1*4882a593Smuzhiyun /* 2*4882a593Smuzhiyun * Copyright (c) International Business Machines Corp., 2006 3*4882a593Smuzhiyun * 4*4882a593Smuzhiyun * SPDX-License-Identifier: GPL-2.0+ 5*4882a593Smuzhiyun * 6*4882a593Smuzhiyun * Authors: Artem Bityutskiy (Битюцкий Артём) 7*4882a593Smuzhiyun * Thomas Gleixner 8*4882a593Smuzhiyun * Frank Haverkamp 9*4882a593Smuzhiyun * Oliver Lohmann 10*4882a593Smuzhiyun * Andreas Arnez 11*4882a593Smuzhiyun */ 12*4882a593Smuzhiyun 13*4882a593Smuzhiyun /* 14*4882a593Smuzhiyun * This file defines the layout of UBI headers and all the other UBI on-flash 15*4882a593Smuzhiyun * data structures. 16*4882a593Smuzhiyun */ 17*4882a593Smuzhiyun 18*4882a593Smuzhiyun #ifndef __UBI_MEDIA_H__ 19*4882a593Smuzhiyun #define __UBI_MEDIA_H__ 20*4882a593Smuzhiyun 21*4882a593Smuzhiyun #include <asm/byteorder.h> 22*4882a593Smuzhiyun 23*4882a593Smuzhiyun /* The version of UBI images supported by this implementation */ 24*4882a593Smuzhiyun #define UBI_VERSION 1 25*4882a593Smuzhiyun 26*4882a593Smuzhiyun /* The highest erase counter value supported by this implementation */ 27*4882a593Smuzhiyun #define UBI_MAX_ERASECOUNTER 0x7FFFFFFF 28*4882a593Smuzhiyun 29*4882a593Smuzhiyun /* The initial CRC32 value used when calculating CRC checksums */ 30*4882a593Smuzhiyun #define UBI_CRC32_INIT 0xFFFFFFFFU 31*4882a593Smuzhiyun 32*4882a593Smuzhiyun /* Erase counter header magic number (ASCII "UBI#") */ 33*4882a593Smuzhiyun #define UBI_EC_HDR_MAGIC 0x55424923 34*4882a593Smuzhiyun /* Volume identifier header magic number (ASCII "UBI!") */ 35*4882a593Smuzhiyun #define UBI_VID_HDR_MAGIC 0x55424921 36*4882a593Smuzhiyun 37*4882a593Smuzhiyun /* 38*4882a593Smuzhiyun * Volume type constants used in the volume identifier header. 39*4882a593Smuzhiyun * 40*4882a593Smuzhiyun * @UBI_VID_DYNAMIC: dynamic volume 41*4882a593Smuzhiyun * @UBI_VID_STATIC: static volume 42*4882a593Smuzhiyun */ 43*4882a593Smuzhiyun enum { 44*4882a593Smuzhiyun UBI_VID_DYNAMIC = 1, 45*4882a593Smuzhiyun UBI_VID_STATIC = 2 46*4882a593Smuzhiyun }; 47*4882a593Smuzhiyun 48*4882a593Smuzhiyun /* 49*4882a593Smuzhiyun * Volume flags used in the volume table record. 50*4882a593Smuzhiyun * 51*4882a593Smuzhiyun * @UBI_VTBL_AUTORESIZE_FLG: auto-resize this volume 52*4882a593Smuzhiyun * 53*4882a593Smuzhiyun * %UBI_VTBL_AUTORESIZE_FLG flag can be set only for one volume in the volume 54*4882a593Smuzhiyun * table. UBI automatically re-sizes the volume which has this flag and makes 55*4882a593Smuzhiyun * the volume to be of largest possible size. This means that if after the 56*4882a593Smuzhiyun * initialization UBI finds out that there are available physical eraseblocks 57*4882a593Smuzhiyun * present on the device, it automatically appends all of them to the volume 58*4882a593Smuzhiyun * (the physical eraseblocks reserved for bad eraseblocks handling and other 59*4882a593Smuzhiyun * reserved physical eraseblocks are not taken). So, if there is a volume with 60*4882a593Smuzhiyun * the %UBI_VTBL_AUTORESIZE_FLG flag set, the amount of available logical 61*4882a593Smuzhiyun * eraseblocks will be zero after UBI is loaded, because all of them will be 62*4882a593Smuzhiyun * reserved for this volume. Note, the %UBI_VTBL_AUTORESIZE_FLG bit is cleared 63*4882a593Smuzhiyun * after the volume had been initialized. 