xref: /OK3568_Linux_fs/u-boot/fs/ubifs/debug.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements most of the debugging stuff which is compiled in only
14  * when it is enabled. But some debugging check functions are implemented in
15  * corresponding subsystem, just because they are closely related and utilize
16  * various local functions of those subsystems.
17  */
18 
19 #include <hexdump.h>
20 
21 #ifndef __UBOOT__
22 #include <linux/module.h>
23 #include <linux/debugfs.h>
24 #include <linux/math64.h>
25 #include <linux/uaccess.h>
26 #include <linux/random.h>
27 #else
28 #include <linux/compat.h>
29 #include <linux/err.h>
30 #endif
31 #include "ubifs.h"
32 
33 #ifndef __UBOOT__
34 static DEFINE_SPINLOCK(dbg_lock);
35 #endif
36 
get_key_fmt(int fmt)37 static const char *get_key_fmt(int fmt)
38 {
39 	switch (fmt) {
40 	case UBIFS_SIMPLE_KEY_FMT:
41 		return "simple";
42 	default:
43 		return "unknown/invalid format";
44 	}
45 }
46 
get_key_hash(int hash)47 static const char *get_key_hash(int hash)
48 {
49 	switch (hash) {
50 	case UBIFS_KEY_HASH_R5:
51 		return "R5";
52 	case UBIFS_KEY_HASH_TEST:
53 		return "test";
54 	default:
55 		return "unknown/invalid name hash";
56 	}
57 }
58 
get_key_type(int type)59 static const char *get_key_type(int type)
60 {
61 	switch (type) {
62 	case UBIFS_INO_KEY:
63 		return "inode";
64 	case UBIFS_DENT_KEY:
65 		return "direntry";
66 	case UBIFS_XENT_KEY:
67 		return "xentry";
68 	case UBIFS_DATA_KEY:
69 		return "data";
70 	case UBIFS_TRUN_KEY:
71 		return "truncate";
72 	default:
73 		return "unknown/invalid key";
74 	}
75 }
76 
77 #ifndef __UBOOT__
get_dent_type(int type)78 static const char *get_dent_type(int type)
79 {
80 	switch (type) {
81 	case UBIFS_ITYPE_REG:
82 		return "file";
83 	case UBIFS_ITYPE_DIR:
84 		return "dir";
85 	case UBIFS_ITYPE_LNK:
86 		return "symlink";
87 	case UBIFS_ITYPE_BLK:
88 		return "blkdev";
89 	case UBIFS_ITYPE_CHR:
90 		return "char dev";
91 	case UBIFS_ITYPE_FIFO:
92 		return "fifo";
93 	case UBIFS_ITYPE_SOCK:
94 		return "socket";
95 	default:
96 		return "unknown/invalid type";
97 	}
98 }
99 #endif
100 
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102 			     const union ubifs_key *key, char *buffer, int len)
103 {
104 	char *p = buffer;
105 	int type = key_type(c, key);
106 
107 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 		switch (type) {
109 		case UBIFS_INO_KEY:
110 			len -= snprintf(p, len, "(%lu, %s)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type));
113 			break;
114 		case UBIFS_DENT_KEY:
115 		case UBIFS_XENT_KEY:
116 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 					(unsigned long)key_inum(c, key),
118 					get_key_type(type), key_hash(c, key));
119 			break;
120 		case UBIFS_DATA_KEY:
121 			len -= snprintf(p, len, "(%lu, %s, %u)",
122 					(unsigned long)key_inum(c, key),
123 					get_key_type(type), key_block(c, key));
124 			break;
125 		case UBIFS_TRUN_KEY:
126 			len -= snprintf(p, len, "(%lu, %s)",
127 					(unsigned long)key_inum(c, key),
128 					get_key_type(type));
129 			break;
130 		default:
131 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 					key->u32[0], key->u32[1]);
133 		}
134 	} else
135 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 	ubifs_assert(len > 0);
137 	return p;
138 }
139 
dbg_ntype(int type)140 const char *dbg_ntype(int type)
141 {
142 	switch (type) {
143 	case UBIFS_PAD_NODE:
144 		return "padding node";
145 	case UBIFS_SB_NODE:
146 		return "superblock node";
147 	case UBIFS_MST_NODE:
148 		return "master node";
149 	case UBIFS_REF_NODE:
150 		return "reference node";
151 	case UBIFS_INO_NODE:
152 		return "inode node";
153 	case UBIFS_DENT_NODE:
154 		return "direntry node";
155 	case UBIFS_XENT_NODE:
156 		return "xentry node";
157 	case UBIFS_DATA_NODE:
158 		return "data node";
159 	case UBIFS_TRUN_NODE:
160 		return "truncate node";
161 	case UBIFS_IDX_NODE:
162 		return "indexing node";
163 	case UBIFS_CS_NODE:
164 		return "commit start node";
165 	case UBIFS_ORPH_NODE:
166 		return "orphan node";
167 	default:
168 		return "unknown node";
169 	}
170 }
171 
dbg_gtype(int type)172 static const char *dbg_gtype(int type)
173 {
174 	switch (type) {
175 	case UBIFS_NO_NODE_GROUP:
176 		return "no node group";
177 	case UBIFS_IN_NODE_GROUP:
178 		return "in node group";
179 	case UBIFS_LAST_OF_NODE_GROUP:
180 		return "last of node group";
181 	default:
182 		return "unknown";
183 	}
184 }
185 
dbg_cstate(int cmt_state)186 const char *dbg_cstate(int cmt_state)
187 {
188 	switch (cmt_state) {
189 	case COMMIT_RESTING:
190 		return "commit resting";
191 	case COMMIT_BACKGROUND:
192 		return "background commit requested";
193 	case COMMIT_REQUIRED:
194 		return "commit required";
195 	case COMMIT_RUNNING_BACKGROUND:
196 		return "BACKGROUND commit running";
197 	case COMMIT_RUNNING_REQUIRED:
198 		return "commit running and required";
199 	case COMMIT_BROKEN:
200 		return "broken commit";
201 	default:
202 		return "unknown commit state";
203 	}
204 }
205 
dbg_jhead(int jhead)206 const char *dbg_jhead(int jhead)
207 {
208 	switch (jhead) {
209 	case GCHD:
210 		return "0 (GC)";
211 	case BASEHD:
212 		return "1 (base)";
213 	case DATAHD:
214 		return "2 (data)";
215 	default:
216 		return "unknown journal head";
217 	}
218 }
219 
dump_ch(const struct ubifs_ch * ch)220 static void dump_ch(const struct ubifs_ch *ch)
221 {
222 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
223 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
224 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
225 	       dbg_ntype(ch->node_type));
226 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
227 	       dbg_gtype(ch->group_type));
228 	pr_err("\tsqnum          %llu\n",
229 	       (unsigned long long)le64_to_cpu(ch->sqnum));
230 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
231 }
232 
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234 {
235 #ifndef __UBOOT__
236 	const struct ubifs_inode *ui = ubifs_inode(inode);
237 	struct qstr nm = { .name = NULL };
238 	union ubifs_key key;
239 	struct ubifs_dent_node *dent, *pdent = NULL;
240 	int count = 2;
241 
242 	pr_err("Dump in-memory inode:");
243 	pr_err("\tinode          %lu\n", inode->i_ino);
244 	pr_err("\tsize           %llu\n",
245 	       (unsigned long long)i_size_read(inode));
246 	pr_err("\tnlink          %u\n", inode->i_nlink);
247 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
248 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
249 	pr_err("\tatime          %u.%u\n",
250 	       (unsigned int)inode->i_atime.tv_sec,
251 	       (unsigned int)inode->i_atime.tv_nsec);
252 	pr_err("\tmtime          %u.%u\n",
253 	       (unsigned int)inode->i_mtime.tv_sec,
254 	       (unsigned int)inode->i_mtime.tv_nsec);
255 	pr_err("\tctime          %u.%u\n",
256 	       (unsigned int)inode->i_ctime.tv_sec,
257 	       (unsigned int)inode->i_ctime.tv_nsec);
258 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
259 	pr_err("\txattr_size     %u\n", ui->xattr_size);
260 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
261 	pr_err("\txattr_names    %u\n", ui->xattr_names);
262 	pr_err("\tdirty          %u\n", ui->dirty);
263 	pr_err("\txattr          %u\n", ui->xattr);
264 	pr_err("\tbulk_read      %u\n", ui->xattr);
265 	pr_err("\tsynced_i_size  %llu\n",
266 	       (unsigned long long)ui->synced_i_size);
267 	pr_err("\tui_size        %llu\n",
268 	       (unsigned long long)ui->ui_size);
269 	pr_err("\tflags          %d\n", ui->flags);
270 	pr_err("\tcompr_type     %d\n", ui->compr_type);
271 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
273 	pr_err("\tdata_len       %d\n", ui->data_len);
274 
275 	if (!S_ISDIR(inode->i_mode))
276 		return;
277 
278 	pr_err("List of directory entries:\n");
279 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280 
281 	lowest_dent_key(c, &key, inode->i_ino);
282 	while (1) {
283 		dent = ubifs_tnc_next_ent(c, &key, &nm);
284 		if (IS_ERR(dent)) {
285 			if (PTR_ERR(dent) != -ENOENT)
286 				pr_err("error %ld\n", PTR_ERR(dent));
287 			break;
288 		}
289 
290 		pr_err("\t%d: %s (%s)\n",
291 		       count++, dent->name, get_dent_type(dent->type));
292 
293 		nm.name = dent->name;
294 		nm.len = le16_to_cpu(dent->nlen);
295 		kfree(pdent);
296 		pdent = dent;
297 		key_read(c, &dent->key, &key);
298 	}
299 	kfree(pdent);
300 #endif
301 }
302 
ubifs_dump_node(const struct ubifs_info * c,const void * node)303 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
304 {
305 	int i, n;
306 	union ubifs_key key;
307 	const struct ubifs_ch *ch = node;
308 	char key_buf[DBG_KEY_BUF_LEN];
309 
310 	/* If the magic is incorrect, just hexdump the first bytes */
311 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
312 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
313 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
314 			       (void *)node, UBIFS_CH_SZ, 1);
315 		return;
316 	}
317 
318 	spin_lock(&dbg_lock);
319 	dump_ch(node);
320 
321 	switch (ch->node_type) {
322 	case UBIFS_PAD_NODE:
323 	{
324 		const struct ubifs_pad_node *pad = node;
325 
326 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
327 		break;
328 	}
329 	case UBIFS_SB_NODE:
330 	{
331 		const struct ubifs_sb_node *sup = node;
332 		unsigned int sup_flags = le32_to_cpu(sup->flags);
333 
334 		pr_err("\tkey_hash       %d (%s)\n",
335 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
336 		pr_err("\tkey_fmt        %d (%s)\n",
337 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
338 		pr_err("\tflags          %#x\n", sup_flags);
339 		pr_err("\tbig_lpt        %u\n",
340 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
341 		pr_err("\tspace_fixup    %u\n",
342 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
343 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
344 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
345 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
346 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
347 		pr_err("\tmax_bud_bytes  %llu\n",
348 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
349 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
350 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
351 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
352 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
353 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
354 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
355 		pr_err("\tdefault_compr  %u\n",
356 		       (int)le16_to_cpu(sup->default_compr));
357 		pr_err("\trp_size        %llu\n",
358 		       (unsigned long long)le64_to_cpu(sup->rp_size));
359 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
360 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
361 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
362 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
363 		pr_err("\tUUID           %pUB\n", sup->uuid);
364 		break;
365 	}
366 	case UBIFS_MST_NODE:
367 	{
368 		const struct ubifs_mst_node *mst = node;
369 
370 		pr_err("\thighest_inum   %llu\n",
371 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
372 		pr_err("\tcommit number  %llu\n",
373 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
374 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
375 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
376 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
377 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
378 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
379 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
380 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
381 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
382 		pr_err("\tindex_size     %llu\n",
383 		       (unsigned long long)le64_to_cpu(mst->index_size));
384 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
385 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
386 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
387 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
388 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
389 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
