1 /*
2 * SPI Flash Core
3 *
4 * Copyright (C) 2015 Jagan Teki <jteki@openedev.com>
5 * Copyright (C) 2013 Jagannadha Sutradharudu Teki, Xilinx Inc.
6 * Copyright (C) 2010 Reinhard Meyer, EMK Elektronik
7 * Copyright (C) 2008 Atmel Corporation
8 *
9 * SPDX-License-Identifier: GPL-2.0+
10 */
11
12 #include <common.h>
13 #include <errno.h>
14 #include <malloc.h>
15 #include <mapmem.h>
16 #include <spi.h>
17 #include <spi_flash.h>
18 #include <linux/log2.h>
19 #include <linux/sizes.h>
20 #include <dma.h>
21
22 #include "sf_internal.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
spi_flash_addr(u32 addr,u8 * cmd)26 static void spi_flash_addr(u32 addr, u8 *cmd)
27 {
28 /* cmd[0] is actual command */
29 cmd[1] = addr >> 16;
30 cmd[2] = addr >> 8;
31 cmd[3] = addr >> 0;
32 }
33
read_sr(struct spi_flash * flash,u8 * rs)34 static int read_sr(struct spi_flash *flash, u8 *rs)
35 {
36 int ret;
37 u8 cmd;
38
39 cmd = CMD_READ_STATUS;
40 ret = spi_flash_read_common(flash, &cmd, 1, rs, 1);
41 if (ret < 0) {
42 debug("SF: fail to read status register\n");
43 return ret;
44 }
45
46 return 0;
47 }
48
read_fsr(struct spi_flash * flash,u8 * fsr)49 static int read_fsr(struct spi_flash *flash, u8 *fsr)
50 {
51 int ret;
52 const u8 cmd = CMD_FLAG_STATUS;
53
54 ret = spi_flash_read_common(flash, &cmd, 1, fsr, 1);
55 if (ret < 0) {
56 debug("SF: fail to read flag status register\n");
57 return ret;
58 }
59
60 return 0;
61 }
62
write_sr(struct spi_flash * flash,u8 ws)63 static int write_sr(struct spi_flash *flash, u8 ws)
64 {
65 u8 cmd;
66 int ret;
67
68 cmd = CMD_WRITE_STATUS;
69 ret = spi_flash_write_common(flash, &cmd, 1, &ws, 1);
70 if (ret < 0) {
71 debug("SF: fail to write status register\n");
72 return ret;
73 }
74
75 return 0;
76 }
77
78 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
read_cr(struct spi_flash * flash,u8 * rc)79 static int read_cr(struct spi_flash *flash, u8 *rc)
80 {
81 int ret;
82 u8 cmd;
83
84 cmd = CMD_READ_CONFIG;
85 ret = spi_flash_read_common(flash, &cmd, 1, rc, 1);
86 if (ret < 0) {
87 debug("SF: fail to read config register\n");
88 return ret;
89 }
90
91 return 0;
92 }
93
write_cr(struct spi_flash * flash,u8 wc)94 static int write_cr(struct spi_flash *flash, u8 wc)
95 {
96 u8 data[2];
97 u8 cmd;
98 int ret;
99
100 ret = read_sr(flash, &data[0]);
101 if (ret < 0)
102 return ret;
103
104 cmd = CMD_WRITE_STATUS;
105 data[1] = wc;
106 ret = spi_flash_write_common(flash, &cmd, 1, &data, 2);
107 if (ret) {
108 debug("SF: fail to write config register\n");
109 return ret;
110 }
111
112 return 0;
113 }
114 #endif
115
spi_flash_cmd_get_sw_write_prot(struct spi_flash * flash)116 int spi_flash_cmd_get_sw_write_prot(struct spi_flash *flash)
117 {
118 u8 status;
119 int ret;
120
121 ret = read_sr(flash, &status);
122 if (ret)
123 return ret;
124
125 return (status >> 2) & 7;
126 }
127
128 #ifdef CONFIG_SPI_FLASH_BAR
129 /*
130 * This "clean_bar" is necessary in a situation when one was accessing
131 * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
132 *
133 * After it the BA24 bit shall be cleared to allow access to correct
134 * memory region after SW reset (by calling "reset" command).