64*4882a593Smuzhiyun * 65*4882a593Smuzhiyun * The auto-resize feature is useful for device production purposes. For 66*4882a593Smuzhiyun * example, different NAND flash chips may have different amount of initial bad 67*4882a593Smuzhiyun * eraseblocks, depending of particular chip instance. Manufacturers of NAND 68*4882a593Smuzhiyun * chips usually guarantee that the amount of initial bad eraseblocks does not 69*4882a593Smuzhiyun * exceed certain percent, e.g. 2%. When one creates an UBI image which will be 70*4882a593Smuzhiyun * flashed to the end devices in production, he does not know the exact amount 71*4882a593Smuzhiyun * of good physical eraseblocks the NAND chip on the device will have, but this 72*4882a593Smuzhiyun * number is required to calculate the volume sized and put them to the volume 73*4882a593Smuzhiyun * table of the UBI image. In this case, one of the volumes (e.g., the one 74*4882a593Smuzhiyun * which will store the root file system) is marked as "auto-resizable", and 75*4882a593Smuzhiyun * UBI will adjust its size on the first boot if needed. 76*4882a593Smuzhiyun * 77*4882a593Smuzhiyun * Note, first UBI reserves some amount of physical eraseblocks for bad 78*4882a593Smuzhiyun * eraseblock handling, and then re-sizes the volume, not vice-versa. This 79*4882a593Smuzhiyun * means that the pool of reserved physical eraseblocks will always be present. 80*4882a593Smuzhiyun */ 81*4882a593Smuzhiyun enum { 82*4882a593Smuzhiyun UBI_VTBL_AUTORESIZE_FLG = 0x01, 83*4882a593Smuzhiyun }; 84*4882a593Smuzhiyun 85*4882a593Smuzhiyun /* 86*4882a593Smuzhiyun * Compatibility constants used by internal volumes. 87*4882a593Smuzhiyun * 88*4882a593Smuzhiyun * @UBI_COMPAT_DELETE: delete this internal volume before anything is written 89*4882a593Smuzhiyun * to the flash 90*4882a593Smuzhiyun * @UBI_COMPAT_RO: attach this device in read-only mode 91*4882a593Smuzhiyun * @UBI_COMPAT_PRESERVE: preserve this internal volume - do not touch its 92*4882a593Smuzhiyun * physical eraseblocks, don't allow the wear-leveling 93*4882a593Smuzhiyun * sub-system to move them 94*4882a593Smuzhiyun * @UBI_COMPAT_REJECT: reject this UBI image 95*4882a593Smuzhiyun */ 96*4882a593Smuzhiyun enum { 97*4882a593Smuzhiyun UBI_COMPAT_DELETE = 1, 98*4882a593Smuzhiyun UBI_COMPAT_RO = 2, 99*4882a593Smuzhiyun UBI_COMPAT_PRESERVE = 4, 100*4882a593Smuzhiyun UBI_COMPAT_REJECT = 5 101*4882a593Smuzhiyun }; 102*4882a593Smuzhiyun 103*4882a593Smuzhiyun /* Sizes of UBI headers */ 104*4882a593Smuzhiyun #define UBI_EC_HDR_SIZE sizeof(struct ubi_ec_hdr) 105*4882a593Smuzhiyun #define UBI_VID_HDR_SIZE sizeof(struct ubi_vid_hdr) 106*4882a593Smuzhiyun 107*4882a593Smuzhiyun /* Sizes of UBI headers without the ending CRC */ 108*4882a593Smuzhiyun #define UBI_EC_HDR_SIZE_CRC (UBI_EC_HDR_SIZE - sizeof(__be32)) 109*4882a593Smuzhiyun #define UBI_VID_HDR_SIZE_CRC (UBI_VID_HDR_SIZE - sizeof(__be32)) 110*4882a593Smuzhiyun 111*4882a593Smuzhiyun /** 112*4882a593Smuzhiyun * struct ubi_ec_hdr - UBI erase counter header. 113*4882a593Smuzhiyun * @magic: erase counter header magic number (%UBI_EC_HDR_MAGIC) 114*4882a593Smuzhiyun * @version: version of UBI implementation which is supposed to accept this 115*4882a593Smuzhiyun * UBI image 116*4882a593Smuzhiyun * @padding1: reserved for future, zeroes 117*4882a593Smuzhiyun * @ec: the erase counter 118*4882a593Smuzhiyun * @vid_hdr_offset: where the VID header starts 119*4882a593Smuzhiyun * @data_offset: where the user data start 120*4882a593Smuzhiyun * @image_seq: image sequence number 121*4882a593Smuzhiyun * @padding2: reserved for future, zeroes 122*4882a593Smuzhiyun * @hdr_crc: erase counter header CRC checksum 123*4882a593Smuzhiyun * 124*4882a593Smuzhiyun * The erase counter header takes 64 bytes and has a plenty of unused space for 125*4882a593Smuzhiyun * future usage. The unused fields are zeroed. The @version field is used to 126*4882a593Smuzhiyun * indicate the version of UBI implementation which is supposed to be able to 127*4882a593Smuzhiyun * work with this UBI image. If @version is greater than the current UBI 128*4882a593Smuzhiyun * version, the image is rejected. This may be useful in future if something 129*4882a593Smuzhiyun * is changed radically. This field is duplicated in the volume identifier 130*4882a593Smuzhiyun * header. 