390 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
391 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
392 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
393 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
394 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
395 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
396 		pr_err("\ttotal_free     %llu\n",
397 		       (unsigned long long)le64_to_cpu(mst->total_free));
398 		pr_err("\ttotal_dirty    %llu\n",
399 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
400 		pr_err("\ttotal_used     %llu\n",
401 		       (unsigned long long)le64_to_cpu(mst->total_used));
402 		pr_err("\ttotal_dead     %llu\n",
403 		       (unsigned long long)le64_to_cpu(mst->total_dead));
404 		pr_err("\ttotal_dark     %llu\n",
405 		       (unsigned long long)le64_to_cpu(mst->total_dark));
406 		break;
407 	}
408 	case UBIFS_REF_NODE:
409 	{
410 		const struct ubifs_ref_node *ref = node;
411 
412 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
413 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
414 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
415 		break;
416 	}
417 	case UBIFS_INO_NODE:
418 	{
419 		const struct ubifs_ino_node *ino = node;
420 
421 		key_read(c, &ino->key, &key);
422 		pr_err("\tkey            %s\n",
423 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
424 		pr_err("\tcreat_sqnum    %llu\n",
425 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
426 		pr_err("\tsize           %llu\n",
427 		       (unsigned long long)le64_to_cpu(ino->size));
428 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
429 		pr_err("\tatime          %lld.%u\n",
430 		       (long long)le64_to_cpu(ino->atime_sec),
431 		       le32_to_cpu(ino->atime_nsec));
432 		pr_err("\tmtime          %lld.%u\n",
433 		       (long long)le64_to_cpu(ino->mtime_sec),
434 		       le32_to_cpu(ino->mtime_nsec));
435 		pr_err("\tctime          %lld.%u\n",
436 		       (long long)le64_to_cpu(ino->ctime_sec),
437 		       le32_to_cpu(ino->ctime_nsec));
438 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
439 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
440 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
441 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
442 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
443 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
444 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
445 		pr_err("\tcompr_type     %#x\n",
446 		       (int)le16_to_cpu(ino->compr_type));
447 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
448 		break;
449 	}
450 	case UBIFS_DENT_NODE:
451 	case UBIFS_XENT_NODE:
452 	{
453 		const struct ubifs_dent_node *dent = node;
454 		int nlen = le16_to_cpu(dent->nlen);
455 
456 		key_read(c, &dent->key, &key);
457 		pr_err("\tkey            %s\n",
458 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
459 		pr_err("\tinum           %llu\n",
460 		       (unsigned long long)le64_to_cpu(dent->inum));
461 		pr_err("\ttype           %d\n", (int)dent->type);
462 		pr_err("\tnlen           %d\n", nlen);
463 		pr_err("\tname           ");
464 
465 		if (nlen > UBIFS_MAX_NLEN)
466 			pr_err("(bad name length, not printing, bad or corrupted node)");
467 		else {
468 			for (i = 0; i < nlen && dent->name[i]; i++)
469 				pr_cont("%c", dent->name[i]);
470 		}
471 		pr_cont("\n");
472 
473 		break;
474 	}
475 	case UBIFS_DATA_NODE:
476 	{
477 		const struct ubifs_data_node *dn = node;
478 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
479 
480 		key_read(c, &dn->key, &key);
481 		pr_err("\tkey            %s\n",
482 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
483 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
484 		pr_err("\tcompr_typ      %d\n",
485 		       (int)le16_to_cpu(dn->compr_type));
486 		pr_err("\tdata size      %d\n", dlen);
487 		pr_err("\tdata:\n");
488 		print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
489 			       (void *)&dn->data, dlen, 0);
490 		break;
491 	}
492 	case UBIFS_TRUN_NODE:
493 	{
494 		const struct ubifs_trun_node *trun = node;
495 
496 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
497 		pr_err("\told_size       %llu\n",
498 		       (unsigned long long)le64_to_cpu(trun->old_size));
499 		pr_err("\tnew_size       %llu\n",
500 		       (unsigned long long)le64_to_cpu(trun->new_size));
501 		break;
502 	}
503 	case UBIFS_IDX_NODE:
504 	{
505 		const struct ubifs_idx_node *idx = node;
506 
507 		n = le16_to_cpu(idx->child_cnt);
508 		pr_err("\tchild_cnt      %d\n", n);
509 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
510 		pr_err("\tBranches:\n");
511 
512 		for (i = 0; i < n && i < c->fanout - 1; i++) {
513 			const struct ubifs_branch *br;
514 
515 			br = ubifs_idx_branch(c, idx, i);
516 			key_read(c, &br->key, &key);
517 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
518 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
519 			       le32_to_cpu(br->len),
520 			       dbg_snprintf_key(c, &key, key_buf,
521 						DBG_KEY_BUF_LEN));
522 		}
523 		break;
524 	}
525 	case UBIFS_CS_NODE:
526 		break;
527 	case UBIFS_ORPH_NODE:
528 	{
529 		const struct ubifs_orph_node *orph = node;
530 
531 		pr_err("\tcommit number  %llu\n",
532 		       (unsigned long long)
533 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
534 		pr_err("\tlast node flag %llu\n",
535 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
536 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
537 		pr_err("\t%d orphan inode numbers:\n", n);
538 		for (i = 0; i < n; i++)
539 			pr_err("\t  ino %llu\n",
540 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
541 		break;
542 	}
543 	default:
544 		pr_err("node type %d was not recognized\n",
545 		       (int)ch->node_type);
546 	}
547 	spin_unlock(&dbg_lock);
548 }
549 
ubifs_dump_budget_req(const struct ubifs_budget_req * req)550 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
551 {
552 	spin_lock(&dbg_lock);
553 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
554 	       req->new_ino, req->dirtied_ino);
555 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
556 	       req->new_ino_d, req->dirtied_ino_d);
557 	pr_err("\tnew_page    %d, dirtied_page %d\n",
558 	       req->new_page, req->dirtied_page);
559 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
560 	       req->new_dent, req->mod_dent);
561 	pr_err("\tidx_growth  %d\n", req->idx_growth);
562 	pr_err("\tdata_growth %d dd_growth     %d\n",
563 	       req->data_growth, req->dd_growth);
564 	spin_unlock(&dbg_lock);
565 }
566 
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)567 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
568 {
569 	spin_lock(&dbg_lock);
570 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
571 	       current->pid, lst->empty_lebs, lst->idx_lebs);
572 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
573 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
574 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
575 	       lst->total_used, lst->total_dark, lst->total_dead);
576 	spin_unlock(&dbg_lock);
577 }
578 
579 #ifndef __UBOOT__
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)580 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
581 {
582 	int i;
583 	struct rb_node *rb;
584 	struct ubifs_bud *bud;
585 	struct ubifs_gced_idx_leb *idx_gc;
586 	long long available, outstanding, free;
587 
588 	spin_lock(&c->space_lock);
589 	spin_lock(&dbg_lock);
590 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
591 	       current->pid, bi->data_growth + bi->dd_growth,
592 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
593 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
594 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
595 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
596 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
597 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
598 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
599 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
600 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
601 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
602 
603 	if (bi != &c->bi)
604 		/*
605 		 * If we are dumping saved budgeting data, do not print
606 		 * additional information which is about the current state, not
607 		 * the old one which corresponded to the saved budgeting data.
608 		 */
609 		goto out_unlock;
610 
611 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
612 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
613 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
614 	       atomic_long_read(&c->dirty_pg_cnt),
615 	       atomic_long_read(&c->dirty_zn_cnt),
616 	       atomic_long_read(&c->clean_zn_cnt));
617 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
618 
619 	/* If we are in R/O mode, journal heads do not exist */
620 	if (c->jheads)
621 		for (i = 0; i < c->jhead_cnt; i++)
622 			pr_err("\tjhead %s\t LEB %d\n",
623 			       dbg_jhead(c->jheads[i].wbuf.jhead),
624 			       c->jheads[i].wbuf.lnum);
625 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
626 		bud = rb_entry(rb, struct ubifs_bud, rb);
627 		pr_err("\tbud LEB %d\n", bud->lnum);
628 	}
629 	list_for_each_entry(bud, &c->old_buds, list)
630 		pr_err("\told bud LEB %d\n", bud->lnum);
631 	list_for_each_entry(idx_gc, &c->idx_gc, list)
632 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
633 		       idx_gc->lnum, idx_gc->unmap);
634 	pr_err("\tcommit state %d\n", c->cmt_state);
635 
636 	/* Print budgeting predictions */
637 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
638 	outstanding = c->bi.data_growth + c->bi.dd_growth;
639 	free = ubifs_get_free_space_nolock(c);
640 	pr_err("Budgeting predictions:\n");
641 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
642 	       available, outstanding, free);
643 out_unlock:
644 	spin_unlock(&dbg_lock);
645 	spin_unlock(&c->space_lock);
646 }
647 #else
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)648 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
649 {
650 }
651 #endif
652 
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)653 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
654 {
655 	int i, spc, dark = 0, dead = 0;
656 	struct rb_node *rb;
657 	struct ubifs_bud *bud;
658 
659 	spc = lp->free + lp->dirty;
660 	if (spc < c->dead_wm)
661 		dead = spc;
662 	else
663 		dark = ubifs_calc_dark(c, spc);
664 
665 	if (lp->flags & LPROPS_INDEX)
666 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
667 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
668 		       lp->flags);
669 	else
670 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
671 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
672 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
673 
674 	if (lp->flags & LPROPS_TAKEN) {
675 		if (lp->flags & LPROPS_INDEX)
676 			pr_cont("index, taken");
677 		else
678 			pr_cont("taken");
679 	} else {
680 		const char *s;
681 
682 		if (lp->flags & LPROPS_INDEX) {
683 			switch (lp->flags & LPROPS_CAT_MASK) {
684 			case LPROPS_DIRTY_IDX:
685 				s = "dirty index";
686 				break;
687 			case LPROPS_FRDI_IDX:
688 				s = "freeable index";
689 				break;
690 			default:
691 				s = "index";
692 			}
693 		} else {
694 			switch (lp->flags & LPROPS_CAT_MASK) {
695 			case LPROPS_UNCAT:
696 				s = "not categorized";
697 				break;
698 			case LPROPS_DIRTY:
699 				s = "dirty";
700 				break;
701 			case LPROPS_FREE:
702 				s = "free";
703 				break;
704 			case LPROPS_EMPTY:
705 				s = "empty";
706 				break;
707 			case LPROPS_FREEABLE:
708 				s = "freeable";
709 				break;
710 			default:
711 				s = NULL;
712 				break;
713 			}
714 		}
715 		pr_cont("%s", s);
716 	}
717 
718 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
719 		bud = rb_entry(rb, struct ubifs_bud, rb);
720 		if (bud->lnum == lp->lnum) {
721 			int head = 0;
722 			for (i = 0; i < c->jhead_cnt; i++) {
723 				/*
724 				 * Note, if we are in R/O mode or in the middle
725 				 * of mounting/re-mounting, the write-buffers do
726 				 * not exist.