135 *
136 * Otherwise, the BA24 bit may be left set and then after reset, the
137 * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
138 */
clean_bar(struct spi_flash * flash)139 static int clean_bar(struct spi_flash *flash)
140 {
141 u8 cmd, bank_sel = 0;
142
143 if (flash->bank_curr == 0)
144 return 0;
145 cmd = flash->bank_write_cmd;
146 flash->bank_curr = 0;
147
148 return spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1);
149 }
150
write_bar(struct spi_flash * flash,u32 offset)151 static int write_bar(struct spi_flash *flash, u32 offset)
152 {
153 u8 cmd, bank_sel;
154 int ret;
155
156 bank_sel = offset / (SPI_FLASH_16MB_BOUN << flash->shift);
157 if (bank_sel == flash->bank_curr)
158 goto bar_end;
159
160 cmd = flash->bank_write_cmd;
161 ret = spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1);
162 if (ret < 0) {
163 debug("SF: fail to write bank register\n");
164 return ret;
165 }
166
167 bar_end:
168 flash->bank_curr = bank_sel;
169 return flash->bank_curr;
170 }
171
read_bar(struct spi_flash * flash,const struct spi_flash_info * info)172 static int read_bar(struct spi_flash *flash, const struct spi_flash_info *info)
173 {
174 u8 curr_bank = 0;
175 int ret;
176
177 if (flash->size <= SPI_FLASH_16MB_BOUN)
178 goto bar_end;
179
180 switch (JEDEC_MFR(info)) {
181 case SPI_FLASH_CFI_MFR_SPANSION:
182 flash->bank_read_cmd = CMD_BANKADDR_BRRD;
183 flash->bank_write_cmd = CMD_BANKADDR_BRWR;
184 break;
185 default:
186 flash->bank_read_cmd = CMD_EXTNADDR_RDEAR;
187 flash->bank_write_cmd = CMD_EXTNADDR_WREAR;
188 }
189
190 ret = spi_flash_read_common(flash, &flash->bank_read_cmd, 1,
191 &curr_bank, 1);
192 if (ret) {
193 debug("SF: fail to read bank addr register\n");
194 return ret;
195 }
196
197 bar_end:
198 flash->bank_curr = curr_bank;
199 return 0;
200 }
201 #endif
202
203 #ifdef CONFIG_SF_DUAL_FLASH
spi_flash_dual(struct spi_flash * flash,u32 * addr)204 static void spi_flash_dual(struct spi_flash *flash, u32 *addr)
205 {
206 switch (flash->dual_flash) {
207 case SF_DUAL_STACKED_FLASH:
208 if (*addr >= (flash->size >> 1)) {
209 *addr -= flash->size >> 1;
210 flash->flags |= SNOR_F_USE_UPAGE;
211 } else {
212 flash->flags &= ~SNOR_F_USE_UPAGE;
213 }
214 break;
215 case SF_DUAL_PARALLEL_FLASH:
216 *addr >>= flash->shift;
217 break;
218 default:
219 debug("SF: Unsupported dual_flash=%d\n", flash->dual_flash);
220 break;
221 }
222 }
223 #endif
224
spi_flash_sr_ready(struct spi_flash * flash)225 static int spi_flash_sr_ready(struct spi_flash *flash)
226 {
227 u8 sr;
228 int ret;
229
230 ret = read_sr(flash, &sr);
231 if (ret < 0)
232 return ret;
233
234 return !(sr & STATUS_WIP);
235 }
236
spi_flash_fsr_ready(struct spi_flash * flash)237 static int spi_flash_fsr_ready(struct spi_flash *flash)
238 {
239 u8 fsr;
240 int ret;
241
242 ret = read_fsr(flash, &fsr);
243 if (ret < 0)
244 return ret;
245
246 return fsr & STATUS_PEC;
247 }
248
spi_flash_ready(struct spi_flash * flash)249 static int spi_flash_ready(struct spi_flash *flash)
250 {
251 int sr, fsr;
252
253 sr = spi_flash_sr_ready(flash);
254 if (sr < 0)
255 return sr;
256
257 fsr = 1;
258 if (flash->flags & SNOR_F_USE_FSR) {
259 fsr = spi_flash_fsr_ready(flash);
260 if (fsr < 0)
261 return fsr;
262 }
263
264 return sr && fsr;
265 }
266
spi_flash_wait_till_ready(struct spi_flash * flash,unsigned long timeout)267 static int spi_flash_wait_till_ready(struct spi_flash *flash,
268 unsigned long timeout)
269 {
270 unsigned long timebase;
271 int ret;
272
273 timebase = get_timer(0);
274
275 while (get_timer(timebase) < timeout) {
276 ret = spi_flash_ready(flash);
277 if (ret < 0)
278 return ret;
279 if (ret)
280 return 0;
281 }
282
283 printf("SF: Timeout!\n");
284
285 return -ETIMEDOUT;
286 }
287
spi_flash_write_common(struct spi_flash * flash,const u8 * cmd,size_t cmd_len,const void * buf,size_t buf_len)288 int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd,
289 size_t cmd_len, const void *buf, size_t buf_len)
290 {
291 struct spi_slave *spi = flash->spi;
292 unsigned long timeout = SPI_FLASH_PROG_TIMEOUT;
293 int ret;
294
295 if (buf == NULL)
296 timeout = SPI_FLASH_PAGE_ERASE_TIMEOUT;
297
298 ret = spi_claim_bus(spi);
299 if (ret) {
300 debug("SF: unable to claim SPI bus\n");
301 return ret;
302 }
303
304 ret = spi_flash_cmd_write_enable(flash);
305 if (ret < 0) {
306 debug("SF: enabling write failed\n");
307 return ret;
308 }
309
310 ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf, buf_len);
311 if (ret < 0) {
312 debug("SF: write cmd failed\n");
313 return ret;
314 }
315
316 ret = spi_flash_wait_till_ready(flash, timeout);
317 if (ret < 0) {
318 debug("SF: write %s timed out\n",
319 timeout == SPI_FLASH_PROG_TIMEOUT ?