131*4882a593Smuzhiyun * 132*4882a593Smuzhiyun * The @vid_hdr_offset and @data_offset fields contain the offset of the the 133*4882a593Smuzhiyun * volume identifier header and user data, relative to the beginning of the 134*4882a593Smuzhiyun * physical eraseblock. These values have to be the same for all physical 135*4882a593Smuzhiyun * eraseblocks. 136*4882a593Smuzhiyun * 137*4882a593Smuzhiyun * The @image_seq field is used to validate a UBI image that has been prepared 138*4882a593Smuzhiyun * for a UBI device. The @image_seq value can be any value, but it must be the 139*4882a593Smuzhiyun * same on all eraseblocks. UBI will ensure that all new erase counter headers 140*4882a593Smuzhiyun * also contain this value, and will check the value when attaching the flash. 141*4882a593Smuzhiyun * One way to make use of @image_seq is to increase its value by one every time 142*4882a593Smuzhiyun * an image is flashed over an existing image, then, if the flashing does not 143*4882a593Smuzhiyun * complete, UBI will detect the error when attaching the media. 144*4882a593Smuzhiyun */ 145*4882a593Smuzhiyun struct ubi_ec_hdr { 146*4882a593Smuzhiyun __be32 magic; 147*4882a593Smuzhiyun __u8 version; 148*4882a593Smuzhiyun __u8 padding1[3]; 149*4882a593Smuzhiyun __be64 ec; /* Warning: the current limit is 31-bit anyway! */ 150*4882a593Smuzhiyun __be32 vid_hdr_offset; 151*4882a593Smuzhiyun __be32 data_offset; 152*4882a593Smuzhiyun __be32 image_seq; 153*4882a593Smuzhiyun __u8 padding2[32]; 154*4882a593Smuzhiyun __be32 hdr_crc; 155*4882a593Smuzhiyun } __packed; 156*4882a593Smuzhiyun 157*4882a593Smuzhiyun /** 158*4882a593Smuzhiyun * struct ubi_vid_hdr - on-flash UBI volume identifier header. 159*4882a593Smuzhiyun * @magic: volume identifier header magic number (%UBI_VID_HDR_MAGIC) 160*4882a593Smuzhiyun * @version: UBI implementation version which is supposed to accept this UBI 161*4882a593Smuzhiyun * image (%UBI_VERSION) 162*4882a593Smuzhiyun * @vol_type: volume type (%UBI_VID_DYNAMIC or %UBI_VID_STATIC) 163*4882a593Smuzhiyun * @copy_flag: if this logical eraseblock was copied from another physical 164*4882a593Smuzhiyun * eraseblock (for wear-leveling reasons) 165*4882a593Smuzhiyun * @compat: compatibility of this volume (%0, %UBI_COMPAT_DELETE, 166*4882a593Smuzhiyun * %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT) 167*4882a593Smuzhiyun * @vol_id: ID of this volume 168*4882a593Smuzhiyun * @lnum: logical eraseblock number 169*4882a593Smuzhiyun * @padding1: reserved for future, zeroes 170*4882a593Smuzhiyun * @data_size: how many bytes of data this logical eraseblock contains 171*4882a593Smuzhiyun * @used_ebs: total number of used logical eraseblocks in this volume 172*4882a593Smuzhiyun * @data_pad: how many bytes at the end of this physical eraseblock are not 173*4882a593Smuzhiyun * used 174*4882a593Smuzhiyun * @data_crc: CRC checksum of the data stored in this logical eraseblock 175*4882a593Smuzhiyun * @padding2: reserved for future, zeroes 176*4882a593Smuzhiyun * @sqnum: sequence number 177*4882a593Smuzhiyun * @padding3: reserved for future, zeroes 178*4882a593Smuzhiyun * @hdr_crc: volume identifier header CRC checksum 179*4882a593Smuzhiyun * 180*4882a593Smuzhiyun * The @sqnum is the value of the global sequence counter at the time when this 181*4882a593Smuzhiyun * VID header was created. The global sequence counter is incremented each time 182*4882a593Smuzhiyun * UBI writes a new VID header to the flash, i.e. when it maps a logical 183*4882a593Smuzhiyun * eraseblock to a new physical eraseblock. The global sequence counter is an 184*4882a593Smuzhiyun * unsigned 64-bit integer and we assume it never overflows. The @sqnum 185*4882a593Smuzhiyun * (sequence number) is used to distinguish between older and newer versions of 186*4882a593Smuzhiyun * logical eraseblocks. 