xref: /OK3568_Linux_fs/u-boot/include/fsl-mc/fsl_qbman_base.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /*
2*4882a593Smuzhiyun  * Copyright (C) 2014 Freescale Semiconductor
3*4882a593Smuzhiyun  *
4*4882a593Smuzhiyun  * SPDX-License-Identifier:	GPL-2.0+
5*4882a593Smuzhiyun  */
6*4882a593Smuzhiyun 
7*4882a593Smuzhiyun #ifndef _FSL_QBMAN_BASE_H
8*4882a593Smuzhiyun #define _FSL_QBMAN_BASE_H
9*4882a593Smuzhiyun 
10*4882a593Smuzhiyun /* Descriptor for a QBMan instance on the SoC. On partitions/targets that do not
11*4882a593Smuzhiyun  * control this QBMan instance, these values may simply be place-holders. The
12*4882a593Smuzhiyun  * idea is simply that we be able to distinguish between them, eg. so that SWP
13*4882a593Smuzhiyun  * descriptors can identify which QBMan instance they belong to. */
14*4882a593Smuzhiyun struct qbman_block_desc {
15*4882a593Smuzhiyun 	void *ccsr_reg_bar; /* CCSR register map */
16*4882a593Smuzhiyun 	int irq_rerr;  /* Recoverable error interrupt line */
17*4882a593Smuzhiyun 	int irq_nrerr; /* Non-recoverable error interrupt line */
18*4882a593Smuzhiyun };
19*4882a593Smuzhiyun 
20*4882a593Smuzhiyun /* Descriptor for a QBMan software portal, expressed in terms that make sense to
21*4882a593Smuzhiyun  * the user context. Ie. on MC, this information is likely to be true-physical,
22*4882a593Smuzhiyun  * and instantiated statically at compile-time. On GPP, this information is
23*4882a593Smuzhiyun  * likely to be obtained via "discovery" over a partition's "layerscape bus"
24*4882a593Smuzhiyun  * (ie. in response to a MC portal command), and would take into account any
25*4882a593Smuzhiyun  * virtualisation of the GPP user's address space and/or interrupt numbering. */
26*4882a593Smuzhiyun struct qbman_swp_desc {
27*4882a593Smuzhiyun 	const struct qbman_block_desc *block; /* The QBMan instance */
28*4882a593Smuzhiyun 	void *cena_bar; /* Cache-enabled portal register map */
29*4882a593Smuzhiyun 	void *cinh_bar; /* Cache-inhibited portal register map */
30*4882a593Smuzhiyun };
31*4882a593Smuzhiyun 
32*4882a593Smuzhiyun /* Driver object for managing a QBMan portal */
33*4882a593Smuzhiyun struct qbman_swp;
34*4882a593Smuzhiyun 
35*4882a593Smuzhiyun /* Place-holder for FDs, we represent it via the simplest form that we need for
36*4882a593Smuzhiyun  * now. Different overlays may be needed to support different options, etc. (It
37*4882a593Smuzhiyun  * is impractical to define One True Struct, because the resulting encoding
38*4882a593Smuzhiyun  * routines (lots of read-modify-writes) would be worst-case performance whether
39*4882a593Smuzhiyun  * or not circumstances required them.)
40*4882a593Smuzhiyun  *
41*4882a593Smuzhiyun  * Note, as with all data-structures exchanged between software and hardware (be
42*4882a593Smuzhiyun  * they located in the portal register map or DMA'd to and from main-memory),
43*4882a593Smuzhiyun  * the driver ensures that the caller of the driver API sees the data-structures
44*4882a593Smuzhiyun  * in host-endianness. "struct qbman_fd" is no exception. The 32-bit words
45*4882a593Smuzhiyun  * contained within this structure are represented in host-endianness, even if
46*4882a593Smuzhiyun  * hardware always treats them as little-endian. As such, if any of these fields
47*4882a593Smuzhiyun  * are interpreted in a binary (rather than numerical) fashion by hardware
48*4882a593Smuzhiyun  * blocks (eg. accelerators), then the user should be careful. We illustrate
49*4882a593Smuzhiyun  * with an example;
50*4882a593Smuzhiyun  *
51*4882a593Smuzhiyun  * Suppose the desired behaviour of an accelerator is controlled by the "frc"
52*4882a593Smuzhiyun  * field of the FDs that are sent to it. Suppose also that the behaviour desired
53*4882a593Smuzhiyun  * by the user corresponds to an "frc" value which is expressed as the literal
54*4882a593Smuzhiyun  * sequence of bytes 0xfe, 0xed, 0xab, and 0xba. So "frc" should be the 32-bit
55*4882a593Smuzhiyun  * value in which 0xfe is the first byte and 0xba is the last byte, and as
56*4882a593Smuzhiyun  * hardware is little-endian, this amounts to a 32-bit "value" of 0xbaabedfe. If
57*4882a593Smuzhiyun  * the software is little-endian also, this can simply be achieved by setting
58*4882a593Smuzhiyun  * frc=0xbaabedfe. On the other hand, if software is big-endian, it should set
59*4882a593Smuzhiyun  * frc=0xfeedabba! The best away of avoiding trouble with this sort of thing is
60*4882a593Smuzhiyun  * to treat the 32-bit words as numerical values, in which the offset of a field
61*4882a593Smuzhiyun  * from the beginning of the first byte (as required or generated by hardware)
62*4882a593Smuzhiyun  * is numerically encoded by a left-shift (ie. by raising the field to a
63*4882a593Smuzhiyun  * corresponding power of 2).  Ie. in the current example, software could set
64*4882a593Smuzhiyun  * "frc" in the following way, and it would work correctly on both little-endian
65*4882a593Smuzhiyun  * and big-endian operation;
66*4882a593Smuzhiyun  *    fd.frc = (0xfe << 0) | (0xed << 8) | (0xab << 16) | (0xba << 24);
67*4882a593Smuzhiyun  */
68*4882a593Smuzhiyun struct qbman_fd {
69*4882a593Smuzhiyun 	union {
70*4882a593Smuzhiyun 		uint32_t words[8];
71*4882a593Smuzhiyun 		struct qbman_fd_simple {
72*4882a593Smuzhiyun 			uint32_t addr_lo;
73*4882a593Smuzhiyun 			uint32_t addr_hi;
74*4882a593Smuzhiyun 			uint32_t len;
75*4882a593Smuzhiyun 			/* offset in the MS 16 bits, BPID in the LS 16 bits */
76*4882a593Smuzhiyun 			uint32_t bpid_offset;
77*4882a593Smuzhiyun 			uint32_t frc; /* frame context */
78*4882a593Smuzhiyun 			/* "err", "va", "cbmt", "asal", [...] */
79*4882a593Smuzhiyun 			uint32_t ctrl;
80*4882a593Smuzhiyun 			/* flow context */
81*4882a593Smuzhiyun 			uint32_t flc_lo;
82*4882a593Smuzhiyun 			uint32_t flc_hi;
83*4882a593Smuzhiyun 		} simple;
84*4882a593Smuzhiyun 	};
85*4882a593Smuzhiyun };
86*4882a593Smuzhiyun 
87*4882a593Smuzhiyun #endif /* !_FSL_QBMAN_BASE_H */
88