320 "program" : "page erase");
321 return ret;
322 }
323
324 spi_release_bus(spi);
325
326 return ret;
327 }
328
spi_flash_cmd_erase_ops(struct spi_flash * flash,u32 offset,size_t len)329 int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len)
330 {
331 u32 erase_size, erase_addr;
332 u8 cmd[SPI_FLASH_CMD_LEN];
333 int ret = -1;
334
335 erase_size = flash->erase_size;
336 if (offset % erase_size || len % erase_size) {
337 printf("SF: Erase offset/length not multiple of erase size\n");
338 return -1;
339 }
340
341 if (flash->flash_is_locked) {
342 if (flash->flash_is_locked(flash, offset, len) > 0) {
343 printf("offset 0x%x is protected and cannot be erased\n",
344 offset);
345 return -EINVAL;
346 }
347 }
348
349 cmd[0] = flash->erase_cmd;
350 while (len) {
351 erase_addr = offset;
352
353 #ifdef CONFIG_SF_DUAL_FLASH
354 if (flash->dual_flash > SF_SINGLE_FLASH)
355 spi_flash_dual(flash, &erase_addr);
356 #endif
357 #ifdef CONFIG_SPI_FLASH_BAR
358 ret = write_bar(flash, erase_addr);
359 if (ret < 0)
360 return ret;
361 #endif
362 spi_flash_addr(erase_addr, cmd);
363
364 debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1],
365 cmd[2], cmd[3], erase_addr);
366
367 ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0);
368 if (ret < 0) {
369 debug("SF: erase failed\n");
370 break;
371 }
372
373 offset += erase_size;
374 len -= erase_size;
375 }
376
377 #ifdef CONFIG_SPI_FLASH_BAR
378 ret = clean_bar(flash);
379 #endif
380
381 return ret;
382 }
383
spi_flash_cmd_write_ops(struct spi_flash * flash,u32 offset,size_t len,const void * buf)384 int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
385 size_t len, const void *buf)
386 {
387 struct spi_slave *spi = flash->spi;
388 unsigned long byte_addr, page_size;
389 u32 write_addr;
390 size_t chunk_len, actual;
391 u8 cmd[SPI_FLASH_CMD_LEN];
392 int ret = -1;
393
394 page_size = flash->page_size;
395
396 if (flash->flash_is_locked) {
397 if (flash->flash_is_locked(flash, offset, len) > 0) {
398 printf("offset 0x%x is protected and cannot be written\n",
399 offset);
400 return -EINVAL;
401 }
402 }
403
404 cmd[0] = flash->write_cmd;
405 for (actual = 0; actual < len; actual += chunk_len) {
406 write_addr = offset;
407
408 #ifdef CONFIG_SF_DUAL_FLASH
409 if (flash->dual_flash > SF_SINGLE_FLASH)
410 spi_flash_dual(flash, &write_addr);
411 #endif
412 #ifdef CONFIG_SPI_FLASH_BAR
413 ret = write_bar(flash, write_addr);
414 if (ret < 0)
415 return ret;
416 #endif
417 byte_addr = offset % page_size;
418 chunk_len = min(len - actual, (size_t)(page_size - byte_addr));
419
420 if (spi->max_write_size)
421 chunk_len = min(chunk_len,
422 spi->max_write_size - sizeof(cmd));
423
424 spi_flash_addr(write_addr, cmd);
425
426 debug("SF: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n",
427 buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len);
428
429 ret = spi_flash_write_common(flash, cmd, sizeof(cmd),
430 buf + actual, chunk_len);
431 if (ret < 0) {
432 debug("SF: write failed\n");
433 break;
434 }
435
436 offset += chunk_len;
437 }
438
439 #ifdef CONFIG_SPI_FLASH_BAR
440 ret = clean_bar(flash);
441 #endif
442
443 return ret;
444 }
445
spi_flash_read_common(struct spi_flash * flash,const u8 * cmd,size_t cmd_len,void * data,size_t data_len)446 int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd,
447 size_t cmd_len, void *data, size_t data_len)
448 {
449 struct spi_slave *spi = flash->spi;
450 int ret;
451
452 ret = spi_claim_bus(spi);
453 if (ret) {
454 debug("SF: unable to claim SPI bus\n");
455 return ret;
456 }
457
458 ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len);
459 if (ret < 0) {
460 debug("SF: read cmd failed\n");
461 return ret;
462 }
463
464 spi_release_bus(spi);
465
466 return ret;
467 }
468
469 /*
470 * TODO: remove the weak after all the other spi_flash_copy_mmap
471 * implementations removed from drivers
472 */
spi_flash_copy_mmap(void * data,void * offset,size_t len)473 void __weak spi_flash_copy_mmap(void *data, void *offset, size_t len)
474 {
475 #ifdef CONFIG_DMA
476 if (!dma_memcpy(data, offset, len))
477 return;
478 #endif
479 memcpy(data, offset, len);
480 }
481
spi_flash_cmd_read_ops(struct spi_flash * flash,u32 offset,size_t len,void * data)482 int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
483 size_t len, void *data)
484 {
485 struct spi_slave *spi = flash->spi;
486 u8 cmdsz;
487 u32 remain_len, read_len, read_addr;
488 int bank_sel = 0;
489 int ret = 0;
490
491 /* Handle memory-mapped SPI */
492 if (flash->memory_map) {
493 ret = spi_claim_bus(spi);
494 if (ret) {
495 debug("SF: unable to claim SPI bus\n");
496 return log_ret(ret);
497 }
498 spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP);
499 spi_flash_copy_mmap(data, flash->memory_map + offset, len);
500 spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP_END);
501 spi_release_bus(spi);
502 return 0;
503 }
504
505 cmdsz = SPI_FLASH_CMD_LEN + flash->dummy_byte;
506 u8 cmd[cmdsz];
507
508 cmd[0] = flash->read_cmd;
509 while (len) {
510 read_addr = offset;
511
512 #ifdef CONFIG_SF_DUAL_FLASH
513 if (flash->dual_flash > SF_SINGLE_FLASH)
514 spi_flash_dual(flash, &read_addr);
515 #endif
516 #ifdef CONFIG_SPI_FLASH_BAR
517 ret = write_bar(flash, read_addr);
518 if (ret < 0)
519 return log_ret(ret);
520 bank_sel = flash->bank_curr;
521 #endif
522 remain_len = ((SPI_FLASH_16MB_BOUN << flash->shift) *
523 (bank_sel + 1)) - offset;
524 if (len < remain_len)
525 read_len = len;
526 else
527 read_len = remain_len;
528
529 if (spi->max_read_size)
530 read_len = min(read_len, spi->max_read_size);
531
532 spi_flash_addr(read_addr, cmd);
533
534 ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len);
535 if (ret < 0) {
536 debug("SF: read failed\n");
537 break;
538 }
539
540 offset += read_len;
541 len -= read_len;
542 data += read_len;
543 }
544
545 #ifdef CONFIG_SPI_FLASH_BAR
546 ret = clean_bar(flash);
547 #endif
548
549 return log_ret(ret);
550 }
551
552 #ifdef CONFIG_SPI_FLASH_SST
sst26_process_bpr(u32 bpr_size,u8 * cmd,u32 bit,enum lock_ctl ctl)553 static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
554 {
555 switch (ctl) {
556 case SST26_CTL_LOCK:
557 cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
558 break;
559 case SST26_CTL_UNLOCK:
560 cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
561 break;
562 case SST26_CTL_CHECK:
563 return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
564 }
565
566 return false;
567 }
568
569 /*
570 * sst26wf016/sst26wf032/sst26wf064 have next block protection:
571 * 4x - 8 KByte blocks - read & write protection bits - upper addresses
572 * 1x - 32 KByte blocks - write protection bits
573 * rest - 64 KByte blocks - write protection bits
574 * 1x - 32 KByte blocks - write protection bits
575 * 4x - 8 KByte blocks - read & write protection bits - lower addresses
576 *
577 * We'll support only per 64k lock/unlock so lower and upper 64 KByte region
578 * will be treated as single block.