727 				 */
728 				if (c->jheads &&
729 				    lp->lnum == c->jheads[i].wbuf.lnum) {
730 					pr_cont(", jhead %s", dbg_jhead(i));
731 					head = 1;
732 				}
733 			}
734 			if (!head)
735 				pr_cont(", bud of jhead %s",
736 				       dbg_jhead(bud->jhead));
737 		}
738 	}
739 	if (lp->lnum == c->gc_lnum)
740 		pr_cont(", GC LEB");
741 	pr_cont(")\n");
742 }
743 
ubifs_dump_lprops(struct ubifs_info * c)744 void ubifs_dump_lprops(struct ubifs_info *c)
745 {
746 	int lnum, err;
747 	struct ubifs_lprops lp;
748 	struct ubifs_lp_stats lst;
749 
750 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
751 	ubifs_get_lp_stats(c, &lst);
752 	ubifs_dump_lstats(&lst);
753 
754 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
755 		err = ubifs_read_one_lp(c, lnum, &lp);
756 		if (err) {
757 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
758 			continue;
759 		}
760 
761 		ubifs_dump_lprop(c, &lp);
762 	}
763 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
764 }
765 
ubifs_dump_lpt_info(struct ubifs_info * c)766 void ubifs_dump_lpt_info(struct ubifs_info *c)
767 {
768 	int i;
769 
770 	spin_lock(&dbg_lock);
771 	pr_err("(pid %d) dumping LPT information\n", current->pid);
772 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
773 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
774 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
775 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
776 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
777 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
778 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
779 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
780 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
781 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
782 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
783 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
784 	pr_err("\tspace_bits:    %d\n", c->space_bits);
785 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
786 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
787 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
788 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
789 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
790 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
791 	pr_err("\tLPT head is at %d:%d\n",
792 	       c->nhead_lnum, c->nhead_offs);
793 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
794 	if (c->big_lpt)
795 		pr_err("\tLPT lsave is at %d:%d\n",
796 		       c->lsave_lnum, c->lsave_offs);
797 	for (i = 0; i < c->lpt_lebs; i++)
798 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
799 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
800 		       c->ltab[i].tgc, c->ltab[i].cmt);
801 	spin_unlock(&dbg_lock);
802 }
803 
ubifs_dump_sleb(const struct ubifs_info * c,const struct ubifs_scan_leb * sleb,int offs)804 void ubifs_dump_sleb(const struct ubifs_info *c,
805 		     const struct ubifs_scan_leb *sleb, int offs)
806 {
807 	struct ubifs_scan_node *snod;
808 
809 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
810 	       current->pid, sleb->lnum, offs);
811 
812 	list_for_each_entry(snod, &sleb->nodes, list) {
813 		cond_resched();
814 		pr_err("Dumping node at LEB %d:%d len %d\n",
815 		       sleb->lnum, snod->offs, snod->len);
816 		ubifs_dump_node(c, snod->node);
817 	}
818 }
819 
ubifs_dump_leb(const struct ubifs_info * c,int lnum)820 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
821 {
822 	struct ubifs_scan_leb *sleb;
823 	struct ubifs_scan_node *snod;
824 	void *buf;
825 
826 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
827 
828 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
829 	if (!buf) {
830 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
831 		return;
832 	}
833 
834 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
835 	if (IS_ERR(sleb)) {
836 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
837 		goto out;
838 	}
839 
840 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
841 	       sleb->nodes_cnt, sleb->endpt);
842 
843 	list_for_each_entry(snod, &sleb->nodes, list) {
844 		cond_resched();
845 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
846 		       snod->offs, snod->len);
847 		ubifs_dump_node(c, snod->node);
848 	}
849 
850 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
851 	ubifs_scan_destroy(sleb);
852 
853 out:
854 	vfree(buf);
855 	return;
856 }
857 
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)858 void ubifs_dump_znode(const struct ubifs_info *c,
859 		      const struct ubifs_znode *znode)
860 {
861 	int n;
862 	const struct ubifs_zbranch *zbr;
863 	char key_buf[DBG_KEY_BUF_LEN];
864 
865 	spin_lock(&dbg_lock);
866 	if (znode->parent)
867 		zbr = &znode->parent->zbranch[znode->iip];
868 	else
869 		zbr = &c->zroot;
870 
871 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
872 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
873 	       znode->level, znode->child_cnt, znode->flags);
874 
875 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
876 		spin_unlock(&dbg_lock);
877 		return;
878 	}
879 
880 	pr_err("zbranches:\n");
881 	for (n = 0; n < znode->child_cnt; n++) {
882 		zbr = &znode->zbranch[n];
883 		if (znode->level > 0)
884 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
885 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
886 			       dbg_snprintf_key(c, &zbr->key, key_buf,
887 						DBG_KEY_BUF_LEN));
888 		else
889 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
890 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
891 			       dbg_snprintf_key(c, &zbr->key, key_buf,
892 						DBG_KEY_BUF_LEN));
893 	}
894 	spin_unlock(&dbg_lock);
895 }
896 
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)897 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
898 {
899 	int i;
900 
901 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
902 	       current->pid, cat, heap->cnt);
903 	for (i = 0; i < heap->cnt; i++) {
904 		struct ubifs_lprops *lprops = heap->arr[i];
905 
906 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
907 		       i, lprops->lnum, lprops->hpos, lprops->free,
908 		       lprops->dirty, lprops->flags);
909 	}
910 	pr_err("(pid %d) finish dumping heap\n", current->pid);
911 }
912 
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)913 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
914 		      struct ubifs_nnode *parent, int iip)
915 {
916 	int i;
917 
918 	pr_err("(pid %d) dumping pnode:\n", current->pid);
919 	pr_err("\taddress %zx parent %zx cnext %zx\n",
920 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
921 	pr_err("\tflags %lu iip %d level %d num %d\n",
922 	       pnode->flags, iip, pnode->level, pnode->num);
923 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
924 		struct ubifs_lprops *lp = &pnode->lprops[i];
925 
926 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
927 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
928 	}
929 }
930 
ubifs_dump_tnc(struct ubifs_info * c)931 void ubifs_dump_tnc(struct ubifs_info *c)
932 {
933 	struct ubifs_znode *znode;
934 	int level;
935 
936 	pr_err("\n");
937 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
938 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
939 	level = znode->level;
940 	pr_err("== Level %d ==\n", level);
941 	while (znode) {
942 		if (level != znode->level) {
943 			level = znode->level;
944 			pr_err("== Level %d ==\n", level);
945 		}
946 		ubifs_dump_znode(c, znode);
947 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
948 	}
949 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
950 }
951 
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)952 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
953 		      void *priv)
954 {
955 	ubifs_dump_znode(c, znode);
956 	return 0;
957 }
958 
959 /**
960  * ubifs_dump_index - dump the on-flash index.
961  * @c: UBIFS file-system description object
962  *
963  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
964  * which dumps only in-memory znodes and does not read znodes which from flash.
965  */
ubifs_dump_index(struct ubifs_info * c)966 void ubifs_dump_index(struct ubifs_info *c)
967 {
968 	dbg_walk_index(c, NULL, dump_znode, NULL);
969 }
970 
971 #ifndef __UBOOT__
972 /**
973  * dbg_save_space_info - save information about flash space.
974  * @c: UBIFS file-system description object
975  *
976  * This function saves information about UBIFS free space, dirty space, etc, in
977  * order to check it later.
978  */
dbg_save_space_info(struct ubifs_info * c)979 void dbg_save_space_info(struct ubifs_info *c)
980 {
981 	struct ubifs_debug_info *d = c->dbg;
982 	int freeable_cnt;
983 
984 	spin_lock(&c->space_lock);
985 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
986 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
987 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
988 
989 	/*
990 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
991 	 * affects the free space calculations, and UBIFS might not know about
992 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
993 	 * only when we read their lprops, and we do this only lazily, upon the
994 	 * need. So at any given point of time @c->freeable_cnt might be not
995 	 * exactly accurate.
996 	 *
997 	 * Just one example about the issue we hit when we did not zero
998 	 * @c->freeable_cnt.
999 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1000 	 *    amount of free space in @d->saved_free
1001 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1002 	 *    information from flash, where we cache LEBs from various
1003 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1004 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1005 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1006 	 *    -> 'ubifs_add_to_cat()').
1007 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1008 	 *    becomes %1.
1009 	 * 4. We calculate the amount of free space when the re-mount is
1010 	 *    finished in 'dbg_check_space_info()' and it does not match
1011 	 *    @d->saved_free.
1012 	 */
1013 	freeable_cnt = c->freeable_cnt;
1014 	c->freeable_cnt = 0;
1015 	d->saved_free = ubifs_get_free_space_nolock(c);
1016 	c->freeable_cnt = freeable_cnt;
1017 	spin_unlock(&c->space_lock);
1018 }
1019 
1020 /**
1021  * dbg_check_space_info - check flash space information.
1022  * @c: UBIFS file-system description object
1023  *
1024  * This function compares current flash space information with the information
1025  * which was saved when the 'dbg_save_space_info()' function was called.
1026  * Returns zero if the information has not changed, and %-EINVAL it it has
1027  * changed.
1028  */
dbg_check_space_info(struct ubifs_info * c)1029 int dbg_check_space_info(struct ubifs_info *c)
1030 {
1031 	struct ubifs_debug_info *d = c->dbg;
1032 	struct ubifs_lp_stats lst;
1033 	long long free;
1034 	int freeable_cnt;
1035 
1036 	spin_lock(&c->space_lock);
1037 	freeable_cnt = c->freeable_cnt;
1038 	c->freeable_cnt = 0;
1039 	free = ubifs_get_free_space_nolock(c);
1040 	c->freeable_cnt = freeable_cnt;
1041 	spin_unlock(&c->space_lock);
1042 
1043 	if (free != d->saved_free) {
1044 		ubifs_err(c, "free space changed from %lld to %lld",
1045 			  d->saved_free, free);
1046 		goto out;
1047 	}
1048 
1049 	return 0;
1050 
1051 out:
1052 	ubifs_msg(c, "saved lprops statistics dump");
1053 	ubifs_dump_lstats(&d->saved_lst);
1054 	ubifs_msg(c, "saved budgeting info dump");
1055 	ubifs_dump_budg(c, &d->saved_bi);
1056 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1057 	ubifs_msg(c, "current lprops statistics dump");
1058 	ubifs_get_lp_stats(c, &lst);
1059 	ubifs_dump_lstats(&lst);
1060 	ubifs_msg(c, "current budgeting info dump");
1061 	ubifs_dump_budg(c, &c->bi);
1062 	dump_stack();
1063 	return -EINVAL;
1064 }
1065 
1066 /**
1067  * dbg_check_synced_i_size - check synchronized inode size.
1068  * @c: UBIFS file-system description object
1069  * @inode: inode to check
1070  *
1071  * If inode is clean, synchronized inode size has to be equivalent to current
1072  * inode size. This function has to be called only for locked inodes (@i_mutex
1073  * has to be locked). Returns %0 if synchronized inode size if correct, and
1074  * %-EINVAL if not.
1075  */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1076 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1077 {
1078 	int err = 0;
1079 	struct ubifs_inode *ui = ubifs_inode(inode);
1080 
1081 	if (!dbg_is_chk_gen(c))
1082 		return 0;
1083 	if (!S_ISREG(inode->i_mode))
1084 		return 0;
1085 
1086 	mutex_lock(&ui->ui_mutex);
1087 	spin_lock(&ui->ui_lock);
1088 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1089 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1090 			  ui->ui_size, ui->synced_i_size);
1091 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1092 			  inode->i_mode, i_size_read(inode));
1093 		dump_stack();
1094 		err = -EINVAL;
1095 	}
1096 	spin_unlock(&ui->ui_lock);
1097 	mutex_unlock(&ui->ui_mutex);
1098 	return err;
1099 }
1100 
1101 /*
1102  * dbg_check_dir - check directory inode size and link count.
1103  * @c: UBIFS file-system description object
1104  * @dir: the directory to calculate size for
1105  * @size: the result is returned here
1106  *
1107  * This function makes sure that directory size and link count are correct.
1108  * Returns zero in case of success and a negative error code in case of
1109  * failure.
1110  *
1111  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1112  * calling this function.
1113  */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1114 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1115 {
1116 	unsigned int nlink = 2;
1117 	union ubifs_key key;
1118 	struct ubifs_dent_node *dent, *pdent = NULL;
1119 	struct qstr nm = { .name = NULL };
1120 	loff_t size = UBIFS_INO_NODE_SZ;
1121 
1122 	if (!dbg_is_chk_gen(c))
1123 		return 0;
1124 
1125 	if (!S_ISDIR(dir->i_mode))
1126 		return 0;
1127 
1128 	lowest_dent_key(c, &key, dir->i_ino);
1129 	while (1) {
1130 		int err;
1131 
1132 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1133 		if (IS_ERR(dent)) {
1134 			err = PTR_ERR(dent);
1135 			if (err == -ENOENT)
1136 				break;
1137 			return err;
1138 		}
1139 
1140 		nm.name = dent->name;
1141 		nm.len = le16_to_cpu(dent->nlen);
1142 		size += CALC_DENT_SIZE(nm.len);
1143 		if (dent->type == UBIFS_ITYPE_DIR)
1144 			nlink += 1;
1145 		kfree(pdent);
1146 		pdent = dent;
1147 		key_read(c, &dent->key, &key);
1148 	}
1149 	kfree(pdent);
1150 
1151 	if (i_size_read(dir) != size) {
1152 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1153 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1154 			  (unsigned long long)size);
1155 		ubifs_dump_inode(c, dir);
1156 		dump_stack();
1157 		return -EINVAL;
1158 	}
1159 	if (dir->i_nlink != nlink) {
1160 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1161 			  dir->i_ino, dir->i_nlink, nlink);
1162 		ubifs_dump_inode(c, dir);
1163 		dump_stack();
1164 		return -EINVAL;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1172  * @c: UBIFS file-system description object
1173  * @zbr1: first zbranch
1174  * @zbr2: following zbranch
1175  *
1176  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1177  * names of the direntries/xentries which are referred by the keys. This
1178  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1179  * sure the name of direntry/xentry referred by @zbr1 is less than
1180  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1181  * and a negative error code in case of failure.