187*4882a593Smuzhiyun * 188*4882a593Smuzhiyun * There are 2 situations when there may be more than one physical eraseblock 189*4882a593Smuzhiyun * corresponding to the same logical eraseblock, i.e., having the same @vol_id 190*4882a593Smuzhiyun * and @lnum values in the volume identifier header. Suppose we have a logical 191*4882a593Smuzhiyun * eraseblock L and it is mapped to the physical eraseblock P. 192*4882a593Smuzhiyun * 193*4882a593Smuzhiyun * 1. Because UBI may erase physical eraseblocks asynchronously, the following 194*4882a593Smuzhiyun * situation is possible: L is asynchronously erased, so P is scheduled for 195*4882a593Smuzhiyun * erasure, then L is written to,i.e. mapped to another physical eraseblock P1, 196*4882a593Smuzhiyun * so P1 is written to, then an unclean reboot happens. Result - there are 2 197*4882a593Smuzhiyun * physical eraseblocks P and P1 corresponding to the same logical eraseblock 198*4882a593Smuzhiyun * L. But P1 has greater sequence number, so UBI picks P1 when it attaches the 199*4882a593Smuzhiyun * flash. 200*4882a593Smuzhiyun * 201*4882a593Smuzhiyun * 2. From time to time UBI moves logical eraseblocks to other physical 202*4882a593Smuzhiyun * eraseblocks for wear-leveling reasons. If, for example, UBI moves L from P 203*4882a593Smuzhiyun * to P1, and an unclean reboot happens before P is physically erased, there 204*4882a593Smuzhiyun * are two physical eraseblocks P and P1 corresponding to L and UBI has to 205*4882a593Smuzhiyun * select one of them when the flash is attached. The @sqnum field says which 206*4882a593Smuzhiyun * PEB is the original (obviously P will have lower @sqnum) and the copy. But 207*4882a593Smuzhiyun * it is not enough to select the physical eraseblock with the higher sequence 208*4882a593Smuzhiyun * number, because the unclean reboot could have happen in the middle of the 209*4882a593Smuzhiyun * copying process, so the data in P is corrupted. It is also not enough to 210*4882a593Smuzhiyun * just select the physical eraseblock with lower sequence number, because the 211*4882a593Smuzhiyun * data there may be old (consider a case if more data was added to P1 after 212*4882a593Smuzhiyun * the copying). Moreover, the unclean reboot may happen when the erasure of P 213*4882a593Smuzhiyun * was just started, so it result in unstable P, which is "mostly" OK, but 214*4882a593Smuzhiyun * still has unstable bits. 215*4882a593Smuzhiyun * 216*4882a593Smuzhiyun * UBI uses the @copy_flag field to indicate that this logical eraseblock is a 217*4882a593Smuzhiyun * copy. UBI also calculates data CRC when the data is moved and stores it at 218*4882a593Smuzhiyun * the @data_crc field of the copy (P1). So when UBI needs to pick one physical 219*4882a593Smuzhiyun * eraseblock of two (P or P1), the @copy_flag of the newer one (P1) is 220*4882a593Smuzhiyun * examined. If it is cleared, the situation* is simple and the newer one is 221*4882a593Smuzhiyun * picked. If it is set, the data CRC of the copy (P1) is examined. If the CRC 222*4882a593Smuzhiyun * checksum is correct, this physical eraseblock is selected (P1). Otherwise 223*4882a593Smuzhiyun * the older one (P) is selected. 224*4882a593Smuzhiyun * 225*4882a593Smuzhiyun * There are 2 sorts of volumes in UBI: user volumes and internal volumes. 226*4882a593Smuzhiyun * Internal volumes are not seen from outside and are used for various internal 227*4882a593Smuzhiyun * UBI purposes. In this implementation there is only one internal volume - the 228*4882a593Smuzhiyun * layout volume. Internal volumes are the main mechanism of UBI extensions. 