579 */
580
581 /*
582 * Lock, unlock or check lock status of the flash region of the flash (depending
583 * on the lock_ctl value)
584 */
sst26_lock_ctl(struct spi_flash * flash,u32 ofs,size_t len,enum lock_ctl ctl)585 static int sst26_lock_ctl(struct spi_flash *flash, u32 ofs, size_t len, enum lock_ctl ctl)
586 {
587 u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
588 bool lower_64k = false, upper_64k = false;
589 u8 cmd, bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
590 int ret;
591
592 /* Check length and offset for 64k alignment */
593 if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1)))
594 return -EINVAL;
595
596 if (ofs + len > flash->size)
597 return -EINVAL;
598
599 /* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
600 if (flash->size != SZ_2M &&
601 flash->size != SZ_4M &&
602 flash->size != SZ_8M)
603 return -EINVAL;
604
605 bpr_size = 2 + (flash->size / SZ_64K / 8);
606
607 cmd = SST26_CMD_READ_BPR;
608 ret = spi_flash_read_common(flash, &cmd, 1, bpr_buff, bpr_size);
609 if (ret < 0) {
610 printf("SF: fail to read block-protection register\n");
611 return ret;
612 }
613
614 rptr_64k = min_t(u32, ofs + len , flash->size - SST26_BOUND_REG_SIZE);
615 lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
616
617 upper_64k = ((ofs + len) > (flash->size - SST26_BOUND_REG_SIZE));
618 lower_64k = (ofs < SST26_BOUND_REG_SIZE);
619
620 /* Lower bits in block-protection register are about 64k region */
621 bpr_ptr = lptr_64k / SZ_64K - 1;
622
623 /* Process 64K blocks region */
624 while (lptr_64k < rptr_64k) {
625 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
626 return EACCES;
627
628 bpr_ptr++;
629 lptr_64k += SZ_64K;
630 }
631
632 /* 32K and 8K region bits in BPR are after 64k region bits */
633 bpr_ptr = (flash->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
634
635 /* Process lower 32K block region */
636 if (lower_64k)
637 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
638 return EACCES;
639
640 bpr_ptr++;
641
642 /* Process upper 32K block region */
643 if (upper_64k)
644 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
645 return EACCES;
646
647 bpr_ptr++;
648
649 /* Process lower 8K block regions */
650 for (i = 0; i < SST26_BPR_8K_NUM; i++) {
651 if (lower_64k)
652 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
653 return EACCES;
654
655 /* In 8K area BPR has both read and write protection bits */
656 bpr_ptr += 2;
657 }
658
659 /* Process upper 8K block regions */
660 for (i = 0; i < SST26_BPR_8K_NUM; i++) {
661 if (upper_64k)
662 if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
663 return EACCES;
664
665 /* In 8K area BPR has both read and write protection bits */
666 bpr_ptr += 2;
667 }
668
669 /* If we check region status we don't need to write BPR back */
670 if (ctl == SST26_CTL_CHECK)
671 return 0;
672
673 cmd = SST26_CMD_WRITE_BPR;
674 ret = spi_flash_write_common(flash, &cmd, 1, bpr_buff, bpr_size);
675 if (ret < 0) {
676 printf("SF: fail to write block-protection register\n");
677 return ret;
678 }
679
680 return 0;
681 }
682
sst26_unlock(struct spi_flash * flash,u32 ofs,size_t len)683 static int sst26_unlock(struct spi_flash *flash, u32 ofs, size_t len)
684 {
685 return sst26_lock_ctl(flash, ofs, len, SST26_CTL_UNLOCK);
686 }
687
sst26_lock(struct spi_flash * flash,u32 ofs,size_t len)688 static int sst26_lock(struct spi_flash *flash, u32 ofs, size_t len)
689 {
690 return sst26_lock_ctl(flash, ofs, len, SST26_CTL_LOCK);
691 }
692
693 /*
694 * Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
695 * and negative on errors.
696 */
sst26_is_locked(struct spi_flash * flash,u32 ofs,size_t len)697 static int sst26_is_locked(struct spi_flash *flash, u32 ofs, size_t len)
698 {
699 /*
700 * is_locked function is used for check before reading or erasing flash
701 * region, so offset and length might be not 64k allighned, so adjust
702 * them to be 64k allighned as sst26_lock_ctl works only with 64k
703 * allighned regions.