1182  */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1183 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1184 			       struct ubifs_zbranch *zbr2)
1185 {
1186 	int err, nlen1, nlen2, cmp;
1187 	struct ubifs_dent_node *dent1, *dent2;
1188 	union ubifs_key key;
1189 	char key_buf[DBG_KEY_BUF_LEN];
1190 
1191 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1192 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1193 	if (!dent1)
1194 		return -ENOMEM;
1195 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1196 	if (!dent2) {
1197 		err = -ENOMEM;
1198 		goto out_free;
1199 	}
1200 
1201 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1202 	if (err)
1203 		goto out_free;
1204 	err = ubifs_validate_entry(c, dent1);
1205 	if (err)
1206 		goto out_free;
1207 
1208 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1209 	if (err)
1210 		goto out_free;
1211 	err = ubifs_validate_entry(c, dent2);
1212 	if (err)
1213 		goto out_free;
1214 
1215 	/* Make sure node keys are the same as in zbranch */
1216 	err = 1;
1217 	key_read(c, &dent1->key, &key);
1218 	if (keys_cmp(c, &zbr1->key, &key)) {
1219 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1220 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1221 						       DBG_KEY_BUF_LEN));
1222 		ubifs_err(c, "but it should have key %s according to tnc",
1223 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1224 					   DBG_KEY_BUF_LEN));
1225 		ubifs_dump_node(c, dent1);
1226 		goto out_free;
1227 	}
1228 
1229 	key_read(c, &dent2->key, &key);
1230 	if (keys_cmp(c, &zbr2->key, &key)) {
1231 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1232 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1233 						       DBG_KEY_BUF_LEN));
1234 		ubifs_err(c, "but it should have key %s according to tnc",
1235 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1236 					   DBG_KEY_BUF_LEN));
1237 		ubifs_dump_node(c, dent2);
1238 		goto out_free;
1239 	}
1240 
1241 	nlen1 = le16_to_cpu(dent1->nlen);
1242 	nlen2 = le16_to_cpu(dent2->nlen);
1243 
1244 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1245 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1246 		err = 0;
1247 		goto out_free;
1248 	}
1249 	if (cmp == 0 && nlen1 == nlen2)
1250 		ubifs_err(c, "2 xent/dent nodes with the same name");
1251 	else
1252 		ubifs_err(c, "bad order of colliding key %s",
1253 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1254 
1255 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1256 	ubifs_dump_node(c, dent1);
1257 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1258 	ubifs_dump_node(c, dent2);
1259 
1260 out_free:
1261 	kfree(dent2);
1262 	kfree(dent1);
1263 	return err;
1264 }
1265 
1266 /**
1267  * dbg_check_znode - check if znode is all right.
1268  * @c: UBIFS file-system description object
1269  * @zbr: zbranch which points to this znode
1270  *
1271  * This function makes sure that znode referred to by @zbr is all right.
1272  * Returns zero if it is, and %-EINVAL if it is not.
1273  */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1274 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1275 {
1276 	struct ubifs_znode *znode = zbr->znode;
1277 	struct ubifs_znode *zp = znode->parent;
1278 	int n, err, cmp;
1279 
1280 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1281 		err = 1;
1282 		goto out;
1283 	}
1284 	if (znode->level < 0) {
1285 		err = 2;
1286 		goto out;
1287 	}
1288 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1289 		err = 3;
1290 		goto out;
1291 	}
1292 
1293 	if (zbr->len == 0)
1294 		/* Only dirty zbranch may have no on-flash nodes */
1295 		if (!ubifs_zn_dirty(znode)) {
1296 			err = 4;
1297 			goto out;
1298 		}
1299 
1300 	if (ubifs_zn_dirty(znode)) {
1301 		/*
1302 		 * If znode is dirty, its parent has to be dirty as well. The
1303 		 * order of the operation is important, so we have to have
1304 		 * memory barriers.
1305 		 */
1306 		smp_mb();
1307 		if (zp && !ubifs_zn_dirty(zp)) {
1308 			/*
1309 			 * The dirty flag is atomic and is cleared outside the
1310 			 * TNC mutex, so znode's dirty flag may now have
1311 			 * been cleared. The child is always cleared before the
1312 			 * parent, so we just need to check again.
1313 			 */
1314 			smp_mb();
1315 			if (ubifs_zn_dirty(znode)) {
1316 				err = 5;
1317 				goto out;
1318 			}
1319 		}
1320 	}
1321 
1322 	if (zp) {
1323 		const union ubifs_key *min, *max;
1324 
1325 		if (znode->level != zp->level - 1) {
1326 			err = 6;
1327 			goto out;
1328 		}
1329 
1330 		/* Make sure the 'parent' pointer in our znode is correct */
1331 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1332 		if (!err) {
1333 			/* This zbranch does not exist in the parent */
1334 			err = 7;
1335 			goto out;
1336 		}
1337 
1338 		if (znode->iip >= zp->child_cnt) {
1339 			err = 8;
1340 			goto out;
1341 		}
1342 
1343 		if (znode->iip != n) {
1344 			/* This may happen only in case of collisions */
1345 			if (keys_cmp(c, &zp->zbranch[n].key,
1346 				     &zp->zbranch[znode->iip].key)) {
1347 				err = 9;
1348 				goto out;
1349 			}
1350 			n = znode->iip;
1351 		}
1352 
1353 		/*
1354 		 * Make sure that the first key in our znode is greater than or
1355 		 * equal to the key in the pointing zbranch.
1356 		 */
1357 		min = &zbr->key;
1358 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1359 		if (cmp == 1) {
1360 			err = 10;
1361 			goto out;
1362 		}
1363 
1364 		if (n + 1 < zp->child_cnt) {
1365 			max = &zp->zbranch[n + 1].key;
1366 
1367 			/*
1368 			 * Make sure the last key in our znode is less or
1369 			 * equivalent than the key in the zbranch which goes
1370 			 * after our pointing zbranch.
1371 			 */
1372 			cmp = keys_cmp(c, max,
1373 				&znode->zbranch[znode->child_cnt - 1].key);
1374 			if (cmp == -1) {
1375 				err = 11;
1376 				goto out;
1377 			}
1378 		}
1379 	} else {
1380 		/* This may only be root znode */
1381 		if (zbr != &c->zroot) {
1382 			err = 12;
1383 			goto out;
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Make sure that next key is greater or equivalent then the previous
1389 	 * one.
1390 	 */
1391 	for (n = 1; n < znode->child_cnt; n++) {
1392 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1393 			       &znode->zbranch[n].key);
1394 		if (cmp > 0) {
1395 			err = 13;
1396 			goto out;
1397 		}
1398 		if (cmp == 0) {
1399 			/* This can only be keys with colliding hash */
1400 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1401 				err = 14;
1402 				goto out;
1403 			}
1404 
1405 			if (znode->level != 0 || c->replaying)
1406 				continue;
1407 
1408 			/*
1409 			 * Colliding keys should follow binary order of
1410 			 * corresponding xentry/dentry names.
1411 			 */
1412 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1413 						  &znode->zbranch[n]);
1414 			if (err < 0)
1415 				return err;
1416 			if (err) {
1417 				err = 15;
1418 				goto out;
1419 			}
1420 		}
1421 	}
1422 
1423 	for (n = 0; n < znode->child_cnt; n++) {
1424 		if (!znode->zbranch[n].znode &&
1425 		    (znode->zbranch[n].lnum == 0 ||
1426 		     znode->zbranch[n].len == 0)) {
1427 			err = 16;
1428 			goto out;
1429 		}
1430 
1431 		if (znode->zbranch[n].lnum != 0 &&
1432 		    znode->zbranch[n].len == 0) {
1433 			err = 17;
1434 			goto out;
1435 		}
1436 
1437 		if (znode->zbranch[n].lnum == 0 &&
1438 		    znode->zbranch[n].len != 0) {
1439 			err = 18;
1440 			goto out;
1441 		}
1442 
1443 		if (znode->zbranch[n].lnum == 0 &&
1444 		    znode->zbranch[n].offs != 0) {
1445 			err = 19;
1446 			goto out;
1447 		}
1448 
1449 		if (znode->level != 0 && znode->zbranch[n].znode)
1450 			if (znode->zbranch[n].znode->parent != znode) {
1451 				err = 20;
1452 				goto out;
1453 			}
1454 	}
1455 
1456 	return 0;
1457 
1458 out:
1459 	ubifs_err(c, "failed, error %d", err);
1460 	ubifs_msg(c, "dump of the znode");
1461 	ubifs_dump_znode(c, znode);
1462 	if (zp) {
1463 		ubifs_msg(c, "dump of the parent znode");
1464 		ubifs_dump_znode(c, zp);
1465 	}
1466 	dump_stack();
1467 	return -EINVAL;
1468 }
1469 #else
1470 
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1471 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1472 {
1473 	return 0;
1474 }
1475 
dbg_debugfs_exit_fs(struct ubifs_info * c)1476 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1477 {
1478 	return;
1479 }
1480 
ubifs_debugging_init(struct ubifs_info * c)1481 int ubifs_debugging_init(struct ubifs_info *c)
1482 {
1483 	return 0;
1484 }
ubifs_debugging_exit(struct ubifs_info * c)1485 void ubifs_debugging_exit(struct ubifs_info *c)
1486 {
1487 }
dbg_check_filesystem(struct ubifs_info * c)1488 int dbg_check_filesystem(struct ubifs_info *c)
1489 {
1490 	return 0;
1491 }
dbg_debugfs_init_fs(struct ubifs_info * c)1492 int dbg_debugfs_init_fs(struct ubifs_info *c)
1493 {
1494 	return 0;
1495 }
1496 #endif
1497 
1498 #ifndef __UBOOT__
1499 /**
1500  * dbg_check_tnc - check TNC tree.
1501  * @c: UBIFS file-system description object
1502  * @extra: do extra checks that are possible at start commit
1503  *
1504  * This function traverses whole TNC tree and checks every znode. Returns zero
1505  * if everything is all right and %-EINVAL if something is wrong with TNC.
1506  */
dbg_check_tnc(struct ubifs_info * c,int extra)1507 int dbg_check_tnc(struct ubifs_info *c, int extra)
1508 {
1509 	struct ubifs_znode *znode;
1510 	long clean_cnt = 0, dirty_cnt = 0;
1511 	int err, last;
1512 
1513 	if (!dbg_is_chk_index(c))
1514 		return 0;
1515 
1516 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1517 	if (!c->zroot.znode)
1518 		return 0;
1519 
1520 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1521 	while (1) {
1522 		struct ubifs_znode *prev;
1523 		struct ubifs_zbranch *zbr;
1524 
1525 		if (!znode->parent)
1526 			zbr = &c->zroot;
1527 		else
1528 			zbr = &znode->parent->zbranch[znode->iip];
1529 
1530 		err = dbg_check_znode(c, zbr);
1531 		if (err)
1532 			return err;
1533 
1534 		if (extra) {
1535 			if (ubifs_zn_dirty(znode))
1536 				dirty_cnt += 1;
1537 			else
1538 				clean_cnt += 1;
1539 		}
1540 
1541 		prev = znode;
1542 		znode = ubifs_tnc_postorder_next(znode);
1543 		if (!znode)
1544 			break;
1545 
1546 		/*
1547 		 * If the last key of this znode is equivalent to the first key
1548 		 * of the next znode (collision), then check order of the keys.
1549 		 */
1550 		last = prev->child_cnt - 1;
1551 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1552 		    !keys_cmp(c, &prev->zbranch[last].key,
1553 			      &znode->zbranch[0].key)) {
1554 			err = dbg_check_key_order(c, &prev->zbranch[last],
1555 						  &znode->zbranch[0]);
1556 			if (err < 0)
1557 				return err;
1558 			if (err) {
1559 				ubifs_msg(c, "first znode");
1560 				ubifs_dump_znode(c, prev);
1561 				ubifs_msg(c, "second znode");
1562 				ubifs_dump_znode(c, znode);
1563 				return -EINVAL;
1564 			}
1565 		}
1566 	}
1567 
1568 	if (extra) {
1569 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1570 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1571 				  atomic_long_read(&c->clean_zn_cnt),
1572 				  clean_cnt);
1573 			return -EINVAL;
1574 		}
1575 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1576 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1577 				  atomic_long_read(&c->dirty_zn_cnt),
1578 				  dirty_cnt);
1579 			return -EINVAL;
1580 		}
1581 	}
1582 
1583 	return 0;
1584 }
1585 #else
dbg_check_tnc(struct ubifs_info * c,int extra)1586 int dbg_check_tnc(struct ubifs_info *c, int extra)
1587 {
1588 	return 0;
1589 }
1590 #endif
1591 
1592 /**
1593  * dbg_walk_index - walk the on-flash index.
1594  * @c: UBIFS file-system description object
1595  * @leaf_cb: called for each leaf node
1596  * @znode_cb: called for each indexing node
1597  * @priv: private data which is passed to callbacks
1598  *
1599  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1600  * node and @znode_cb for each indexing node. Returns zero in case of success
1601  * and a negative error code in case of failure.
1602  *
1603  * It would be better if this function removed every znode it pulled to into
1604  * the TNC, so that the behavior more closely matched the non-debugging
1605  * behavior.
