xref: /OK3568_Linux_fs/u-boot/drivers/mtd/nand/raw/tegra_nand.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
4  * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
5  * (C) Copyright 2006 DENX Software Engineering
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <asm/io.h>
12 #include <memalign.h>
13 #include <nand.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/funcmux.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <linux/errno.h>
18 #include <asm/gpio.h>
19 #include <fdtdec.h>
20 #include <bouncebuf.h>
21 #include <dm.h>
22 #include "tegra_nand.h"
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #define NAND_CMD_TIMEOUT_MS		10
27 
28 #define SKIPPED_SPARE_BYTES		4
29 
30 /* ECC bytes to be generated for tag data */
31 #define TAG_ECC_BYTES			4
32 
33 static const struct udevice_id tegra_nand_dt_ids[] = {
34 	{
35 		.compatible = "nvidia,tegra20-nand",
36 	},
37 	{ /* sentinel */ }
38 };
39 
40 /* 64 byte oob block info for large page (== 2KB) device
41  *
42  * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
43  *      Skipped bytes(4)
44  *      Main area Ecc(36)
45  *      Tag data(20)
46  *      Tag data Ecc(4)
47  *
48  * Yaffs2 will use 16 tag bytes.
49  */
50 static struct nand_ecclayout eccoob = {
51 	.eccbytes = 36,
52 	.eccpos = {
53 		4,  5,  6,  7,  8,  9,  10, 11, 12,
54 		13, 14, 15, 16, 17, 18, 19, 20, 21,
55 		22, 23, 24, 25, 26, 27, 28, 29, 30,
56 		31, 32, 33, 34, 35, 36, 37, 38, 39,
57 	},
58 	.oobavail = 20,
59 	.oobfree = {
60 			{
61 			.offset = 40,
62 			.length = 20,
63 			},
64 	}
65 };
66 
67 enum {
68 	ECC_OK,
69 	ECC_TAG_ERROR = 1 << 0,
70 	ECC_DATA_ERROR = 1 << 1
71 };
72 
73 /* Timing parameters */
74 enum {
75 	FDT_NAND_MAX_TRP_TREA,
76 	FDT_NAND_TWB,
77 	FDT_NAND_MAX_TCR_TAR_TRR,
78 	FDT_NAND_TWHR,
79 	FDT_NAND_MAX_TCS_TCH_TALS_TALH,
80 	FDT_NAND_TWH,
81 	FDT_NAND_TWP,
82 	FDT_NAND_TRH,
83 	FDT_NAND_TADL,
84 
85 	FDT_NAND_TIMING_COUNT
86 };
87 
88 /* Information about an attached NAND chip */
89 struct fdt_nand {
90 	struct nand_ctlr *reg;
91 	int enabled;		/* 1 to enable, 0 to disable */
92 	struct gpio_desc wp_gpio;	/* write-protect GPIO */
93 	s32 width;		/* bit width, normally 8 */
94 	u32 timing[FDT_NAND_TIMING_COUNT];
95 };
96 
97 struct nand_drv {
98 	struct nand_ctlr *reg;
99 	struct fdt_nand config;
100 };
101 
102 struct tegra_nand_info {
103 	struct udevice *dev;
104 	struct nand_drv nand_ctrl;
105 	struct nand_chip nand_chip;
106 };
107 
108 /**
109  * Wait for command completion
110  *
111  * @param reg	nand_ctlr structure
112  * @return
113  *	1 - Command completed
114  *	0 - Timeout
115  */
nand_waitfor_cmd_completion(struct nand_ctlr * reg)116 static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
117 {
118 	u32 reg_val;
119 	int running;
120 	int i;
121 
122 	for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
123 		if ((readl(&reg->command) & CMD_GO) ||
124 				!(readl(&reg->status) & STATUS_RBSY0) ||
125 				!(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
126 			udelay(1);
127 			continue;
128 		}
129 		reg_val = readl(&reg->dma_mst_ctrl);
130 		/*
131 		 * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
132 		 * is set, that means DMA engine is running.
133 		 *
134 		 * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
135 		 * is cleared, indicating DMA transfer completion.
