475 return a->page < b->page ? -1 : 1;
476
477 return 0;
478 }
479
480 /**
481 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
482 * @nand: NAND device
483 * @pos: the NAND position to convert
484 *
485 * Converts @pos NAND position into an absolute offset.
486 *
487 * Return: the absolute offset. Note that @pos points to the beginning of a
488 * page, if one wants to point to a specific offset within this page
489 * the returned offset has to be adjusted manually.
490 */
nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)491 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
492 const struct nand_pos *pos)
493 {
494 unsigned int npages;
495
496 npages = pos->page +
497 ((pos->eraseblock +
498 (pos->lun +
499 (pos->target * nand->memorg.luns_per_target)) *
500 nand->memorg.eraseblocks_per_lun) *
501 nand->memorg.pages_per_eraseblock);
502
503 return (loff_t)npages * nand->memorg.pagesize;
504 }
505
506 /**
507 * nanddev_pos_to_row() - Extract a row address from a NAND position
508 * @nand: NAND device
509 * @pos: the position to convert
510 *
511 * Converts a NAND position into a row address that can then be passed to the
512 * device.
513 *
514 * Return: the row address extracted from @pos.
515 */
nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)516 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
517 const struct nand_pos *pos)
518 {
519 return (pos->lun << nand->rowconv.lun_addr_shift) |
520 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
521 pos->page;
522 }
523
524 /**
525 * nanddev_pos_next_target() - Move a position to the next target/die
526 * @nand: NAND device
527 * @pos: the position to update
528 *
529 * Updates @pos to point to the start of the next target/die. Useful when you
530 * want to iterate over all targets/dies of a NAND device.
531 */
nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)532 static inline void nanddev_pos_next_target(struct nand_device *nand,
533 struct nand_pos *pos)
534 {
535 pos->page = 0;
536 pos->plane = 0;
537 pos->eraseblock = 0;
538 pos->lun = 0;
539 pos->target++;
540 }
541
542 /**
543 * nanddev_pos_next_lun() - Move a position to the next LUN
544 * @nand: NAND device
545 * @pos: the position to update
546 *
547 * Updates @pos to point to the start of the next LUN. Useful when you want to
548 * iterate over all LUNs of a NAND device.
549 */
nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)550 static inline void nanddev_pos_next_lun(struct nand_device *nand,
551 struct nand_pos *pos)
552 {
553 if (pos->lun >= nand->memorg.luns_per_target - 1)
554 return nanddev_pos_next_target(nand, pos);
555
556 pos->lun++;
557 pos->page = 0;
558 pos->plane = 0;
559 pos->eraseblock = 0;
560 }
561
562 /**
563 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
564 * @nand: NAND device
565 * @pos: the position to update
566 *
567 * Updates @pos to point to the start of the next eraseblock. Useful when you
568 * want to iterate over all eraseblocks of a NAND device.
569 */
nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)570 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
571 struct nand_pos *pos)
572 {
573 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
574 return nanddev_pos_next_lun(nand, pos);
575
576 pos->eraseblock++;
577 pos->page = 0;
578 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
579 }
580
581 /**
582 * nanddev_pos_next_eraseblock() - Move a position to the next page
583 * @nand: NAND device
584 * @pos: the position to update
585 *
586 * Updates @pos to point to the start of the next page. Useful when you want to
587 * iterate over all pages of a NAND device.
588 */
nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)589 static inline void nanddev_pos_next_page(struct nand_device *nand,
590 struct nand_pos *pos)
591 {
592 if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
593 return nanddev_pos_next_eraseblock(nand, pos);
594
595 pos->page++;
596 }
597
598 /**
599 * nand_io_iter_init - Initialize a NAND I/O iterator
600 * @nand: NAND device
601 * @offs: absolute offset
602 * @req: MTD request
603 * @iter: NAND I/O iterator
604 *
605 * Initializes a NAND iterator based on the information passed by the MTD
606 * layer.