1606  */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1607 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1608 		   dbg_znode_callback znode_cb, void *priv)
1609 {
1610 	int err;
1611 	struct ubifs_zbranch *zbr;
1612 	struct ubifs_znode *znode, *child;
1613 
1614 	mutex_lock(&c->tnc_mutex);
1615 	/* If the root indexing node is not in TNC - pull it */
1616 	if (!c->zroot.znode) {
1617 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1618 		if (IS_ERR(c->zroot.znode)) {
1619 			err = PTR_ERR(c->zroot.znode);
1620 			c->zroot.znode = NULL;
1621 			goto out_unlock;
1622 		}
1623 	}
1624 
1625 	/*
1626 	 * We are going to traverse the indexing tree in the postorder manner.
1627 	 * Go down and find the leftmost indexing node where we are going to
1628 	 * start from.
1629 	 */
1630 	znode = c->zroot.znode;
1631 	while (znode->level > 0) {
1632 		zbr = &znode->zbranch[0];
1633 		child = zbr->znode;
1634 		if (!child) {
1635 			child = ubifs_load_znode(c, zbr, znode, 0);
1636 			if (IS_ERR(child)) {
1637 				err = PTR_ERR(child);
1638 				goto out_unlock;
1639 			}
1640 			zbr->znode = child;
1641 		}
1642 
1643 		znode = child;
1644 	}
1645 
1646 	/* Iterate over all indexing nodes */
1647 	while (1) {
1648 		int idx;
1649 
1650 		cond_resched();
1651 
1652 		if (znode_cb) {
1653 			err = znode_cb(c, znode, priv);
1654 			if (err) {
1655 				ubifs_err(c, "znode checking function returned error %d",
1656 					  err);
1657 				ubifs_dump_znode(c, znode);
1658 				goto out_dump;
1659 			}
1660 		}
1661 		if (leaf_cb && znode->level == 0) {
1662 			for (idx = 0; idx < znode->child_cnt; idx++) {
1663 				zbr = &znode->zbranch[idx];
1664 				err = leaf_cb(c, zbr, priv);
1665 				if (err) {
1666 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1667 						  err, zbr->lnum, zbr->offs);
1668 					goto out_dump;
1669 				}
1670 			}
1671 		}
1672 
1673 		if (!znode->parent)
1674 			break;
1675 
1676 		idx = znode->iip + 1;
1677 		znode = znode->parent;
1678 		if (idx < znode->child_cnt) {
1679 			/* Switch to the next index in the parent */
1680 			zbr = &znode->zbranch[idx];
1681 			child = zbr->znode;
1682 			if (!child) {
1683 				child = ubifs_load_znode(c, zbr, znode, idx);
1684 				if (IS_ERR(child)) {
1685 					err = PTR_ERR(child);
1686 					goto out_unlock;
1687 				}
1688 				zbr->znode = child;
1689 			}
1690 			znode = child;
1691 		} else
1692 			/*
1693 			 * This is the last child, switch to the parent and
1694 			 * continue.
1695 			 */
1696 			continue;
1697 
1698 		/* Go to the lowest leftmost znode in the new sub-tree */
1699 		while (znode->level > 0) {
1700 			zbr = &znode->zbranch[0];
1701 			child = zbr->znode;
1702 			if (!child) {
1703 				child = ubifs_load_znode(c, zbr, znode, 0);
1704 				if (IS_ERR(child)) {
1705 					err = PTR_ERR(child);
1706 					goto out_unlock;
1707 				}
1708 				zbr->znode = child;
1709 			}
1710 			znode = child;
1711 		}
1712 	}
1713 
1714 	mutex_unlock(&c->tnc_mutex);
1715 	return 0;
1716 
1717 out_dump:
1718 	if (znode->parent)
1719 		zbr = &znode->parent->zbranch[znode->iip];
1720 	else
1721 		zbr = &c->zroot;
1722 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1723 	ubifs_dump_znode(c, znode);
1724 out_unlock:
1725 	mutex_unlock(&c->tnc_mutex);
1726 	return err;
1727 }
1728 
1729 /**
1730  * add_size - add znode size to partially calculated index size.
1731  * @c: UBIFS file-system description object
1732  * @znode: znode to add size for
1733  * @priv: partially calculated index size
1734  *
1735  * This is a helper function for 'dbg_check_idx_size()' which is called for
1736  * every indexing node and adds its size to the 'long long' variable pointed to
1737  * by @priv.
1738  */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1739 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1740 {
1741 	long long *idx_size = priv;
1742 	int add;
1743 
1744 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1745 	add = ALIGN(add, 8);
1746 	*idx_size += add;
1747 	return 0;
1748 }
1749 
1750 /**
1751  * dbg_check_idx_size - check index size.
1752  * @c: UBIFS file-system description object
1753  * @idx_size: size to check
1754  *
1755  * This function walks the UBIFS index, calculates its size and checks that the
1756  * size is equivalent to @idx_size. Returns zero in case of success and a
1757  * negative error code in case of failure.
1758  */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1759 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1760 {
1761 	int err;
1762 	long long calc = 0;
1763 
1764 	if (!dbg_is_chk_index(c))
1765 		return 0;
1766 
1767 	err = dbg_walk_index(c, NULL, add_size, &calc);
1768 	if (err) {
1769 		ubifs_err(c, "error %d while walking the index", err);
1770 		return err;
1771 	}
1772 
1773 	if (calc != idx_size) {
1774 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1775 			  calc, idx_size);
1776 		dump_stack();
1777 		return -EINVAL;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 #ifndef __UBOOT__
1784 /**
1785  * struct fsck_inode - information about an inode used when checking the file-system.
1786  * @rb: link in the RB-tree of inodes
1787  * @inum: inode number
1788  * @mode: inode type, permissions, etc
1789  * @nlink: inode link count
1790  * @xattr_cnt: count of extended attributes
1791  * @references: how many directory/xattr entries refer this inode (calculated
1792  *              while walking the index)
1793  * @calc_cnt: for directory inode count of child directories
1794  * @size: inode size (read from on-flash inode)
1795  * @xattr_sz: summary size of all extended attributes (read from on-flash
1796  *            inode)
1797  * @calc_sz: for directories calculated directory size
1798  * @calc_xcnt: count of extended attributes
1799  * @calc_xsz: calculated summary size of all extended attributes
1800  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1801  *             inode (read from on-flash inode)
1802  * @calc_xnms: calculated sum of lengths of all extended attribute names
1803  */
1804 struct fsck_inode {
1805 	struct rb_node rb;
1806 	ino_t inum;
1807 	umode_t mode;
1808 	unsigned int nlink;
1809 	unsigned int xattr_cnt;
1810 	int references;
1811 	int calc_cnt;
1812 	long long size;
1813 	unsigned int xattr_sz;
1814 	long long calc_sz;
1815 	long long calc_xcnt;
1816 	long long calc_xsz;
1817 	unsigned int xattr_nms;
1818 	long long calc_xnms;
1819 };
1820 
1821 /**
1822  * struct fsck_data - private FS checking information.
1823  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1824  */
1825 struct fsck_data {
1826 	struct rb_root inodes;
1827 };
1828 
1829 /**
1830  * add_inode - add inode information to RB-tree of inodes.
1831  * @c: UBIFS file-system description object
1832  * @fsckd: FS checking information
1833  * @ino: raw UBIFS inode to add
1834  *
1835  * This is a helper function for 'check_leaf()' which adds information about
1836  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1837  * case of success and a negative error code in case of failure.
1838  */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1839 static struct fsck_inode *add_inode(struct ubifs_info *c,
1840 				    struct fsck_data *fsckd,
1841 				    struct ubifs_ino_node *ino)
1842 {
1843 	struct rb_node **p, *parent = NULL;
1844 	struct fsck_inode *fscki;
1845 	ino_t inum = key_inum_flash(c, &ino->key);
1846 	struct inode *inode;
1847 	struct ubifs_inode *ui;
1848 
1849 	p = &fsckd->inodes.rb_node;
1850 	while (*p) {
1851 		parent = *p;
1852 		fscki = rb_entry(parent, struct fsck_inode, rb);
1853 		if (inum < fscki->inum)
1854 			p = &(*p)->rb_left;
1855 		else if (inum > fscki->inum)
1856 			p = &(*p)->rb_right;
1857 		else
1858 			return fscki;
1859 	}
1860 
1861 	if (inum > c->highest_inum) {
1862 		ubifs_err(c, "too high inode number, max. is %lu",
1863 			  (unsigned long)c->highest_inum);
1864 		return ERR_PTR(-EINVAL);
1865 	}
1866 
1867 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1868 	if (!fscki)
1869 		return ERR_PTR(-ENOMEM);
1870 
1871 	inode = ilookup(c->vfs_sb, inum);
1872 
1873 	fscki->inum = inum;
1874 	/*
1875 	 * If the inode is present in the VFS inode cache, use it instead of
1876 	 * the on-flash inode which might be out-of-date. E.g., the size might
1877 	 * be out-of-date. If we do not do this, the following may happen, for
1878 	 * example:
1879 	 *   1. A power cut happens
1880 	 *   2. We mount the file-system R/O, the replay process fixes up the
1881 	 *      inode size in the VFS cache, but on on-flash.
1882 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1883 	 *      size.
1884 	 */
1885 	if (!inode) {
1886 		fscki->nlink = le32_to_cpu(ino->nlink);
1887 		fscki->size = le64_to_cpu(ino->size);
1888 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1889 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1890 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1891 		fscki->mode = le32_to_cpu(ino->mode);
1892 	} else {
1893 		ui = ubifs_inode(inode);
1894 		fscki->nlink = inode->i_nlink;
1895 		fscki->size = inode->i_size;
1896 		fscki->xattr_cnt = ui->xattr_cnt;
1897 		fscki->xattr_sz = ui->xattr_size;
1898 		fscki->xattr_nms = ui->xattr_names;
1899 		fscki->mode = inode->i_mode;
1900 		iput(inode);
1901 	}
1902 
1903 	if (S_ISDIR(fscki->mode)) {
1904 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1905 		fscki->calc_cnt = 2;
1906 	}
1907 
1908 	rb_link_node(&fscki->rb, parent, p);
1909 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1910 
1911 	return fscki;
1912 }
1913 
1914 /**
1915  * search_inode - search inode in the RB-tree of inodes.
1916  * @fsckd: FS checking information
1917  * @inum: inode number to search
1918  *
1919  * This is a helper function for 'check_leaf()' which searches inode @inum in
1920  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1921  * the inode was not found.
1922  */
search_inode(struct fsck_data * fsckd,ino_t inum)1923 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1924 {
1925 	struct rb_node *p;
1926 	struct fsck_inode *fscki;
1927 
1928 	p = fsckd->inodes.rb_node;
1929 	while (p) {
1930 		fscki = rb_entry(p, struct fsck_inode, rb);
1931 		if (inum < fscki->inum)
1932 			p = p->rb_left;
1933 		else if (inum > fscki->inum)
1934 			p = p->rb_right;
1935 		else
1936 			return fscki;
1937 	}
1938 	return NULL;
1939 }
1940 
1941 /**
1942  * read_add_inode - read inode node and add it to RB-tree of inodes.
1943  * @c: UBIFS file-system description object
1944  * @fsckd: FS checking information
1945  * @inum: inode number to read
1946  *
1947  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1948  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1949  * information pointer in case of success and a negative error code in case of
1950  * failure.
1951  */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1952 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1953 					 struct fsck_data *fsckd, ino_t inum)
1954 {
1955 	int n, err;
1956 	union ubifs_key key;
1957 	struct ubifs_znode *znode;
1958 	struct ubifs_zbranch *zbr;
1959 	struct ubifs_ino_node *ino;
1960 	struct fsck_inode *fscki;
1961 
1962 	fscki = search_inode(fsckd, inum);
1963 	if (fscki)
1964 		return fscki;
1965 
1966 	ino_key_init(c, &key, inum);
1967 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1968 	if (!err) {
1969 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1970 		return ERR_PTR(-ENOENT);
1971 	} else if (err < 0) {
1972 		ubifs_err(c, "error %d while looking up inode %lu",
1973 			  err, (unsigned long)inum);
1974 		return ERR_PTR(err);
1975 	}
1976 
1977 	zbr = &znode->zbranch[n];
1978 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1979 		ubifs_err(c, "bad node %lu node length %d",
1980 			  (unsigned long)inum, zbr->len);
1981 		return ERR_PTR(-EINVAL);
1982 	}
1983 
1984 	ino = kmalloc(zbr->len, GFP_NOFS);
1985 	if (!ino)
1986 		return ERR_PTR(-ENOMEM);
1987 
1988 	err = ubifs_tnc_read_node(c, zbr, ino);
1989 	if (err) {
1990 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1991 			  zbr->lnum, zbr->offs, err);
1992 		kfree(ino);
1993 		return ERR_PTR(err);
1994 	}
1995 
1996 	fscki = add_inode(c, fsckd, ino);
1997 	kfree(ino);
1998 	if (IS_ERR(fscki)) {
1999 		ubifs_err(c, "error %ld while adding inode %lu node",
2000 			  PTR_ERR(fscki), (unsigned long)inum);
2001 		return fscki;
2002 	}
2003 
2004 	return fscki;
2005 }
2006 
2007 /**
2008  * check_leaf - check leaf node.