136 		 */
137 		running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
138 				DMA_MST_CTRL_EN_B_ENABLE);
139 		if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
140 			return 1;
141 		udelay(1);
142 	}
143 	return 0;
144 }
145 
146 /**
147  * Read one byte from the chip
148  *
149  * @param mtd	MTD device structure
150  * @return	data byte
151  *
152  * Read function for 8bit bus-width
153  */
read_byte(struct mtd_info * mtd)154 static uint8_t read_byte(struct mtd_info *mtd)
155 {
156 	struct nand_chip *chip = mtd_to_nand(mtd);
157 	struct nand_drv *info;
158 
159 	info = (struct nand_drv *)nand_get_controller_data(chip);
160 
161 	writel(CMD_GO | CMD_PIO | CMD_RX | CMD_CE0 | CMD_A_VALID,
162 	       &info->reg->command);
163 	if (!nand_waitfor_cmd_completion(info->reg))
164 		printf("Command timeout\n");
165 
166 	return (uint8_t)readl(&info->reg->resp);
167 }
168 
169 /**
170  * Read len bytes from the chip into a buffer
171  *
172  * @param mtd	MTD device structure
173  * @param buf	buffer to store data to
174  * @param len	number of bytes to read
175  *
176  * Read function for 8bit bus-width
177  */
read_buf(struct mtd_info * mtd,uint8_t * buf,int len)178 static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
179 {
180 	int i, s;
181 	unsigned int reg;
182 	struct nand_chip *chip = mtd_to_nand(mtd);
183 	struct nand_drv *info = (struct nand_drv *)nand_get_controller_data(chip);
184 
185 	for (i = 0; i < len; i += 4) {
186 		s = (len - i) > 4 ? 4 : len - i;
187 		writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
188 			((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
189 			&info->reg->command);
190 		if (!nand_waitfor_cmd_completion(info->reg))
191 			puts("Command timeout during read_buf\n");
192 		reg = readl(&info->reg->resp);
193 		memcpy(buf + i, &reg, s);
194 	}
195 }
196 
197 /**
198  * Check NAND status to see if it is ready or not
199  *
200  * @param mtd	MTD device structure
201  * @return
202  *	1 - ready
203  *	0 - not ready
204  */
nand_dev_ready(struct mtd_info * mtd)205 static int nand_dev_ready(struct mtd_info *mtd)
206 {
207 	struct nand_chip *chip = mtd_to_nand(mtd);
208 	int reg_val;
209 	struct nand_drv *info;
210 
211 	info = (struct nand_drv *)nand_get_controller_data(chip);
212 
213 	reg_val = readl(&info->reg->status);
214 	if (reg_val & STATUS_RBSY0)
215 		return 1;
216 	else
217 		return 0;
218 }
219 
220 /* Dummy implementation: we don't support multiple chips */
nand_select_chip(struct mtd_info * mtd,int chipnr)221 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
222 {
223 	switch (chipnr) {
224 	case -1:
225 	case 0:
226 		break;
227 
228 	default:
229 		BUG();
230 	}
231 }
232 
233 /**
234  * Clear all interrupt status bits
235  *
236  * @param reg	nand_ctlr structure
237  */
nand_clear_interrupt_status(struct nand_ctlr * reg)238 static void nand_clear_interrupt_status(struct nand_ctlr *reg)
239 {
240 	u32 reg_val;
241 
242 	/* Clear interrupt status */
243 	reg_val = readl(&reg->isr);
244 	writel(reg_val, &reg->isr);
245 }
246 
247 /**
248  * Send command to NAND device
249  *
250  * @param mtd		MTD device structure
251  * @param command	the command to be sent
252  * @param column	the column address for this command, -1 if none
253  * @param page_addr	the page address for this command, -1 if none
254  */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)255 static void nand_command(struct mtd_info *mtd, unsigned int command,
256 	int column, int page_addr)
257 {
258 	struct nand_chip *chip = mtd_to_nand(mtd);
259 	struct nand_drv *info;
260 
261 	info = (struct nand_drv *)nand_get_controller_data(chip);
262 
263 	/*
264 	 * Write out the command to the device.
265 	 *
266 	 * Only command NAND_CMD_RESET or NAND_CMD_READID will come
267 	 * here before mtd->writesize is initialized.