704 */
705 ofs -= ofs & (SZ_64K - 1);
706 len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
707
708 return sst26_lock_ctl(flash, ofs, len, SST26_CTL_CHECK);
709 }
710
sst_byte_write(struct spi_flash * flash,u32 offset,const void * buf)711 static int sst_byte_write(struct spi_flash *flash, u32 offset, const void *buf)
712 {
713 struct spi_slave *spi = flash->spi;
714 int ret;
715 u8 cmd[4] = {
716 CMD_SST_BP,
717 offset >> 16,
718 offset >> 8,
719 offset,
720 };
721
722 debug("BP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
723 spi_w8r8(spi, CMD_READ_STATUS), buf, cmd[0], offset);
724
725 ret = spi_flash_cmd_write_enable(flash);
726 if (ret)
727 return ret;
728
729 ret = spi_flash_cmd_write(spi, cmd, sizeof(cmd), buf, 1);
730 if (ret)
731 return ret;
732
733 return spi_flash_wait_till_ready(flash, SPI_FLASH_PROG_TIMEOUT);
734 }
735
sst_write_wp(struct spi_flash * flash,u32 offset,size_t len,const void * buf)736 int sst_write_wp(struct spi_flash *flash, u32 offset, size_t len,
737 const void *buf)
738 {
739 struct spi_slave *spi = flash->spi;
740 size_t actual, cmd_len;
741 int ret;
742 u8 cmd[4];
743
744 ret = spi_claim_bus(spi);
745 if (ret) {
746 debug("SF: Unable to claim SPI bus\n");
747 return ret;
748 }
749
750 /* If the data is not word aligned, write out leading single byte */
751 actual = offset % 2;
752 if (actual) {
753 ret = sst_byte_write(flash, offset, buf);
754 if (ret)
755 goto done;
756 }
757 offset += actual;
758
759 ret = spi_flash_cmd_write_enable(flash);
760 if (ret)
761 goto done;
762
763 cmd_len = 4;
764 cmd[0] = CMD_SST_AAI_WP;
765 cmd[1] = offset >> 16;
766 cmd[2] = offset >> 8;
767 cmd[3] = offset;
768
769 for (; actual < len - 1; actual += 2) {
770 debug("WP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
771 spi_w8r8(spi, CMD_READ_STATUS), buf + actual,
772 cmd[0], offset);
773
774 ret = spi_flash_cmd_write(spi, cmd, cmd_len,
775 buf + actual, 2);
776 if (ret) {
777 debug("SF: sst word program failed\n");
778 break;
779 }
780
781 ret = spi_flash_wait_till_ready(flash, SPI_FLASH_PROG_TIMEOUT);
782 if (ret)
783 break;
784
785 cmd_len = 1;
786 offset += 2;
787 }
788
789 if (!ret)
790 ret = spi_flash_cmd_write_disable(flash);
791
792 /* If there is a single trailing byte, write it out */
793 if (!ret && actual != len)
794 ret = sst_byte_write(flash, offset, buf + actual);
795
796 done:
797 debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
798 ret ? "failure" : "success", len, offset - actual);
799
800 spi_release_bus(spi);
801 return ret;
802 }
803
sst_write_bp(struct spi_flash * flash,u32 offset,size_t len,const void * buf)804 int sst_write_bp(struct spi_flash *flash, u32 offset, size_t len,
805 const void *buf)
806 {
807 struct spi_slave *spi = flash->spi;
808 size_t actual;
809 int ret;
810
811 ret = spi_claim_bus(spi);
812 if (ret) {
813 debug("SF: Unable to claim SPI bus\n");
814 return ret;
815 }
816
817 for (actual = 0; actual < len; actual++) {
818 ret = sst_byte_write(flash, offset, buf + actual);
819 if (ret) {
820 debug("SF: sst byte program failed\n");
821 break;
822 }
823 offset++;
824 }
825
826 if (!ret)
827 ret = spi_flash_cmd_write_disable(flash);
828
829 debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
830 ret ? "failure" : "success", len, offset - actual);
831
832 spi_release_bus(spi);
833 return ret;
834 }
835 #endif
836
837 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
stm_get_locked_range(struct spi_flash * flash,u8 sr,loff_t * ofs,u64 * len)838 static void stm_get_locked_range(struct spi_flash *flash, u8 sr, loff_t *ofs,
839 u64 *len)
840 {
841 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
842 int shift = ffs(mask) - 1;
843 int pow;
844
845 if (!(sr & mask)) {
846 /* No protection */
847 *ofs = 0;
848 *len = 0;
849 } else {
850 pow = ((sr & mask) ^ mask) >> shift;
851 *len = flash->size >> pow;
852 *ofs = flash->size - *len;
853 }
854 }
855
856 /*
857 * Return 1 if the entire region is locked, 0 otherwise
858 */
stm_is_locked_sr(struct spi_flash * flash,loff_t ofs,u64 len,u8 sr)859 static int stm_is_locked_sr(struct spi_flash *flash, loff_t ofs, u64 len,
860 u8 sr)
861 {
862 loff_t lock_offs;
863 u64 lock_len;
864
865 stm_get_locked_range(flash, sr, &lock_offs, &lock_len);
866
867 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
868 }
869
870 /*
871 * Check if a region of the flash is (completely) locked. See stm_lock() for
872 * more info.
873 *
874 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
875 * negative on errors.
876 */
stm_is_locked(struct spi_flash * flash,u32 ofs,size_t len)877 int stm_is_locked(struct spi_flash *flash, u32 ofs, size_t len)
878 {
879 int status;
880 u8 sr;
881
882 status = read_sr(flash, &sr);
883 if (status < 0)
884 return status;
885
886 return stm_is_locked_sr(flash, ofs, len, sr);
887 }
888
889 /*
890 * Lock a region of the flash. Compatible with ST Micro and similar flash.