2009  * @c: UBIFS file-system description object
2010  * @zbr: zbranch of the leaf node to check
2011  * @priv: FS checking information
2012  *
2013  * This is a helper function for 'dbg_check_filesystem()' which is called for
2014  * every single leaf node while walking the indexing tree. It checks that the
2015  * leaf node referred from the indexing tree exists, has correct CRC, and does
2016  * some other basic validation. This function is also responsible for building
2017  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2018  * calculates reference count, size, etc for each inode in order to later
2019  * compare them to the information stored inside the inodes and detect possible
2020  * inconsistencies. Returns zero in case of success and a negative error code
2021  * in case of failure.
2022  */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)2023 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2024 		      void *priv)
2025 {
2026 	ino_t inum;
2027 	void *node;
2028 	struct ubifs_ch *ch;
2029 	int err, type = key_type(c, &zbr->key);
2030 	struct fsck_inode *fscki;
2031 
2032 	if (zbr->len < UBIFS_CH_SZ) {
2033 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2034 			  zbr->len, zbr->lnum, zbr->offs);
2035 		return -EINVAL;
2036 	}
2037 
2038 	node = kmalloc(zbr->len, GFP_NOFS);
2039 	if (!node)
2040 		return -ENOMEM;
2041 
2042 	err = ubifs_tnc_read_node(c, zbr, node);
2043 	if (err) {
2044 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2045 			  zbr->lnum, zbr->offs, err);
2046 		goto out_free;
2047 	}
2048 
2049 	/* If this is an inode node, add it to RB-tree of inodes */
2050 	if (type == UBIFS_INO_KEY) {
2051 		fscki = add_inode(c, priv, node);
2052 		if (IS_ERR(fscki)) {
2053 			err = PTR_ERR(fscki);
2054 			ubifs_err(c, "error %d while adding inode node", err);
2055 			goto out_dump;
2056 		}
2057 		goto out;
2058 	}
2059 
2060 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2061 	    type != UBIFS_DATA_KEY) {
2062 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2063 			  type, zbr->lnum, zbr->offs);
2064 		err = -EINVAL;
2065 		goto out_free;
2066 	}
2067 
2068 	ch = node;
2069 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2070 		ubifs_err(c, "too high sequence number, max. is %llu",
2071 			  c->max_sqnum);
2072 		err = -EINVAL;
2073 		goto out_dump;
2074 	}
2075 
2076 	if (type == UBIFS_DATA_KEY) {
2077 		long long blk_offs;
2078 		struct ubifs_data_node *dn = node;
2079 
2080 		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2081 
2082 		/*
2083 		 * Search the inode node this data node belongs to and insert
2084 		 * it to the RB-tree of inodes.
2085 		 */
2086 		inum = key_inum_flash(c, &dn->key);
2087 		fscki = read_add_inode(c, priv, inum);
2088 		if (IS_ERR(fscki)) {
2089 			err = PTR_ERR(fscki);
2090 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2091 				  err, (unsigned long)inum);
2092 			goto out_dump;
2093 		}
2094 
2095 		/* Make sure the data node is within inode size */
2096 		blk_offs = key_block_flash(c, &dn->key);
2097 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2098 		blk_offs += le32_to_cpu(dn->size);
2099 		if (blk_offs > fscki->size) {
2100 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2101 				  zbr->lnum, zbr->offs, fscki->size);
2102 			err = -EINVAL;
2103 			goto out_dump;
2104 		}
2105 	} else {
2106 		int nlen;
2107 		struct ubifs_dent_node *dent = node;
2108 		struct fsck_inode *fscki1;
2109 
2110 		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2111 
2112 		err = ubifs_validate_entry(c, dent);
2113 		if (err)
2114 			goto out_dump;
2115 
2116 		/*
2117 		 * Search the inode node this entry refers to and the parent
2118 		 * inode node and insert them to the RB-tree of inodes.
2119 		 */
2120 		inum = le64_to_cpu(dent->inum);
2121 		fscki = read_add_inode(c, priv, inum);
2122 		if (IS_ERR(fscki)) {
2123 			err = PTR_ERR(fscki);
2124 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2125 				  err, (unsigned long)inum);
2126 			goto out_dump;
2127 		}
2128 
2129 		/* Count how many direntries or xentries refers this inode */
2130 		fscki->references += 1;
2131 
2132 		inum = key_inum_flash(c, &dent->key);
2133 		fscki1 = read_add_inode(c, priv, inum);
2134 		if (IS_ERR(fscki1)) {
2135 			err = PTR_ERR(fscki1);
2136 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2137 				  err, (unsigned long)inum);
2138 			goto out_dump;
2139 		}
2140 
2141 		nlen = le16_to_cpu(dent->nlen);
2142 		if (type == UBIFS_XENT_KEY) {
2143 			fscki1->calc_xcnt += 1;
2144 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2145 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2146 			fscki1->calc_xnms += nlen;
2147 		} else {
2148 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2149 			if (dent->type == UBIFS_ITYPE_DIR)
2150 				fscki1->calc_cnt += 1;
2151 		}
2152 	}
2153 
2154 out:
2155 	kfree(node);
2156 	return 0;
2157 
2158 out_dump:
2159 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2160 	ubifs_dump_node(c, node);
2161 out_free:
2162 	kfree(node);
2163 	return err;
2164 }
2165 
2166 /**
2167  * free_inodes - free RB-tree of inodes.
2168  * @fsckd: FS checking information
2169  */
free_inodes(struct fsck_data * fsckd)2170 static void free_inodes(struct fsck_data *fsckd)
2171 {
2172 	struct fsck_inode *fscki, *n;
2173 
2174 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2175 		kfree(fscki);
2176 }
2177 
2178 /**
2179  * check_inodes - checks all inodes.
2180  * @c: UBIFS file-system description object
2181  * @fsckd: FS checking information
2182  *
2183  * This is a helper function for 'dbg_check_filesystem()' which walks the
2184  * RB-tree of inodes after the index scan has been finished, and checks that
2185  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2186  * %-EINVAL if not, and a negative error code in case of failure.
2187  */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2188 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2189 {
2190 	int n, err;
2191 	union ubifs_key key;
2192 	struct ubifs_znode *znode;
2193 	struct ubifs_zbranch *zbr;
2194 	struct ubifs_ino_node *ino;
2195 	struct fsck_inode *fscki;
2196 	struct rb_node *this = rb_first(&fsckd->inodes);
2197 
2198 	while (this) {
2199 		fscki = rb_entry(this, struct fsck_inode, rb);
2200 		this = rb_next(this);
2201 
2202 		if (S_ISDIR(fscki->mode)) {
2203 			/*
2204 			 * Directories have to have exactly one reference (they
2205 			 * cannot have hardlinks), although root inode is an
2206 			 * exception.
2207 			 */
2208 			if (fscki->inum != UBIFS_ROOT_INO &&
2209 			    fscki->references != 1) {
2210 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2211 					  (unsigned long)fscki->inum,
2212 					  fscki->references);
2213 				goto out_dump;
2214 			}
2215 			if (fscki->inum == UBIFS_ROOT_INO &&
2216 			    fscki->references != 0) {
2217 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2218 					  (unsigned long)fscki->inum,
2219 					  fscki->references);
2220 				goto out_dump;
2221 			}
2222 			if (fscki->calc_sz != fscki->size) {
2223 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2224 					  (unsigned long)fscki->inum,
2225 					  fscki->size, fscki->calc_sz);
2226 				goto out_dump;
2227 			}
2228 			if (fscki->calc_cnt != fscki->nlink) {
2229 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2230 					  (unsigned long)fscki->inum,
2231 					  fscki->nlink, fscki->calc_cnt);
2232 				goto out_dump;
2233 			}
2234 		} else {
2235 			if (fscki->references != fscki->nlink) {
2236 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2237 					  (unsigned long)fscki->inum,
2238 					  fscki->nlink, fscki->references);
2239 				goto out_dump;
2240 			}
2241 		}
2242 		if (fscki->xattr_sz != fscki->calc_xsz) {
2243 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2244 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2245 				  fscki->calc_xsz);
2246 			goto out_dump;
2247 		}
2248 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2249 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2250 				  (unsigned long)fscki->inum,
2251 				  fscki->xattr_cnt, fscki->calc_xcnt);
2252 			goto out_dump;
2253 		}
2254 		if (fscki->xattr_nms != fscki->calc_xnms) {
2255 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2256 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2257 				  fscki->calc_xnms);
2258 			goto out_dump;
2259 		}
2260 	}
2261 
2262 	return 0;
2263 
2264 out_dump:
2265 	/* Read the bad inode and dump it */
2266 	ino_key_init(c, &key, fscki->inum);
2267 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2268 	if (!err) {
2269 		ubifs_err(c, "inode %lu not found in index",
2270 			  (unsigned long)fscki->inum);
2271 		return -ENOENT;
2272 	} else if (err < 0) {
2273 		ubifs_err(c, "error %d while looking up inode %lu",
2274 			  err, (unsigned long)fscki->inum);
2275 		return err;
2276 	}
2277 
2278 	zbr = &znode->zbranch[n];
2279 	ino = kmalloc(zbr->len, GFP_NOFS);
2280 	if (!ino)
2281 		return -ENOMEM;
2282 
2283 	err = ubifs_tnc_read_node(c, zbr, ino);
2284 	if (err) {
2285 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2286 			  zbr->lnum, zbr->offs, err);
2287 		kfree(ino);
2288 		return err;
2289 	}
2290 
2291 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2292 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2293 	ubifs_dump_node(c, ino);
2294 	kfree(ino);
2295 	return -EINVAL;
2296 }
2297 
2298 /**
2299  * dbg_check_filesystem - check the file-system.
2300  * @c: UBIFS file-system description object
2301  *
2302  * This function checks the file system, namely:
2303  * o makes sure that all leaf nodes exist and their CRCs are correct;
2304  * o makes sure inode nlink, size, xattr size/count are correct (for all
2305  *   inodes).
2306  *
2307  * The function reads whole indexing tree and all nodes, so it is pretty
2308  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2309  * not, and a negative error code in case of failure.
2310  */
dbg_check_filesystem(struct ubifs_info * c)2311 int dbg_check_filesystem(struct ubifs_info *c)
2312 {
2313 	int err;
2314 	struct fsck_data fsckd;
2315 
2316 	if (!dbg_is_chk_fs(c))
2317 		return 0;
2318 
2319 	fsckd.inodes = RB_ROOT;
2320 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2321 	if (err)
2322 		goto out_free;
2323 
2324 	err = check_inodes(c, &fsckd);
2325 	if (err)
2326 		goto out_free;
2327 
2328 	free_inodes(&fsckd);
2329 	return 0;
2330 
2331 out_free:
2332 	ubifs_err(c, "file-system check failed with error %d", err);
2333 	dump_stack();
2334 	free_inodes(&fsckd);
2335 	return err;
2336 }
2337 
2338 /**
2339  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2340  * @c: UBIFS file-system description object
2341  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2342  *
2343  * This function returns zero if the list of data nodes is sorted correctly,
2344  * and %-EINVAL if not.