268 	 */
269 
270 	/* Emulate NAND_CMD_READOOB */
271 	if (command == NAND_CMD_READOOB) {
272 		assert(mtd->writesize != 0);
273 		column += mtd->writesize;
274 		command = NAND_CMD_READ0;
275 	}
276 
277 	/* Adjust columns for 16 bit bus-width */
278 	if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
279 		column >>= 1;
280 
281 	nand_clear_interrupt_status(info->reg);
282 
283 	/* Stop DMA engine, clear DMA completion status */
284 	writel(DMA_MST_CTRL_EN_A_DISABLE
285 		| DMA_MST_CTRL_EN_B_DISABLE
286 		| DMA_MST_CTRL_IS_DMA_DONE,
287 		&info->reg->dma_mst_ctrl);
288 
289 	/*
290 	 * Program and erase have their own busy handlers
291 	 * status and sequential in needs no delay
292 	 */
293 	switch (command) {
294 	case NAND_CMD_READID:
295 		writel(NAND_CMD_READID, &info->reg->cmd_reg1);
296 		writel(column & 0xFF, &info->reg->addr_reg1);
297 		writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
298 		       &info->reg->command);
299 		break;
300 	case NAND_CMD_PARAM:
301 		writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
302 		writel(column & 0xFF, &info->reg->addr_reg1);
303 		writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
304 			&info->reg->command);
305 		break;
306 	case NAND_CMD_READ0:
307 		writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
308 		writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
309 		writel((page_addr << 16) | (column & 0xFFFF),
310 			&info->reg->addr_reg1);
311 		writel(page_addr >> 16, &info->reg->addr_reg2);
312 		return;
313 	case NAND_CMD_SEQIN:
314 		writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
315 		writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
316 		writel((page_addr << 16) | (column & 0xFFFF),
317 			&info->reg->addr_reg1);
318 		writel(page_addr >> 16,
319 			&info->reg->addr_reg2);
320 		return;
321 	case NAND_CMD_PAGEPROG:
322 		return;
323 	case NAND_CMD_ERASE1:
324 		writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
325 		writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
326 		writel(page_addr, &info->reg->addr_reg1);
327 		writel(CMD_GO | CMD_CLE | CMD_ALE |
328 			CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
329 			&info->reg->command);
330 		break;
331 	case NAND_CMD_ERASE2:
332 		return;
333 	case NAND_CMD_STATUS:
334 		writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
335 		writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
336 			| ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
337 			| CMD_CE0,
338 			&info->reg->command);
339 		break;
340 	case NAND_CMD_RESET:
341 		writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
342 		writel(CMD_GO | CMD_CLE | CMD_CE0,
343 			&info->reg->command);
344 		break;
345 	case NAND_CMD_RNDOUT:
346 	default:
347 		printf("%s: Unsupported command %d\n", __func__, command);
348 		return;
349 	}
350 	if (!nand_waitfor_cmd_completion(info->reg))
351 		printf("Command 0x%02X timeout\n", command);
352 }
353 
354 /**
355  * Check whether the pointed buffer are all 0xff (blank).
356  *
357  * @param buf	data buffer for blank check
358  * @param len	length of the buffer in byte
359  * @return
360  *	1 - blank
361  *	0 - non-blank
362  */
blank_check(u8 * buf,int len)363 static int blank_check(u8 *buf, int len)
364 {
365 	int i;
366 
367 	for (i = 0; i < len; i++)
368 		if (buf[i] != 0xFF)
369 			return 0;
370 	return 1;
371 }
372 
373 /**
374  * After a DMA transfer for read, we call this function to see whether there
375  * is any uncorrectable error on the pointed data buffer or oob buffer.
376  *
377  * @param reg		nand_ctlr structure
378  * @param databuf	data buffer
379  * @param a_len		data buffer length
380  * @param oobbuf	oob buffer
381  * @param b_len		oob buffer length
382  * @return
383  *	ECC_OK - no ECC error or correctable ECC error
384  *	ECC_TAG_ERROR - uncorrectable tag ECC error
385  *	ECC_DATA_ERROR - uncorrectable data ECC error
386  *	ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
387  */
check_ecc_error(struct nand_ctlr * reg,u8 * databuf,int a_len,u8 * oobbuf,int b_len)388 static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
389 	int a_len, u8 *oobbuf, int b_len)
390 {
391 	int return_val = ECC_OK;
392 	u32 reg_val;
393 
394 	if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
395 		return ECC_OK;
396 
397 	/*
398 	 * Area A is used for the data block (databuf). Area B is used for
399 	 * the spare block (oobbuf)
400 	 */
401 	reg_val = readl(&reg->dec_status);
402 	if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
403 		reg_val = readl(&reg->bch_dec_status_buf);
404 		/*
405 		 * If uncorrectable error occurs on data area, then see whether
406 		 * they are all FF. If all are FF, it's a blank page.
407 		 * Not error.
408 		 */
409 		if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
410 				!blank_check(databuf, a_len))
411 			return_val |= ECC_DATA_ERROR;
412 	}
413 
414 	if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
415 		reg_val = readl(&reg->bch_dec_status_buf);
416 		/*
417 		 * If uncorrectable error occurs on tag area, then see whether
418 		 * they are all FF. If all are FF, it's a blank page.