607 */
nanddev_io_iter_init(struct nand_device * nand,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)608 static inline void nanddev_io_iter_init(struct nand_device *nand,
609 loff_t offs, struct mtd_oob_ops *req,
610 struct nand_io_iter *iter)
611 {
612 struct mtd_info *mtd = nanddev_to_mtd(nand);
613
614 iter->req.mode = req->mode;
615 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
616 iter->req.ooboffs = req->ooboffs;
617 iter->oobbytes_per_page = mtd_oobavail(mtd, req);
618 iter->dataleft = req->len;
619 iter->oobleft = req->ooblen;
620 iter->req.databuf.in = req->datbuf;
621 iter->req.datalen = min_t(unsigned int,
622 nand->memorg.pagesize - iter->req.dataoffs,
623 iter->dataleft);
624 iter->req.oobbuf.in = req->oobbuf;
625 iter->req.ooblen = min_t(unsigned int,
626 iter->oobbytes_per_page - iter->req.ooboffs,
627 iter->oobleft);
628 }
629
630 /**
631 * nand_io_iter_next_page - Move to the next page
632 * @nand: NAND device
633 * @iter: NAND I/O iterator
634 *
635 * Updates the @iter to point to the next page.
636 */
nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)637 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
638 struct nand_io_iter *iter)
639 {
640 nanddev_pos_next_page(nand, &iter->req.pos);
641 iter->dataleft -= iter->req.datalen;
642 iter->req.databuf.in += iter->req.datalen;
643 iter->oobleft -= iter->req.ooblen;
644 iter->req.oobbuf.in += iter->req.ooblen;
645 iter->req.dataoffs = 0;
646 iter->req.ooboffs = 0;
647 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
648 iter->dataleft);
649 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
650 iter->oobleft);
651 }
652
653 /**
654 * nand_io_iter_end - Should end iteration or not
655 * @nand: NAND device
656 * @iter: NAND I/O iterator
657 *
658 * Check whether @iter has reached the end of the NAND portion it was asked to
659 * iterate on or not.
660 *
661 * Return: true if @iter has reached the end of the iteration request, false
662 * otherwise.
663 */
nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)664 static inline bool nanddev_io_iter_end(struct nand_device *nand,
665 const struct nand_io_iter *iter)
666 {
667 if (iter->dataleft || iter->oobleft)
668 return false;
669
670 return true;
671 }
672
673 /**
674 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
675 * request
676 * @nand: NAND device
677 * @start: start address to read/write from
678 * @req: MTD I/O request
679 * @iter: NAND I/O iterator
680 *
681 * Should be used for iterate over pages that are contained in an MTD request.
682 */
683 #define nanddev_io_for_each_page(nand, start, req, iter) \
684 for (nanddev_io_iter_init(nand, start, req, iter); \
685 !nanddev_io_iter_end(nand, iter); \
686 nanddev_io_iter_next_page(nand, iter))
687
688 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
689 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
690 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
691 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
692
693 /* BBT related functions */
694 enum nand_bbt_block_status {
695 NAND_BBT_BLOCK_STATUS_UNKNOWN,
696 NAND_BBT_BLOCK_GOOD,
697 NAND_BBT_BLOCK_WORN,
698 NAND_BBT_BLOCK_RESERVED,
699 NAND_BBT_BLOCK_FACTORY_BAD,
700 NAND_BBT_BLOCK_NUM_STATUS,
701 };
702
703 int nanddev_bbt_init(struct nand_device *nand);
704 void nanddev_bbt_cleanup(struct nand_device *nand);
705 int nanddev_bbt_update(struct nand_device *nand);
706 int nanddev_bbt_get_block_status(const struct nand_device *nand,
707 unsigned int entry);
708 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
709 enum nand_bbt_block_status status);
710 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
711
712 /**
713 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
714 * @nand: NAND device
715 * @pos: the NAND position we want to get BBT entry for
716 *
717 * Return the BBT entry used to store information about the eraseblock pointed
718 * by @pos.
719 *
720 * Return: the BBT entry storing information about eraseblock pointed by @pos.
721 */
nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)722 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
723 const struct nand_pos *pos)
724 {
725 return pos->eraseblock +
726 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
727 nand->memorg.eraseblocks_per_lun);
728 }
729
730 /**
731 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
732 * @nand: NAND device
733 *
734 * Return: true if the BBT has been initialized, false otherwise.
735 */
nanddev_bbt_is_initialized(struct nand_device * nand)736 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
737 {
738 return !!nand->bbt.cache;
739 }
740
741 /* MTD -> NAND helper functions. */
742 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
743
744 #endif /* __LINUX_MTD_NAND_H */
745