891 * Supports only the block protection bits BP{0,1,2} in the status register
892 * (SR). Does not support these features found in newer SR bitfields:
893 * - TB: top/bottom protect - only handle TB=0 (top protect)
894 * - SEC: sector/block protect - only handle SEC=0 (block protect)
895 * - CMP: complement protect - only support CMP=0 (range is not complemented)
896 *
897 * Sample table portion for 8MB flash (Winbond w25q64fw):
898 *
899 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
900 * --------------------------------------------------------------------------
901 * X | X | 0 | 0 | 0 | NONE | NONE
902 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
903 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
904 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
905 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
906 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
907 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
908 * X | X | 1 | 1 | 1 | 8 MB | ALL
909 *
910 * Returns negative on errors, 0 on success.
911 */
stm_lock(struct spi_flash * flash,u32 ofs,size_t len)912 int stm_lock(struct spi_flash *flash, u32 ofs, size_t len)
913 {
914 u8 status_old, status_new;
915 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
916 u8 shift = ffs(mask) - 1, pow, val;
917 int ret;
918
919 ret = read_sr(flash, &status_old);
920 if (ret < 0)
921 return ret;
922
923 /* SPI NOR always locks to the end */
924 if (ofs + len != flash->size) {
925 /* Does combined region extend to end? */
926 if (!stm_is_locked_sr(flash, ofs + len, flash->size - ofs - len,
927 status_old))
928 return -EINVAL;
929 len = flash->size - ofs;
930 }
931
932 /*
933 * Need smallest pow such that:
934 *
935 * 1 / (2^pow) <= (len / size)
936 *
937 * so (assuming power-of-2 size) we do:
938 *
939 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
940 */
941 pow = ilog2(flash->size) - ilog2(len);
942 val = mask - (pow << shift);
943 if (val & ~mask)
944 return -EINVAL;
945
946 /* Don't "lock" with no region! */
947 if (!(val & mask))
948 return -EINVAL;
949
950 status_new = (status_old & ~mask) | val;
951
952 /* Only modify protection if it will not unlock other areas */
953 if ((status_new & mask) <= (status_old & mask))
954 return -EINVAL;
955
956 write_sr(flash, status_new);
957
958 return 0;
959 }
960
961 /*
962 * Unlock a region of the flash. See stm_lock() for more info
963 *
964 * Returns negative on errors, 0 on success.
965 */
stm_unlock(struct spi_flash * flash,u32 ofs,size_t len)966 int stm_unlock(struct spi_flash *flash, u32 ofs, size_t len)
967 {
968 uint8_t status_old, status_new;
969 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
970 u8 shift = ffs(mask) - 1, pow, val;
971 int ret;
972
973 ret = read_sr(flash, &status_old);
974 if (ret < 0)
975 return ret;
976
977 /* Cannot unlock; would unlock larger region than requested */
978 if (stm_is_locked_sr(flash, ofs - flash->erase_size, flash->erase_size,
979 status_old))
980 return -EINVAL;
981 /*
982 * Need largest pow such that:
983 *
984 * 1 / (2^pow) >= (len / size)
985 *
986 * so (assuming power-of-2 size) we do:
987 *
988 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
989 */
990 pow = ilog2(flash->size) - order_base_2(flash->size - (ofs + len));
991 if (ofs + len == flash->size) {
992 val = 0; /* fully unlocked */
993 } else {
994 val = mask - (pow << shift);
995 /* Some power-of-two sizes are not supported */
996 if (val & ~mask)
997 return -EINVAL;
998 }
999
1000 status_new = (status_old & ~mask) | val;
1001
1002 /* Only modify protection if it will not lock other areas */
1003 if ((status_new & mask) >= (status_old & mask))
1004 return -EINVAL;
1005
1006 write_sr(flash, status_new);
1007
1008 return 0;
1009 }
1010 #endif
1011
1012
1013 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_GIGADEVICE)
macronix_quad_enable(struct spi_flash * flash)1014 static int macronix_quad_enable(struct spi_flash *flash)
1015 {
1016 u8 qeb_status;
1017 int ret;
1018
1019 ret = read_sr(flash, &qeb_status);
1020 if (ret < 0)
1021 return ret;
1022
1023 if (qeb_status & STATUS_QEB_MXIC)
1024 return 0;
1025
1026 ret = write_sr(flash, qeb_status | STATUS_QEB_MXIC);
1027 if (ret < 0)
1028 return ret;
1029
1030 /* read SR and check it */
1031 ret = read_sr(flash, &qeb_status);
1032 if (!(ret >= 0 && (qeb_status & STATUS_QEB_MXIC))) {
1033 printf("SF: Macronix SR Quad bit not clear\n");
1034 return -EINVAL;
1035 }
1036
1037 return ret;
1038 }
1039 #endif
1040
1041 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
spansion_quad_enable(struct spi_flash * flash)1042 static int spansion_quad_enable(struct spi_flash *flash)
1043 {
1044 u8 qeb_status;
1045 int ret;
1046
1047 ret = read_cr(flash, &qeb_status);
1048 if (ret < 0)
1049 return ret;
1050
1051 if (qeb_status & STATUS_QEB_WINSPAN)
1052 return 0;
1053
1054 ret = write_cr(flash, qeb_status | STATUS_QEB_WINSPAN);
1055 if (ret < 0)
1056 return ret;
1057
1058 /* read CR and check it */
1059 ret = read_cr(flash, &qeb_status);
1060 if (!(ret >= 0 && (qeb_status & STATUS_QEB_WINSPAN))) {
1061 printf("SF: Spansion CR Quad bit not clear\n");
1062 return -EINVAL;
1063 }
1064
1065 return ret;