419 		 * Not error.
420 		 */
421 		if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
422 				!blank_check(oobbuf, b_len))
423 			return_val |= ECC_TAG_ERROR;
424 	}
425 
426 	return return_val;
427 }
428 
429 /**
430  * Set GO bit to send command to device
431  *
432  * @param reg	nand_ctlr structure
433  */
start_command(struct nand_ctlr * reg)434 static void start_command(struct nand_ctlr *reg)
435 {
436 	u32 reg_val;
437 
438 	reg_val = readl(&reg->command);
439 	reg_val |= CMD_GO;
440 	writel(reg_val, &reg->command);
441 }
442 
443 /**
444  * Clear command GO bit, DMA GO bit, and DMA completion status
445  *
446  * @param reg	nand_ctlr structure
447  */
stop_command(struct nand_ctlr * reg)448 static void stop_command(struct nand_ctlr *reg)
449 {
450 	/* Stop command */
451 	writel(0, &reg->command);
452 
453 	/* Stop DMA engine and clear DMA completion status */
454 	writel(DMA_MST_CTRL_GO_DISABLE
455 		| DMA_MST_CTRL_IS_DMA_DONE,
456 		&reg->dma_mst_ctrl);
457 }
458 
459 /**
460  * Set up NAND bus width and page size
461  *
462  * @param info		nand_info structure
463  * @param *reg_val	address of reg_val
464  * @return 0 if ok, -1 on error
465  */
set_bus_width_page_size(struct mtd_info * our_mtd,struct fdt_nand * config,u32 * reg_val)466 static int set_bus_width_page_size(struct mtd_info *our_mtd,
467 				   struct fdt_nand *config, u32 *reg_val)
468 {
469 	if (config->width == 8)
470 		*reg_val = CFG_BUS_WIDTH_8BIT;
471 	else if (config->width == 16)
472 		*reg_val = CFG_BUS_WIDTH_16BIT;
473 	else {
474 		debug("%s: Unsupported bus width %d\n", __func__,
475 		      config->width);
476 		return -1;
477 	}
478 
479 	if (our_mtd->writesize == 512)
480 		*reg_val |= CFG_PAGE_SIZE_512;
481 	else if (our_mtd->writesize == 2048)
482 		*reg_val |= CFG_PAGE_SIZE_2048;
483 	else if (our_mtd->writesize == 4096)
484 		*reg_val |= CFG_PAGE_SIZE_4096;
485 	else {
486 		debug("%s: Unsupported page size %d\n", __func__,
487 		      our_mtd->writesize);
488 		return -1;
489 	}
490 
491 	return 0;
492 }
493 
494 /**
495  * Page read/write function
496  *
497  * @param mtd		mtd info structure
498  * @param chip		nand chip info structure
499  * @param buf		data buffer
500  * @param page		page number
501  * @param with_ecc	1 to enable ECC, 0 to disable ECC
502  * @param is_writing	0 for read, 1 for write
503  * @return	0 when successfully completed
504  *		-EIO when command timeout
505  */
nand_rw_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page,int with_ecc,int is_writing)506 static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
507 	uint8_t *buf, int page, int with_ecc, int is_writing)
508 {
509 	u32 reg_val;
510 	int tag_size;
511 	struct nand_oobfree *free = chip->ecc.layout->oobfree;
512 	/* 4*128=512 (byte) is the value that our HW can support. */
513 	ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
514 	char *tag_ptr;
515 	struct nand_drv *info;
516 	struct fdt_nand *config;
517 	unsigned int bbflags;
518 	struct bounce_buffer bbstate, bbstate_oob;
519 
520 	if ((uintptr_t)buf & 0x03) {
521 		printf("buf %p has to be 4-byte aligned\n", buf);
522 		return -EINVAL;
523 	}
524 
525 	info = (struct nand_drv *)nand_get_controller_data(chip);
526 	config = &info->config;
527 	if (set_bus_width_page_size(mtd, config, &reg_val))
528 		return -EINVAL;
529 
530 	/* Need to be 4-byte aligned */
531 	tag_ptr = (char *)tag_buf;
532 
533 	stop_command(info->reg);
534 
535 	if (is_writing)
536 		bbflags = GEN_BB_READ;
537 	else
538 		bbflags = GEN_BB_WRITE;
539 
540 	bounce_buffer_start(&bbstate, (void *)buf, 1 << chip->page_shift,
541 			    bbflags);
542 	writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
543 	writel(virt_to_phys(bbstate.bounce_buffer), &info->reg->data_block_ptr);
544 
545 	/* Set ECC selection, configure ECC settings */
546 	if (with_ecc) {