2345  */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2346 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2347 {
2348 	struct list_head *cur;
2349 	struct ubifs_scan_node *sa, *sb;
2350 
2351 	if (!dbg_is_chk_gen(c))
2352 		return 0;
2353 
2354 	for (cur = head->next; cur->next != head; cur = cur->next) {
2355 		ino_t inuma, inumb;
2356 		uint32_t blka, blkb;
2357 
2358 		cond_resched();
2359 		sa = container_of(cur, struct ubifs_scan_node, list);
2360 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2361 
2362 		if (sa->type != UBIFS_DATA_NODE) {
2363 			ubifs_err(c, "bad node type %d", sa->type);
2364 			ubifs_dump_node(c, sa->node);
2365 			return -EINVAL;
2366 		}
2367 		if (sb->type != UBIFS_DATA_NODE) {
2368 			ubifs_err(c, "bad node type %d", sb->type);
2369 			ubifs_dump_node(c, sb->node);
2370 			return -EINVAL;
2371 		}
2372 
2373 		inuma = key_inum(c, &sa->key);
2374 		inumb = key_inum(c, &sb->key);
2375 
2376 		if (inuma < inumb)
2377 			continue;
2378 		if (inuma > inumb) {
2379 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2380 				  (unsigned long)inuma, (unsigned long)inumb);
2381 			goto error_dump;
2382 		}
2383 
2384 		blka = key_block(c, &sa->key);
2385 		blkb = key_block(c, &sb->key);
2386 
2387 		if (blka > blkb) {
2388 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2389 			goto error_dump;
2390 		}
2391 		if (blka == blkb) {
2392 			ubifs_err(c, "two data nodes for the same block");
2393 			goto error_dump;
2394 		}
2395 	}
2396 
2397 	return 0;
2398 
2399 error_dump:
2400 	ubifs_dump_node(c, sa->node);
2401 	ubifs_dump_node(c, sb->node);
2402 	return -EINVAL;
2403 }
2404 
2405 /**
2406  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2407  * @c: UBIFS file-system description object
2408  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2409  *
2410  * This function returns zero if the list of non-data nodes is sorted correctly,
2411  * and %-EINVAL if not.
2412  */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2413 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2414 {
2415 	struct list_head *cur;
2416 	struct ubifs_scan_node *sa, *sb;
2417 
2418 	if (!dbg_is_chk_gen(c))
2419 		return 0;
2420 
2421 	for (cur = head->next; cur->next != head; cur = cur->next) {
2422 		ino_t inuma, inumb;
2423 		uint32_t hasha, hashb;
2424 
2425 		cond_resched();
2426 		sa = container_of(cur, struct ubifs_scan_node, list);
2427 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2428 
2429 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2430 		    sa->type != UBIFS_XENT_NODE) {
2431 			ubifs_err(c, "bad node type %d", sa->type);
2432 			ubifs_dump_node(c, sa->node);
2433 			return -EINVAL;
2434 		}
2435 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2436 		    sa->type != UBIFS_XENT_NODE) {
2437 			ubifs_err(c, "bad node type %d", sb->type);
2438 			ubifs_dump_node(c, sb->node);
2439 			return -EINVAL;
2440 		}
2441 
2442 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2443 			ubifs_err(c, "non-inode node goes before inode node");
2444 			goto error_dump;
2445 		}
2446 
2447 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2448 			continue;
2449 
2450 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2451 			/* Inode nodes are sorted in descending size order */
2452 			if (sa->len < sb->len) {
2453 				ubifs_err(c, "smaller inode node goes first");
2454 				goto error_dump;
2455 			}
2456 			continue;
2457 		}
2458 
2459 		/*
2460 		 * This is either a dentry or xentry, which should be sorted in
2461 		 * ascending (parent ino, hash) order.
2462 		 */
2463 		inuma = key_inum(c, &sa->key);
2464 		inumb = key_inum(c, &sb->key);
2465 
2466 		if (inuma < inumb)
2467 			continue;
2468 		if (inuma > inumb) {
2469 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2470 				  (unsigned long)inuma, (unsigned long)inumb);
2471 			goto error_dump;
2472 		}
2473 
2474 		hasha = key_block(c, &sa->key);
2475 		hashb = key_block(c, &sb->key);
2476 
2477 		if (hasha > hashb) {
2478 			ubifs_err(c, "larger hash %u goes before %u",
2479 				  hasha, hashb);
2480 			goto error_dump;
2481 		}
2482 	}
2483 
2484 	return 0;
2485 
2486 error_dump:
2487 	ubifs_msg(c, "dumping first node");
2488 	ubifs_dump_node(c, sa->node);
2489 	ubifs_msg(c, "dumping second node");
2490 	ubifs_dump_node(c, sb->node);
2491 	return -EINVAL;
2492 	return 0;
2493 }
2494 
chance(unsigned int n,unsigned int out_of)2495 static inline int chance(unsigned int n, unsigned int out_of)
2496 {
2497 	return !!((prandom_u32() % out_of) + 1 <= n);
2498 
2499 }
2500 
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2501 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2502 {
2503 	struct ubifs_debug_info *d = c->dbg;
2504 
2505 	ubifs_assert(dbg_is_tst_rcvry(c));
2506 
2507 	if (!d->pc_cnt) {
2508 		/* First call - decide delay to the power cut */
2509 		if (chance(1, 2)) {
2510 			unsigned long delay;
2511 
2512 			if (chance(1, 2)) {
2513 				d->pc_delay = 1;
2514 				/* Fail within 1 minute */
2515 				delay = prandom_u32() % 60000;
2516 				d->pc_timeout = jiffies;
2517 				d->pc_timeout += msecs_to_jiffies(delay);
2518 				ubifs_warn(c, "failing after %lums", delay);
2519 			} else {
2520 				d->pc_delay = 2;
2521 				delay = prandom_u32() % 10000;
2522 				/* Fail within 10000 operations */
2523 				d->pc_cnt_max = delay;
2524 				ubifs_warn(c, "failing after %lu calls", delay);
2525 			}
2526 		}
2527 
2528 		d->pc_cnt += 1;
2529 	}
2530 
2531 	/* Determine if failure delay has expired */
2532 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2533 			return 0;
2534 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2535 			return 0;
2536 
2537 	if (lnum == UBIFS_SB_LNUM) {
2538 		if (write && chance(1, 2))
2539 			return 0;
2540 		if (chance(19, 20))
2541 			return 0;
2542 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2543 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2544 		if (chance(19, 20))
2545 			return 0;
2546 		ubifs_warn(c, "failing in master LEB %d", lnum);
2547 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2548 		if (write && chance(99, 100))
2549 			return 0;
2550 		if (chance(399, 400))
2551 			return 0;
2552 		ubifs_warn(c, "failing in log LEB %d", lnum);
2553 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2554 		if (write && chance(7, 8))
2555 			return 0;
2556 		if (chance(19, 20))
2557 			return 0;
2558 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2559 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2560 		if (write && chance(1, 2))
2561 			return 0;
2562 		if (chance(9, 10))
2563 			return 0;
2564 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2565 	} else if (lnum == c->ihead_lnum) {
2566 		if (chance(99, 100))
2567 			return 0;
2568 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2569 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2570 		if (chance(9, 10))
2571 			return 0;
2572 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2573 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2574 		   !ubifs_search_bud(c, lnum)) {
2575 		if (chance(19, 20))
2576 			return 0;
2577 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2578 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2579 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2580 		if (chance(999, 1000))
2581 			return 0;
2582 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2583 	} else {
2584 		if (chance(9999, 10000))
2585 			return 0;
2586 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2587 	}
2588 
2589 	d->pc_happened = 1;
2590 	ubifs_warn(c, "========== Power cut emulated ==========");
2591 	dump_stack();
2592 	return 1;
2593 }
2594 
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2595 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2596 			unsigned int len)
2597 {
2598 	unsigned int from, to, ffs = chance(1, 2);
2599 	unsigned char *p = (void *)buf;
2600 
2601 	from = prandom_u32() % len;
2602 	/* Corruption span max to end of write unit */
2603 	to = min(len, ALIGN(from + 1, c->max_write_size));
2604 
2605 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2606 		   ffs ? "0xFFs" : "random data");
2607 
2608 	if (ffs)
2609 		memset(p + from, 0xFF, to - from);
2610 	else
2611 		prandom_bytes(p + from, to - from);
2612 
2613 	return to;
2614 }
2615 
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2616 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2617 		  int offs, int len)
2618 {
2619 	int err, failing;
2620 
2621 	if (c->dbg->pc_happened)
2622 		return -EROFS;
2623 
2624 	failing = power_cut_emulated(c, lnum, 1);
2625 	if (failing) {
2626 		len = corrupt_data(c, buf, len);
2627 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2628 			   len, lnum, offs);
2629 	}
2630 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2631 	if (err)
2632 		return err;
2633 	if (failing)
2634 		return -EROFS;
2635 	return 0;
2636 }
2637 
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2638 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2639 		   int len)
2640 {
2641 	int err;
2642 
2643 	if (c->dbg->pc_happened)
2644 		return -EROFS;
2645 	if (power_cut_emulated(c, lnum, 1))
2646 		return -EROFS;
2647 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2648 	if (err)
2649 		return err;
2650 	if (power_cut_emulated(c, lnum, 1))
2651 		return -EROFS;
2652 	return 0;
2653 }
2654 
dbg_leb_unmap(struct ubifs_info * c,int lnum)2655 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2656 {
2657 	int err;
2658 
2659 	if (c->dbg->pc_happened)
2660 		return -EROFS;
2661 	if (power_cut_emulated(c, lnum, 0))
2662 		return -EROFS;
2663 	err = ubi_leb_unmap(c->ubi, lnum);
2664 	if (err)
2665 		return err;
2666 	if (power_cut_emulated(c, lnum, 0))
2667 		return -EROFS;
2668 	return 0;
2669 }
2670 
dbg_leb_map(struct ubifs_info * c,int lnum)2671 int dbg_leb_map(struct ubifs_info *c, int lnum)
2672 {
2673 	int err;
2674 
2675 	if (c->dbg->pc_happened)
2676 		return -EROFS;
2677 	if (power_cut_emulated(c, lnum, 0))
2678 		return -EROFS;
2679 	err = ubi_leb_map(c->ubi, lnum);
2680 	if (err)
2681 		return err;
2682 	if (power_cut_emulated(c, lnum, 0))
2683 		return -EROFS;
2684 	return 0;
2685 }
2686 
2687 /*
2688  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2689  * contain the stuff specific to particular file-system mounts.
2690  */
2691 static struct dentry *dfs_rootdir;
2692 
dfs_file_open(struct inode * inode,struct file * file)2693 static int dfs_file_open(struct inode *inode, struct file *file)
2694 {
2695 	file->private_data = inode->i_private;
2696 	return nonseekable_open(inode, file);
2697 }
2698 
2699 /**
2700  * provide_user_output - provide output to the user reading a debugfs file.
2701  * @val: boolean value for the answer
2702  * @u: the buffer to store the answer at
2703  * @count: size of the buffer
2704  * @ppos: position in the @u output buffer
2705  *
2706  * This is a simple helper function which stores @val boolean value in the user
2707  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2708  * bytes written to @u in case of success and a negative error code in case of
2709  * failure.
2710  */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2711 static int provide_user_output(int val, char __user *u, size_t count,
2712 			       loff_t *ppos)
2713 {
2714 	char buf[3];
2715 
2716 	if (val)
2717 		buf[0] = '1';
2718 	else
2719 		buf[0] = '0';
2720 	buf[1] = '\n';
2721 	buf[2] = 0x00;
2722 
2723 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2724 }
2725 
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2726 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2727 			     loff_t *ppos)
2728 {
2729 	struct dentry *dent = file->f_path.dentry;
2730 	struct ubifs_info *c = file->private_data;
2731 	struct ubifs_debug_info *d = c->dbg;
2732 	int val;
2733 
2734 	if (dent == d->dfs_chk_gen)
2735 		val = d->chk_gen;
2736 	else if (dent == d->dfs_chk_index)
2737 		val = d->chk_index;
2738 	else if (dent == d->dfs_chk_orph)
2739 		val = d->chk_orph;
2740 	else if (dent == d->dfs_chk_lprops)
2741 		val = d->chk_lprops;
2742 	else if (dent == d->dfs_chk_fs)
2743 		val = d->chk_fs;
2744 	else if (dent == d->dfs_tst_rcvry)
2745 		val = d->tst_rcvry;
2746 	else if (dent == d->dfs_ro_error)
2747 		val = c->ro_error;
2748 	else
2749 		return -EINVAL;
2750 
2751 	return provide_user_output(val, u, count, ppos);
2752 }
2753 
2754 /**
2755  * interpret_user_input - interpret user debugfs file input.
2756  * @u: user-provided buffer with the input
2757  * @count: buffer size
2758  *
2759  * This is a helper function which interpret user input to a boolean UBIFS
2760  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2761  * in case of failure.
2762  */
interpret_user_input(const char __user * u,size_t count)2763 static int interpret_user_input(const char __user *u, size_t count)
2764 {
2765 	size_t buf_size;
2766 	char buf[8];
2767 
2768 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2769 	if (copy_from_user(buf, u, buf_size))
2770 		return -EFAULT;
2771 
2772 	if (buf[0] == '1')
2773 		return 1;
2774 	else if (buf[0] == '0')
2775 		return 0;
2776 
2777 	return -EINVAL;
2778 }
2779 
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2780 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2781 			      size_t count, loff_t *ppos)
2782 {
2783 	struct ubifs_info *c = file->private_data;
2784 	struct ubifs_debug_info *d = c->dbg;
2785 	struct dentry *dent = file->f_path.dentry;
2786 	int val;
2787 
2788 	/*
2789 	 * TODO: this is racy - the file-system might have already been
2790 	 * unmounted and we'd oops in this case. The plan is to fix it with
2791 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2792 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2793 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2794 	 * superblocks and fine the one with the same UUID, and take the
2795 	 * locking right.