1066 }
1067 #endif
1068
spi_flash_read_id(struct spi_flash * flash)1069 static const struct spi_flash_info *spi_flash_read_id(struct spi_flash *flash)
1070 {
1071 int tmp;
1072 u8 id[SPI_FLASH_MAX_ID_LEN];
1073 const struct spi_flash_info *info;
1074
1075 tmp = spi_flash_cmd(flash->spi, CMD_READ_ID, id, SPI_FLASH_MAX_ID_LEN);
1076 if (tmp < 0) {
1077 printf("SF: error %d reading JEDEC ID\n", tmp);
1078 return ERR_PTR(tmp);
1079 }
1080
1081 info = spi_flash_ids;
1082 for (; info->name != NULL; info++) {
1083 if (info->id_len) {
1084 if (!memcmp(info->id, id, info->id_len))
1085 return info;
1086 }
1087 }
1088
1089 printf("SF: unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1090 id[0], id[1], id[2]);
1091 return ERR_PTR(-ENODEV);
1092 }
1093
set_quad_mode(struct spi_flash * flash,const struct spi_flash_info * info)1094 static int set_quad_mode(struct spi_flash *flash,
1095 const struct spi_flash_info *info)
1096 {
1097 switch (JEDEC_MFR(info)) {
1098 #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_GIGADEVICE)
1099 case SPI_FLASH_CFI_MFR_MACRONIX:
1100 case SPI_FLASH_CIF_MFR_GIGADEVICE:
1101 return macronix_quad_enable(flash);
1102 #endif
1103 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1104 case SPI_FLASH_CFI_MFR_SPANSION:
1105 case SPI_FLASH_CFI_MFR_WINBOND:
1106 return spansion_quad_enable(flash);
1107 #endif
1108 #ifdef CONFIG_SPI_FLASH_STMICRO
1109 case SPI_FLASH_CFI_MFR_STMICRO:
1110 case SPI_FLASH_CFI_MFR_MICRON:
1111 debug("SF: QEB is volatile for %02x flash\n", JEDEC_MFR(info));
1112 return 0;
1113 #endif
1114 default:
1115 printf("SF: Need set QEB func for %02x flash\n",
1116 JEDEC_MFR(info));
1117 return -1;
1118 }
1119 }
1120
1121 #if CONFIG_IS_ENABLED(OF_CONTROL)
spi_flash_decode_fdt(struct spi_flash * flash)1122 int spi_flash_decode_fdt(struct spi_flash *flash)
1123 {
1124 #ifdef CONFIG_DM_SPI_FLASH
1125 fdt_addr_t addr;
1126 fdt_size_t size;
1127
1128 addr = dev_read_addr_size(flash->dev, "memory-map", &size);
1129 if (addr == FDT_ADDR_T_NONE) {
1130 debug("%s: Cannot decode address\n", __func__);
1131 return 0;
1132 }
1133
1134 if (flash->size > size) {
1135 debug("%s: Memory map must cover entire device\n", __func__);
1136 return -1;
1137 }
1138 flash->memory_map = map_sysmem(addr, size);
1139 #endif
1140
1141 return 0;
1142 }
1143 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
1144
spi_flash_scan(struct spi_flash * flash)1145 int spi_flash_scan(struct spi_flash *flash)
1146 {
1147 struct spi_slave *spi = flash->spi;
1148 const struct spi_flash_info *info = NULL;
1149 int ret;
1150
1151 info = spi_flash_read_id(flash);
1152 if (IS_ERR_OR_NULL(info))
1153 return -ENOENT;
1154
1155 /*
1156 * Flash powers up read-only, so clear BP# bits.
1157 *
1158 * Note on some flash (like Macronix), QE (quad enable) bit is in the
1159 * same status register as BP# bits, and we need preserve its original
1160 * value during a reboot cycle as this is required by some platforms
1161 * (like Intel ICH SPI controller working under descriptor mode).
1162 */
1163 if (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_ATMEL ||
1164 (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_SST) ||
1165 (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_MACRONIX)) {
1166 u8 sr = 0;
1167
1168 if (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_MACRONIX) {
1169 read_sr(flash, &sr);
1170 sr &= STATUS_QEB_MXIC;
1171 }
1172 write_sr(flash, sr);
1173 }
1174
1175 flash->name = info->name;
1176 flash->memory_map = spi->memory_map;
1177
1178 if (info->flags & SST_WR)
1179 flash->flags |= SNOR_F_SST_WR;
1180
1181 #ifndef CONFIG_DM_SPI_FLASH
1182 flash->write = spi_flash_cmd_write_ops;
1183 #if defined(CONFIG_SPI_FLASH_SST)
1184 if (flash->flags & SNOR_F_SST_WR) {
1185 if (spi->mode & SPI_TX_BYTE)
1186 flash->write = sst_write_bp;
1187 else
1188 flash->write = sst_write_wp;
1189 }
1190 #endif
1191 flash->erase = spi_flash_cmd_erase_ops;
1192 flash->read = spi_flash_cmd_read_ops;
1193 #endif
1194
1195 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
1196 /* NOR protection support for STmicro/Micron chips and similar */
1197 if (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_STMICRO ||
1198 JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_MICRON ||
1199 JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_SST) {
1200 flash->flash_lock = stm_lock;
1201 flash->flash_unlock = stm_unlock;
1202 flash->flash_is_locked = stm_is_locked;
1203 }
1204 #endif
1205
1206 /* sst26wf series block protection implementation differs from other series */
1207 #if defined(CONFIG_SPI_FLASH_SST)
1208 if (JEDEC_MFR(info) == SPI_FLASH_CFI_MFR_SST && info->id[1] == 0x26) {
1209 flash->flash_lock = sst26_lock;
1210 flash->flash_unlock = sst26_unlock;
1211 flash->flash_is_locked = sst26_is_locked;
1212 }
1213 #endif
1214
1215 /* Compute the flash size */
1216 flash->shift = (flash->dual_flash & SF_DUAL_PARALLEL_FLASH) ? 1 : 0;
1217 flash->page_size = info->page_size;
1218 /*
1219 * The Spansion S25FS512S, S25FL032P and S25FL064P have 256b pages,
1220 * yet use the 0x4d00 Extended JEDEC code. The rest of the Spansion
1221 * flashes with the 0x4d00 Extended JEDEC code have 512b pages.