547 		if (is_writing)
548 			memcpy(tag_ptr, chip->oob_poi + free->offset,
549 			       chip->ecc.layout->oobavail + TAG_ECC_BYTES);
550 		tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
551 		reg_val |= (CFG_SKIP_SPARE_SEL_4
552 			| CFG_SKIP_SPARE_ENABLE
553 			| CFG_HW_ECC_CORRECTION_ENABLE
554 			| CFG_ECC_EN_TAG_DISABLE
555 			| CFG_HW_ECC_SEL_RS
556 			| CFG_HW_ECC_ENABLE
557 			| CFG_TVAL4
558 			| (tag_size - 1));
559 
560 		if (!is_writing)
561 			tag_size += SKIPPED_SPARE_BYTES;
562 		bounce_buffer_start(&bbstate_oob, (void *)tag_ptr, tag_size,
563 				    bbflags);
564 	} else {
565 		tag_size = mtd->oobsize;
566 		reg_val |= (CFG_SKIP_SPARE_DISABLE
567 			| CFG_HW_ECC_CORRECTION_DISABLE
568 			| CFG_ECC_EN_TAG_DISABLE
569 			| CFG_HW_ECC_DISABLE
570 			| (tag_size - 1));
571 		bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi,
572 				    tag_size, bbflags);
573 	}
574 	writel(reg_val, &info->reg->config);
575 	writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
576 	writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
577 	writel(tag_size - 1, &info->reg->dma_cfg_b);
578 
579 	nand_clear_interrupt_status(info->reg);
580 
581 	reg_val = CMD_CLE | CMD_ALE
582 		| CMD_SEC_CMD
583 		| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
584 		| CMD_A_VALID
585 		| CMD_B_VALID
586 		| (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
587 		| CMD_CE0;
588 	if (!is_writing)
589 		reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
590 	else
591 		reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
592 	writel(reg_val, &info->reg->command);
593 
594 	/* Setup DMA engine */
595 	reg_val = DMA_MST_CTRL_GO_ENABLE
596 		| DMA_MST_CTRL_BURST_8WORDS
597 		| DMA_MST_CTRL_EN_A_ENABLE
598 		| DMA_MST_CTRL_EN_B_ENABLE;
599 
600 	if (!is_writing)
601 		reg_val |= DMA_MST_CTRL_DIR_READ;
602 	else
603 		reg_val |= DMA_MST_CTRL_DIR_WRITE;
604 
605 	writel(reg_val, &info->reg->dma_mst_ctrl);
606 
607 	start_command(info->reg);
608 
609 	if (!nand_waitfor_cmd_completion(info->reg)) {
610 		if (!is_writing)
611 			printf("Read Page 0x%X timeout ", page);
612 		else
613 			printf("Write Page 0x%X timeout ", page);
614 		if (with_ecc)
615 			printf("with ECC");
616 		else
617 			printf("without ECC");
618 		printf("\n");
619 		return -EIO;
620 	}
621 
622 	bounce_buffer_stop(&bbstate_oob);
623 	bounce_buffer_stop(&bbstate);
624 
625 	if (with_ecc && !is_writing) {
626 		memcpy(chip->oob_poi, tag_ptr,
627 			SKIPPED_SPARE_BYTES);
628 		memcpy(chip->oob_poi + free->offset,
629 			tag_ptr + SKIPPED_SPARE_BYTES,
630 			chip->ecc.layout->oobavail);
631 		reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
632 			1 << chip->page_shift,
633 			(u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
634 			chip->ecc.layout->oobavail);
635 		if (reg_val & ECC_TAG_ERROR)
636 			printf("Read Page 0x%X tag ECC error\n", page);
637 		if (reg_val & ECC_DATA_ERROR)
638 			printf("Read Page 0x%X data ECC error\n",
639 				page);
640 		if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
641 			return -EIO;
642 	}
643 	return 0;
644 }
645 
646 /**
647  * Hardware ecc based page read function
648  *
649  * @param mtd	mtd info structure
650  * @param chip	nand chip info structure
651  * @param buf	buffer to store read data
652  * @param page	page number to read
653  * @return	0 when successfully completed
654  *		-EIO when command timeout
655  */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)656 static int nand_read_page_hwecc(struct mtd_info *mtd,
657 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
658 {
659 	return nand_rw_page(mtd, chip, buf, page, 1, 0);
660 }
661 
662 /**
663  * Hardware ecc based page write function
664  *
665  * @param mtd	mtd info structure
666  * @param chip	nand chip info structure
667  * @param buf	data buffer