2796 	 *
2797 	 * The other way to go suggested by Al Viro is to create a separate
2798 	 * 'ubifs-debug' file-system instead.
2799 	 */
2800 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2801 		ubifs_dump_lprops(c);
2802 		return count;
2803 	}
2804 	if (file->f_path.dentry == d->dfs_dump_budg) {
2805 		ubifs_dump_budg(c, &c->bi);
2806 		return count;
2807 	}
2808 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2809 		mutex_lock(&c->tnc_mutex);
2810 		ubifs_dump_tnc(c);
2811 		mutex_unlock(&c->tnc_mutex);
2812 		return count;
2813 	}
2814 
2815 	val = interpret_user_input(u, count);
2816 	if (val < 0)
2817 		return val;
2818 
2819 	if (dent == d->dfs_chk_gen)
2820 		d->chk_gen = val;
2821 	else if (dent == d->dfs_chk_index)
2822 		d->chk_index = val;
2823 	else if (dent == d->dfs_chk_orph)
2824 		d->chk_orph = val;
2825 	else if (dent == d->dfs_chk_lprops)
2826 		d->chk_lprops = val;
2827 	else if (dent == d->dfs_chk_fs)
2828 		d->chk_fs = val;
2829 	else if (dent == d->dfs_tst_rcvry)
2830 		d->tst_rcvry = val;
2831 	else if (dent == d->dfs_ro_error)
2832 		c->ro_error = !!val;
2833 	else
2834 		return -EINVAL;
2835 
2836 	return count;
2837 }
2838 
2839 static const struct file_operations dfs_fops = {
2840 	.open = dfs_file_open,
2841 	.read = dfs_file_read,
2842 	.write = dfs_file_write,
2843 	.owner = THIS_MODULE,
2844 	.llseek = no_llseek,
2845 };
2846 
2847 /**
2848  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2849  * @c: UBIFS file-system description object
2850  *
2851  * This function creates all debugfs files for this instance of UBIFS. Returns
2852  * zero in case of success and a negative error code in case of failure.
2853  *
2854  * Note, the only reason we have not merged this function with the
2855  * 'ubifs_debugging_init()' function is because it is better to initialize
2856  * debugfs interfaces at the very end of the mount process, and remove them at
2857  * the very beginning of the mount process.
2858  */
dbg_debugfs_init_fs(struct ubifs_info * c)2859 int dbg_debugfs_init_fs(struct ubifs_info *c)
2860 {
2861 	int err, n;
2862 	const char *fname;
2863 	struct dentry *dent;
2864 	struct ubifs_debug_info *d = c->dbg;
2865 
2866 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2867 		return 0;
2868 
2869 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2870 		     c->vi.ubi_num, c->vi.vol_id);
2871 	if (n == UBIFS_DFS_DIR_LEN) {
2872 		/* The array size is too small */
2873 		fname = UBIFS_DFS_DIR_NAME;
2874 		dent = ERR_PTR(-EINVAL);
2875 		goto out;
2876 	}
2877 
2878 	fname = d->dfs_dir_name;
2879 	dent = debugfs_create_dir(fname, dfs_rootdir);
2880 	if (IS_ERR_OR_NULL(dent))
2881 		goto out;
2882 	d->dfs_dir = dent;
2883 
2884 	fname = "dump_lprops";
2885 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2886 	if (IS_ERR_OR_NULL(dent))
2887 		goto out_remove;
2888 	d->dfs_dump_lprops = dent;
2889 
2890 	fname = "dump_budg";
2891 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2892 	if (IS_ERR_OR_NULL(dent))
2893 		goto out_remove;
2894 	d->dfs_dump_budg = dent;
2895 
2896 	fname = "dump_tnc";
2897 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2898 	if (IS_ERR_OR_NULL(dent))
2899 		goto out_remove;
2900 	d->dfs_dump_tnc = dent;
2901 
2902 	fname = "chk_general";
2903 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2904 				   &dfs_fops);
2905 	if (IS_ERR_OR_NULL(dent))
2906 		goto out_remove;
2907 	d->dfs_chk_gen = dent;
2908 
2909 	fname = "chk_index";
2910 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2911 				   &dfs_fops);
2912 	if (IS_ERR_OR_NULL(dent))
2913 		goto out_remove;
2914 	d->dfs_chk_index = dent;
2915 
2916 	fname = "chk_orphans";
2917 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2918 				   &dfs_fops);
2919 	if (IS_ERR_OR_NULL(dent))
2920 		goto out_remove;
2921 	d->dfs_chk_orph = dent;
2922 
2923 	fname = "chk_lprops";
2924 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2925 				   &dfs_fops);
2926 	if (IS_ERR_OR_NULL(dent))
2927 		goto out_remove;
2928 	d->dfs_chk_lprops = dent;
2929 
2930 	fname = "chk_fs";
2931 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2932 				   &dfs_fops);
2933 	if (IS_ERR_OR_NULL(dent))
2934 		goto out_remove;
2935 	d->dfs_chk_fs = dent;
2936 
2937 	fname = "tst_recovery";
2938 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2939 				   &dfs_fops);
2940 	if (IS_ERR_OR_NULL(dent))
2941 		goto out_remove;
2942 	d->dfs_tst_rcvry = dent;
2943 
2944 	fname = "ro_error";
2945 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2946 				   &dfs_fops);
2947 	if (IS_ERR_OR_NULL(dent))
2948 		goto out_remove;
2949 	d->dfs_ro_error = dent;
2950 
2951 	return 0;
2952 
2953 out_remove:
2954 	debugfs_remove_recursive(d->dfs_dir);
2955 out:
2956 	err = dent ? PTR_ERR(dent) : -ENODEV;
2957 	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2958 		  fname, err);
2959 	return err;
2960 }
2961 
2962 /**
2963  * dbg_debugfs_exit_fs - remove all debugfs files.
2964  * @c: UBIFS file-system description object
2965  */
dbg_debugfs_exit_fs(struct ubifs_info * c)2966 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2967 {
2968 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2969 		debugfs_remove_recursive(c->dbg->dfs_dir);
2970 }
2971 
2972 struct ubifs_global_debug_info ubifs_dbg;
2973 
2974 static struct dentry *dfs_chk_gen;
2975 static struct dentry *dfs_chk_index;
2976 static struct dentry *dfs_chk_orph;
2977 static struct dentry *dfs_chk_lprops;
2978 static struct dentry *dfs_chk_fs;
2979 static struct dentry *dfs_tst_rcvry;
2980 
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2981 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2982 				    size_t count, loff_t *ppos)
2983 {
2984 	struct dentry *dent = file->f_path.dentry;
2985 	int val;
2986 
2987 	if (dent == dfs_chk_gen)
2988 		val = ubifs_dbg.chk_gen;
2989 	else if (dent == dfs_chk_index)
2990 		val = ubifs_dbg.chk_index;
2991 	else if (dent == dfs_chk_orph)
2992 		val = ubifs_dbg.chk_orph;
2993 	else if (dent == dfs_chk_lprops)
2994 		val = ubifs_dbg.chk_lprops;
2995 	else if (dent == dfs_chk_fs)
2996 		val = ubifs_dbg.chk_fs;
2997 	else if (dent == dfs_tst_rcvry)
2998 		val = ubifs_dbg.tst_rcvry;
2999 	else
3000 		return -EINVAL;
3001 
3002 	return provide_user_output(val, u, count, ppos);
3003 }
3004 
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)3005 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3006 				     size_t count, loff_t *ppos)
3007 {
3008 	struct dentry *dent = file->f_path.dentry;
3009 	int val;
3010 
3011 	val = interpret_user_input(u, count);
3012 	if (val < 0)
3013 		return val;
3014 
3015 	if (dent == dfs_chk_gen)
3016 		ubifs_dbg.chk_gen = val;
3017 	else if (dent == dfs_chk_index)
3018 		ubifs_dbg.chk_index = val;
3019 	else if (dent == dfs_chk_orph)
3020 		ubifs_dbg.chk_orph = val;
3021 	else if (dent == dfs_chk_lprops)
3022 		ubifs_dbg.chk_lprops = val;
3023 	else if (dent == dfs_chk_fs)
3024 		ubifs_dbg.chk_fs = val;
3025 	else if (dent == dfs_tst_rcvry)
3026 		ubifs_dbg.tst_rcvry = val;
3027 	else
3028 		return -EINVAL;
3029 
3030 	return count;
3031 }
3032 
3033 static const struct file_operations dfs_global_fops = {
3034 	.read = dfs_global_file_read,
3035 	.write = dfs_global_file_write,
3036 	.owner = THIS_MODULE,
3037 	.llseek = no_llseek,
3038 };
3039 
3040 /**
3041  * dbg_debugfs_init - initialize debugfs file-system.
3042  *
3043  * UBIFS uses debugfs file-system to expose various debugging knobs to
3044  * user-space. This function creates "ubifs" directory in the debugfs
3045  * file-system. Returns zero in case of success and a negative error code in
3046  * case of failure.
3047  */
dbg_debugfs_init(void)3048 int dbg_debugfs_init(void)
3049 {
3050 	int err;
3051 	const char *fname;
3052 	struct dentry *dent;
3053 
3054 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3055 		return 0;
3056 
3057 	fname = "ubifs";
3058 	dent = debugfs_create_dir(fname, NULL);
3059 	if (IS_ERR_OR_NULL(dent))
3060 		goto out;
3061 	dfs_rootdir = dent;
3062 
3063 	fname = "chk_general";
3064 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3065 				   &dfs_global_fops);
3066 	if (IS_ERR_OR_NULL(dent))
3067 		goto out_remove;
3068 	dfs_chk_gen = dent;
3069 
3070 	fname = "chk_index";
3071 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3072 				   &dfs_global_fops);
3073 	if (IS_ERR_OR_NULL(dent))
3074 		goto out_remove;
3075 	dfs_chk_index = dent;
3076 
3077 	fname = "chk_orphans";
3078 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3079 				   &dfs_global_fops);
3080 	if (IS_ERR_OR_NULL(dent))
3081 		goto out_remove;
3082 	dfs_chk_orph = dent;
3083 
3084 	fname = "chk_lprops";
3085 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3086 				   &dfs_global_fops);
3087 	if (IS_ERR_OR_NULL(dent))
3088 		goto out_remove;
3089 	dfs_chk_lprops = dent;
3090 
3091 	fname = "chk_fs";
3092 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3093 				   &dfs_global_fops);
3094 	if (IS_ERR_OR_NULL(dent))
3095 		goto out_remove;
3096 	dfs_chk_fs = dent;
3097 
3098 	fname = "tst_recovery";
3099 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3100 				   &dfs_global_fops);
3101 	if (IS_ERR_OR_NULL(dent))
3102 		goto out_remove;
3103 	dfs_tst_rcvry = dent;
3104 
3105 	return 0;
3106 
3107 out_remove:
3108 	debugfs_remove_recursive(dfs_rootdir);
3109 out:
3110 	err = dent ? PTR_ERR(dent) : -ENODEV;
3111 	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3112 	       current->pid, fname, err);
3113 	return err;
3114 }
3115 
3116 /**
3117  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3118  */
dbg_debugfs_exit(void)3119 void dbg_debugfs_exit(void)
3120 {
3121 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3122 		debugfs_remove_recursive(dfs_rootdir);
3123 }
3124 
3125 /**
3126  * ubifs_debugging_init - initialize UBIFS debugging.
3127  * @c: UBIFS file-system description object
3128  *
3129  * This function initializes debugging-related data for the file system.
3130  * Returns zero in case of success and a negative error code in case of
3131  * failure.
3132  */
ubifs_debugging_init(struct ubifs_info * c)3133 int ubifs_debugging_init(struct ubifs_info *c)
3134 {
3135 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3136 	if (!c->dbg)
3137 		return -ENOMEM;
3138 
3139 	return 0;
3140 }
3141 
3142 /**
3143  * ubifs_debugging_exit - free debugging data.
3144  * @c: UBIFS file-system description object
3145  */
ubifs_debugging_exit(struct ubifs_info * c)3146 void ubifs_debugging_exit(struct ubifs_info *c)
3147 {
3148 	kfree(c->dbg);
3149 }
3150 #endif
3151