229*4882a593Smuzhiyun * For example, in future one may introduce a journal internal volume. Internal 230*4882a593Smuzhiyun * volumes have their own reserved range of IDs. 231*4882a593Smuzhiyun * 232*4882a593Smuzhiyun * The @compat field is only used for internal volumes and contains the "degree 233*4882a593Smuzhiyun * of their compatibility". It is always zero for user volumes. This field 234*4882a593Smuzhiyun * provides a mechanism to introduce UBI extensions and to be still compatible 235*4882a593Smuzhiyun * with older UBI binaries. For example, if someone introduced a journal in 236*4882a593Smuzhiyun * future, he would probably use %UBI_COMPAT_DELETE compatibility for the 237*4882a593Smuzhiyun * journal volume. And in this case, older UBI binaries, which know nothing 238*4882a593Smuzhiyun * about the journal volume, would just delete this volume and work perfectly 239*4882a593Smuzhiyun * fine. This is similar to what Ext2fs does when it is fed by an Ext3fs image 240*4882a593Smuzhiyun * - it just ignores the Ext3fs journal. 241*4882a593Smuzhiyun * 242*4882a593Smuzhiyun * The @data_crc field contains the CRC checksum of the contents of the logical 243*4882a593Smuzhiyun * eraseblock if this is a static volume. In case of dynamic volumes, it does 244*4882a593Smuzhiyun * not contain the CRC checksum as a rule. The only exception is when the 245*4882a593Smuzhiyun * data of the physical eraseblock was moved by the wear-leveling sub-system, 246*4882a593Smuzhiyun * then the wear-leveling sub-system calculates the data CRC and stores it in 247*4882a593Smuzhiyun * the @data_crc field. And of course, the @copy_flag is %in this case. 248*4882a593Smuzhiyun * 249*4882a593Smuzhiyun * The @data_size field is used only for static volumes because UBI has to know 250*4882a593Smuzhiyun * how many bytes of data are stored in this eraseblock. For dynamic volumes, 251*4882a593Smuzhiyun * this field usually contains zero. The only exception is when the data of the 252*4882a593Smuzhiyun * physical eraseblock was moved to another physical eraseblock for 253*4882a593Smuzhiyun * wear-leveling reasons. In this case, UBI calculates CRC checksum of the 254*4882a593Smuzhiyun * contents and uses both @data_crc and @data_size fields. In this case, the 255*4882a593Smuzhiyun * @data_size field contains data size. 256*4882a593Smuzhiyun * 257*4882a593Smuzhiyun * The @used_ebs field is used only for static volumes and indicates how many 258*4882a593Smuzhiyun * eraseblocks the data of the volume takes. For dynamic volumes this field is 259*4882a593Smuzhiyun * not used and always contains zero. 260*4882a593Smuzhiyun * 261*4882a593Smuzhiyun * The @data_pad is calculated when volumes are created using the alignment 262*4882a593Smuzhiyun * parameter. So, effectively, the @data_pad field reduces the size of logical 263*4882a593Smuzhiyun * eraseblocks of this volume. This is very handy when one uses block-oriented 264*4882a593Smuzhiyun * software (say, cramfs) on top of the UBI volume. 265*4882a593Smuzhiyun */ 266*4882a593Smuzhiyun struct ubi_vid_hdr { 267*4882a593Smuzhiyun __be32 magic; 268*4882a593Smuzhiyun __u8 version; 269*4882a593Smuzhiyun __u8 vol_type; 270*4882a593Smuzhiyun __u8 copy_flag; 271*4882a593Smuzhiyun __u8 compat; 272*4882a593Smuzhiyun __be32 vol_id; 273*4882a593Smuzhiyun __be32 lnum; 274*4882a593Smuzhiyun __u8 padding1[4]; 275*4882a593Smuzhiyun __be32 data_size; 276*4882a593Smuzhiyun __be32 used_ebs; 277*4882a593Smuzhiyun __be32 data_pad; 278*4882a593Smuzhiyun __be32 data_crc; 279*4882a593Smuzhiyun __u8 padding2[4]; 280*4882a593Smuzhiyun __be64 sqnum; 281*4882a593Smuzhiyun __u8 padding3[12]; 282*4882a593Smuzhiyun __be32 hdr_crc; 283*4882a593Smuzhiyun } __packed; 284*4882a593Smuzhiyun 285*4882a593Smuzhiyun /* Internal UBI volumes count */ 286*4882a593Smuzhiyun #define UBI_INT_VOL_COUNT 1 287*4882a593Smuzhiyun 288*4882a593Smuzhiyun /* 289*4882a593Smuzhiyun * Starting ID of internal volumes: 0x7fffefff. 290*4882a593Smuzhiyun * There is reserved room for 4096 internal volumes. 