1222 * All of the others have 256b pages.
1223 */
1224 if (JEDEC_EXT(info) == 0x4d00) {
1225 if ((JEDEC_ID(info) != 0x0215) &&
1226 (JEDEC_ID(info) != 0x0216) &&
1227 (JEDEC_ID(info) != 0x0220))
1228 flash->page_size = 512;
1229 }
1230 flash->page_size <<= flash->shift;
1231 flash->sector_size = info->sector_size << flash->shift;
1232 flash->size = flash->sector_size * info->n_sectors << flash->shift;
1233 #ifdef CONFIG_SF_DUAL_FLASH
1234 if (flash->dual_flash & SF_DUAL_STACKED_FLASH)
1235 flash->size <<= 1;
1236 #endif
1237
1238 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
1239 /* Compute erase sector and command */
1240 if (info->flags & SECT_4K) {
1241 flash->erase_cmd = CMD_ERASE_4K;
1242 flash->erase_size = 4096 << flash->shift;
1243 } else
1244 #endif
1245 {
1246 flash->erase_cmd = CMD_ERASE_64K;
1247 flash->erase_size = flash->sector_size;
1248 }
1249
1250 /* Now erase size becomes valid sector size */
1251 flash->sector_size = flash->erase_size;
1252
1253 /* Look for read commands */
1254 flash->read_cmd = CMD_READ_ARRAY_FAST;
1255 if (spi->mode & SPI_RX_SLOW)
1256 flash->read_cmd = CMD_READ_ARRAY_SLOW;
1257 else if (spi->mode & SPI_RX_QUAD && info->flags & RD_QUAD)
1258 flash->read_cmd = CMD_READ_QUAD_OUTPUT_FAST;
1259 else if (spi->mode & SPI_RX_DUAL && info->flags & RD_DUAL)
1260 flash->read_cmd = CMD_READ_DUAL_OUTPUT_FAST;
1261
1262 /* Look for write commands */
1263 if (info->flags & WR_QPP && spi->mode & SPI_TX_QUAD)
1264 flash->write_cmd = CMD_QUAD_PAGE_PROGRAM;
1265 else
1266 /* Go for default supported write cmd */
1267 flash->write_cmd = CMD_PAGE_PROGRAM;
1268
1269 /* Set the quad enable bit - only for quad commands */
1270 if ((flash->read_cmd == CMD_READ_QUAD_OUTPUT_FAST) ||
1271 (flash->read_cmd == CMD_READ_QUAD_IO_FAST) ||
1272 (flash->write_cmd == CMD_QUAD_PAGE_PROGRAM)) {
1273 ret = set_quad_mode(flash, info);
1274 if (ret) {
1275 debug("SF: Fail to set QEB for %02x\n",
1276 JEDEC_MFR(info));
1277 return -EINVAL;
1278 }
1279 }
1280
1281 /* Read dummy_byte: dummy byte is determined based on the
1282 * dummy cycles of a particular command.
1283 * Fast commands - dummy_byte = dummy_cycles/8
1284 * I/O commands- dummy_byte = (dummy_cycles * no.of lines)/8
1285 * For I/O commands except cmd[0] everything goes on no.of lines
1286 * based on particular command but incase of fast commands except
1287 * data all go on single line irrespective of command.
1288 */
1289 switch (flash->read_cmd) {
1290 case CMD_READ_QUAD_IO_FAST:
1291 flash->dummy_byte = 2;
1292 break;
1293 case CMD_READ_ARRAY_SLOW:
1294 flash->dummy_byte = 0;
1295 break;
1296 default:
1297 flash->dummy_byte = 1;
1298 }
1299
1300 #ifdef CONFIG_SPI_FLASH_STMICRO
1301 if (info->flags & E_FSR)
1302 flash->flags |= SNOR_F_USE_FSR;
1303 #endif
1304
1305 /* Configure the BAR - discover bank cmds and read current bank */
1306 #ifdef CONFIG_SPI_FLASH_BAR
1307 ret = read_bar(flash, info);
1308 if (ret < 0)
1309 return ret;
1310 #endif
1311
1312 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1313 ret = spi_flash_decode_fdt(flash);
1314 if (ret) {
1315 debug("SF: FDT decode error\n");
1316 return -EINVAL;
1317 }
1318 #endif
1319
1320 #ifndef CONFIG_SPL_BUILD
1321 printf("SF: Detected %s with page size ", flash->name);
1322 print_size(flash->page_size, ", erase size ");
1323 print_size(flash->erase_size, ", total ");
1324 print_size(flash->size, "");
1325 if (flash->memory_map)
1326 printf(", mapped at %p", flash->memory_map);
1327 puts("\n");
1328 #endif
1329
1330 #ifndef CONFIG_SPI_FLASH_BAR
1331 if (((flash->dual_flash == SF_SINGLE_FLASH) &&
1332 (flash->size > SPI_FLASH_16MB_BOUN)) ||
1333 ((flash->dual_flash > SF_SINGLE_FLASH) &&
1334 (flash->size > SPI_FLASH_16MB_BOUN << 1))) {
1335 puts("SF: Warning - Only lower 16MiB accessible,");
1336 puts(" Full access #define CONFIG_SPI_FLASH_BAR\n");
1337 }
1338 #endif
1339
1340 return 0;
1341 }
1342