291*4882a593Smuzhiyun */ 292*4882a593Smuzhiyun #define UBI_INTERNAL_VOL_START (0x7FFFFFFF - 4096) 293*4882a593Smuzhiyun 294*4882a593Smuzhiyun /* The layout volume contains the volume table */ 295*4882a593Smuzhiyun 296*4882a593Smuzhiyun #define UBI_LAYOUT_VOLUME_ID UBI_INTERNAL_VOL_START 297*4882a593Smuzhiyun #define UBI_LAYOUT_VOLUME_TYPE UBI_VID_DYNAMIC 298*4882a593Smuzhiyun #define UBI_LAYOUT_VOLUME_ALIGN 1 299*4882a593Smuzhiyun #define UBI_LAYOUT_VOLUME_EBS 2 300*4882a593Smuzhiyun #define UBI_LAYOUT_VOLUME_NAME "layout volume" 301*4882a593Smuzhiyun #define UBI_LAYOUT_VOLUME_COMPAT UBI_COMPAT_REJECT 302*4882a593Smuzhiyun 303*4882a593Smuzhiyun /* The maximum number of volumes per one UBI device */ 304*4882a593Smuzhiyun #define UBI_MAX_VOLUMES 128 305*4882a593Smuzhiyun 306*4882a593Smuzhiyun /* The maximum volume name length */ 307*4882a593Smuzhiyun #define UBI_VOL_NAME_MAX 127 308*4882a593Smuzhiyun 309*4882a593Smuzhiyun /* Size of the volume table record */ 310*4882a593Smuzhiyun #define UBI_VTBL_RECORD_SIZE sizeof(struct ubi_vtbl_record) 311*4882a593Smuzhiyun 312*4882a593Smuzhiyun /* Size of the volume table record without the ending CRC */ 313*4882a593Smuzhiyun #define UBI_VTBL_RECORD_SIZE_CRC (UBI_VTBL_RECORD_SIZE - sizeof(__be32)) 314*4882a593Smuzhiyun 315*4882a593Smuzhiyun /** 316*4882a593Smuzhiyun * struct ubi_vtbl_record - a record in the volume table. 317*4882a593Smuzhiyun * @reserved_pebs: how many physical eraseblocks are reserved for this volume 318*4882a593Smuzhiyun * @alignment: volume alignment 319*4882a593Smuzhiyun * @data_pad: how many bytes are unused at the end of the each physical 320*4882a593Smuzhiyun * eraseblock to satisfy the requested alignment 321*4882a593Smuzhiyun * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME) 322*4882a593Smuzhiyun * @upd_marker: if volume update was started but not finished 323*4882a593Smuzhiyun * @name_len: volume name length 324*4882a593Smuzhiyun * @name: the volume name 325*4882a593Smuzhiyun * @flags: volume flags (%UBI_VTBL_AUTORESIZE_FLG) 326*4882a593Smuzhiyun * @padding: reserved, zeroes 327*4882a593Smuzhiyun * @crc: a CRC32 checksum of the record 328*4882a593Smuzhiyun * 329*4882a593Smuzhiyun * The volume table records are stored in the volume table, which is stored in 330*4882a593Smuzhiyun * the layout volume. The layout volume consists of 2 logical eraseblock, each 331*4882a593Smuzhiyun * of which contains a copy of the volume table (i.e., the volume table is 332*4882a593Smuzhiyun * duplicated). The volume table is an array of &struct ubi_vtbl_record 333*4882a593Smuzhiyun * objects indexed by the volume ID. 334*4882a593Smuzhiyun * 335*4882a593Smuzhiyun * If the size of the logical eraseblock is large enough to fit 336*4882a593Smuzhiyun * %UBI_MAX_VOLUMES records, the volume table contains %UBI_MAX_VOLUMES 337*4882a593Smuzhiyun * records. Otherwise, it contains as many records as it can fit (i.e., size of 338*4882a593Smuzhiyun * logical eraseblock divided by sizeof(struct ubi_vtbl_record)). 339*4882a593Smuzhiyun * 340*4882a593Smuzhiyun * The @upd_marker flag is used to implement volume update. It is set to %1 341*4882a593Smuzhiyun * before update and set to %0 after the update. So if the update operation was 342*4882a593Smuzhiyun * interrupted, UBI knows that the volume is corrupted. 343*4882a593Smuzhiyun * 344*4882a593Smuzhiyun * The @alignment field is specified when the volume is created and cannot be 345*4882a593Smuzhiyun * later changed. It may be useful, for example, when a block-oriented file 346*4882a593Smuzhiyun * system works on top of UBI. The @data_pad field is calculated using the 347*4882a593Smuzhiyun * logical eraseblock size and @alignment. The alignment must be multiple to the 348*4882a593Smuzhiyun * minimal flash I/O unit. If @alignment is 1, all the available space of 349*4882a593Smuzhiyun * the physical eraseblocks is used. 350*4882a593Smuzhiyun * 351*4882a593Smuzhiyun * Empty records contain all zeroes and the CRC checksum of those zeroes. 352*4882a593Smuzhiyun */ 353*4882a593Smuzhiyun struct ubi_vtbl_record { 354*4882a593Smuzhiyun __be32 reserved_pebs; 355*4882a593Smuzhiyun __be32 alignment; 356*4882a593Smuzhiyun __be32 data_pad; 357*4882a593Smuzhiyun __u8 vol_type; 358*4882a593Smuzhiyun __u8 upd_marker; 359*4882a593Smuzhiyun __be16 name_len; 360*4882a593Smuzhiyun #ifndef __UBOOT__ 361*4882a593Smuzhiyun __u8 name[UBI_VOL_NAME_MAX+1]; 362*4882a593Smuzhiyun #else 363*4882a593Smuzhiyun char name[UBI_VOL_NAME_MAX+1]; 364*4882a593Smuzhiyun #endif 365*4882a593Smuzhiyun __u8 flags; 366*4882a593Smuzhiyun __u8 padding[23]; 367*4882a593Smuzhiyun __be32 crc; 368*4882a593Smuzhiyun } __packed; 369*4882a593Smuzhiyun 370*4882a593Smuzhiyun /* UBI fastmap on-flash data structures */ 371*4882a593Smuzhiyun 372*4882a593Smuzhiyun #define UBI_FM_SB_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 1) 373*4882a593Smuzhiyun #define UBI_FM_DATA_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 2) 374*4882a593Smuzhiyun 375*4882a593Smuzhiyun /* fastmap on-flash data structure format version */ 376*4882a593Smuzhiyun #define UBI_FM_FMT_VERSION 1 377*4882a593Smuzhiyun 378*4882a593Smuzhiyun #define UBI_FM_SB_MAGIC 0x7B11D69F 379*4882a593Smuzhiyun #define UBI_FM_HDR_MAGIC 0xD4B82EF7 380*4882a593Smuzhiyun #define UBI_FM_VHDR_MAGIC 0xFA370ED1 381*4882a593Smuzhiyun #define UBI_FM_POOL_MAGIC 0x67AF4D08 382*4882a593Smuzhiyun #define UBI_FM_EBA_MAGIC 0xf0c040a8 383*4882a593Smuzhiyun 384*4882a593Smuzhiyun /* A fastmap supber block can be located between PEB 0 and 385*4882a593Smuzhiyun * UBI_FM_MAX_START */ 386*4882a593Smuzhiyun #define UBI_FM_MAX_START 64 387*4882a593Smuzhiyun 388*4882a593Smuzhiyun /* A fastmap can use up to UBI_FM_MAX_BLOCKS PEBs */ 389*4882a593Smuzhiyun #define UBI_FM_MAX_BLOCKS 32 390*4882a593Smuzhiyun 391*4882a593Smuzhiyun /* 5% of the total number of PEBs have to be scanned while attaching 392*4882a593Smuzhiyun * from a fastmap. 393*4882a593Smuzhiyun * But the size of this pool is limited to be between UBI_FM_MIN_POOL_SIZE and 394*4882a593Smuzhiyun * UBI_FM_MAX_POOL_SIZE */ 395*4882a593Smuzhiyun #define UBI_FM_MIN_POOL_SIZE 8 396*4882a593Smuzhiyun #define UBI_FM_MAX_POOL_SIZE 256 397*4882a593Smuzhiyun 398*4882a593Smuzhiyun /** 399*4882a593Smuzhiyun * struct ubi_fm_sb - UBI fastmap super block 400*4882a593Smuzhiyun * @magic: fastmap super block magic number (%UBI_FM_SB_MAGIC) 401*4882a593Smuzhiyun * @version: format version of this fastmap 402*4882a593Smuzhiyun * @data_crc: CRC over the fastmap data 403*4882a593Smuzhiyun * @used_blocks: number of PEBs used by this fastmap 404*4882a593Smuzhiyun * @block_loc: an array containing the location of all PEBs of the fastmap 405*4882a593Smuzhiyun * @block_ec: the erase counter of each used PEB 406*4882a593Smuzhiyun * @sqnum: highest sequence number value at the time while taking the fastmap 407*4882a593Smuzhiyun * 408*4882a593Smuzhiyun */ 409*4882a593Smuzhiyun struct ubi_fm_sb { 410*4882a593Smuzhiyun __be32 magic; 411*4882a593Smuzhiyun __u8 version; 412*4882a593Smuzhiyun __u8 padding1[3]; 413*4882a593Smuzhiyun __be32 data_crc; 414*4882a593Smuzhiyun __be32 used_blocks; 415*4882a593Smuzhiyun __be32 block_loc[UBI_FM_MAX_BLOCKS]; 416*4882a593Smuzhiyun __be32 block_ec[UBI_FM_MAX_BLOCKS]; 417*4882a593Smuzhiyun __be64 sqnum; 418*4882a593Smuzhiyun __u8 padding2[32]; 419*4882a593Smuzhiyun } __packed; 420*4882a593Smuzhiyun 421*4882a593Smuzhiyun /** 422*4882a593Smuzhiyun * struct ubi_fm_hdr - header of the fastmap data set 423*4882a593Smuzhiyun * @magic: fastmap header magic number (%UBI_FM_HDR_MAGIC) 424*4882a593Smuzhiyun * @free_peb_count: number of free PEBs known by this fastmap 425*4882a593Smuzhiyun * @used_peb_count: number of used PEBs known by this fastmap 426*4882a593Smuzhiyun * @scrub_peb_count: number of to be scrubbed PEBs known by this fastmap 427*4882a593Smuzhiyun * @bad_peb_count: number of bad PEBs known by this fastmap 428*4882a593Smuzhiyun * @erase_peb_count: number of bad PEBs which have to be erased 429*4882a593Smuzhiyun * @vol_count: number of UBI volumes known by this fastmap 430*4882a593Smuzhiyun */ 431*4882a593Smuzhiyun struct ubi_fm_hdr { 432*4882a593Smuzhiyun __be32 magic; 433*4882a593Smuzhiyun __be32 free_peb_count; 434*4882a593Smuzhiyun __be32 used_peb_count; 435*4882a593Smuzhiyun __be32 scrub_peb_count; 436*4882a593Smuzhiyun __be32 bad_peb_count; 437*4882a593Smuzhiyun __be32 erase_peb_count; 438*4882a593Smuzhiyun __be32 vol_count; 439*4882a593Smuzhiyun __u8 padding[4]; 440*4882a593Smuzhiyun } __packed; 441*4882a593Smuzhiyun 442*4882a593Smuzhiyun /* struct ubi_fm_hdr is followed by two struct ubi_fm_scan_pool */ 443*4882a593Smuzhiyun 444*4882a593Smuzhiyun /** 445*4882a593Smuzhiyun * struct ubi_fm_scan_pool - Fastmap pool PEBs to be scanned while attaching 446*4882a593Smuzhiyun * @magic: pool magic numer (%UBI_FM_POOL_MAGIC) 447*4882a593Smuzhiyun * @size: current pool size 448*4882a593Smuzhiyun * @max_size: maximal pool size 449*4882a593Smuzhiyun * @pebs: an array containing the location of all PEBs in this pool 450*4882a593Smuzhiyun */ 451*4882a593Smuzhiyun struct ubi_fm_scan_pool { 452*4882a593Smuzhiyun __be32 magic; 453*4882a593Smuzhiyun __be16 size; 454*4882a593Smuzhiyun __be16 max_size; 455*4882a593Smuzhiyun __be32 pebs[UBI_FM_MAX_POOL_SIZE]; 456*4882a593Smuzhiyun __be32 padding[4]; 457*4882a593Smuzhiyun } __packed; 458*4882a593Smuzhiyun 459*4882a593Smuzhiyun /* ubi_fm_scan_pool is followed by nfree+nused struct ubi_fm_ec records */ 460*4882a593Smuzhiyun 461*4882a593Smuzhiyun /** 462*4882a593Smuzhiyun * struct ubi_fm_ec - stores the erase counter of a PEB 463*4882a593Smuzhiyun * @pnum: PEB number 464*4882a593Smuzhiyun * @ec: ec of this PEB 465*4882a593Smuzhiyun */ 466*4882a593Smuzhiyun struct ubi_fm_ec { 467*4882a593Smuzhiyun __be32 pnum; 468*4882a593Smuzhiyun __be32 ec; 469*4882a593Smuzhiyun } __packed; 470*4882a593Smuzhiyun 471*4882a593Smuzhiyun /** 472*4882a593Smuzhiyun * struct ubi_fm_volhdr - Fastmap volume header 473*4882a593Smuzhiyun * it identifies the start of an eba table 474*4882a593Smuzhiyun * @magic: Fastmap volume header magic number (%UBI_FM_VHDR_MAGIC) 475*4882a593Smuzhiyun * @vol_id: volume id of the fastmapped volume 476*4882a593Smuzhiyun * @vol_type: type of the fastmapped volume 477*4882a593Smuzhiyun * @data_pad: data_pad value of the fastmapped volume 478*4882a593Smuzhiyun * @used_ebs: number of used LEBs within this volume 479*4882a593Smuzhiyun * @last_eb_bytes: number of bytes used in the last LEB 480*4882a593Smuzhiyun */ 481*4882a593Smuzhiyun struct ubi_fm_volhdr { 482*4882a593Smuzhiyun __be32 magic; 483*4882a593Smuzhiyun __be32 vol_id; 484*4882a593Smuzhiyun __u8 vol_type; 485*4882a593Smuzhiyun __u8 padding1[3]; 486*4882a593Smuzhiyun __be32 data_pad; 487*4882a593Smuzhiyun __be32 used_ebs; 488*4882a593Smuzhiyun __be32 last_eb_bytes; 489*4882a593Smuzhiyun __u8 padding2[8]; 490*4882a593Smuzhiyun } __packed; 491*4882a593Smuzhiyun 492*4882a593Smuzhiyun /* struct ubi_fm_volhdr is followed by one struct ubi_fm_eba records */ 493*4882a593Smuzhiyun 494*4882a593Smuzhiyun /** 495*4882a593Smuzhiyun * struct ubi_fm_eba - denotes an association beween a PEB and LEB 496*4882a593Smuzhiyun * @magic: EBA table magic number 497*4882a593Smuzhiyun * @reserved_pebs: number of table entries 498*4882a593Smuzhiyun * @pnum: PEB number of LEB (LEB is the index) 499*4882a593Smuzhiyun */ 500*4882a593Smuzhiyun struct ubi_fm_eba { 501*4882a593Smuzhiyun __be32 magic; 502*4882a593Smuzhiyun __be32 reserved_pebs; 503*4882a593Smuzhiyun __be32 pnum[0]; 504*4882a593Smuzhiyun } __packed; 505*4882a593Smuzhiyun #endif /* !__UBI_MEDIA_H__ */ 506