668  */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)669 static int nand_write_page_hwecc(struct mtd_info *mtd,
670 	struct nand_chip *chip, const uint8_t *buf, int oob_required,
671 	int page)
672 {
673 	nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
674 	return 0;
675 }
676 
677 
678 /**
679  * Read raw page data without ecc
680  *
681  * @param mtd	mtd info structure
682  * @param chip	nand chip info structure
683  * @param buf	buffer to store read data
684  * @param page	page number to read
685  * @return	0 when successfully completed
686  *		-EINVAL when chip->oob_poi is not double-word aligned
687  *		-EIO when command timeout
688  */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)689 static int nand_read_page_raw(struct mtd_info *mtd,
690 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
691 {
692 	return nand_rw_page(mtd, chip, buf, page, 0, 0);
693 }
694 
695 /**
696  * Raw page write function
697  *
698  * @param mtd	mtd info structure
699  * @param chip	nand chip info structure
700  * @param buf	data buffer
701  */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)702 static int nand_write_page_raw(struct mtd_info *mtd,
703 		struct nand_chip *chip,	const uint8_t *buf,
704 		int oob_required, int page)
705 {
706 	nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
707 	return 0;
708 }
709 
710 /**
711  * OOB data read/write function
712  *
713  * @param mtd		mtd info structure
714  * @param chip		nand chip info structure
715  * @param page		page number to read
716  * @param with_ecc	1 to enable ECC, 0 to disable ECC
717  * @param is_writing	0 for read, 1 for write
718  * @return	0 when successfully completed
719  *		-EINVAL when chip->oob_poi is not double-word aligned
720  *		-EIO when command timeout
721  */
nand_rw_oob(struct mtd_info * mtd,struct nand_chip * chip,int page,int with_ecc,int is_writing)722 static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
723 	int page, int with_ecc, int is_writing)
724 {
725 	u32 reg_val;
726 	int tag_size;
727 	struct nand_oobfree *free = chip->ecc.layout->oobfree;
728 	struct nand_drv *info;
729 	unsigned int bbflags;
730 	struct bounce_buffer bbstate_oob;
731 
732 	if (((int)chip->oob_poi) & 0x03)
733 		return -EINVAL;
734 	info = (struct nand_drv *)nand_get_controller_data(chip);
735 	if (set_bus_width_page_size(mtd, &info->config, &reg_val))
736 		return -EINVAL;
737 
738 	stop_command(info->reg);
739 
740 	/* Set ECC selection */
741 	tag_size = mtd->oobsize;
742 	if (with_ecc)
743 		reg_val |= CFG_ECC_EN_TAG_ENABLE;
744 	else
745 		reg_val |= (CFG_ECC_EN_TAG_DISABLE);
746 
747 	reg_val |= ((tag_size - 1) |
748 		CFG_SKIP_SPARE_DISABLE |
749 		CFG_HW_ECC_CORRECTION_DISABLE |
750 		CFG_HW_ECC_DISABLE);
751 	writel(reg_val, &info->reg->config);
752 
753 	if (is_writing && with_ecc)
754 		tag_size -= TAG_ECC_BYTES;
755 
756 	if (is_writing)
757 		bbflags = GEN_BB_READ;
758 	else
759 		bbflags = GEN_BB_WRITE;
760 
761 	bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi, tag_size,
762 			    bbflags);
763 	writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
764 
765 	writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
766 
767 	writel(tag_size - 1, &info->reg->dma_cfg_b);
768 
769 	nand_clear_interrupt_status(info->reg);
770 
771 	reg_val = CMD_CLE | CMD_ALE
772 		| CMD_SEC_CMD
773 		| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
774 		| CMD_B_VALID
775 		| CMD_CE0;
776 	if (!is_writing)
777 		reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
778 	else
779 		reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
780 	writel(reg_val, &info->reg->command);
781 
782 	/* Setup DMA engine */
783 	reg_val = DMA_MST_CTRL_GO_ENABLE
784 		| DMA_MST_CTRL_BURST_8WORDS
785 		| DMA_MST_CTRL_EN_B_ENABLE;
786 	if (!is_writing)
787 		reg_val |= DMA_MST_CTRL_DIR_READ;
788 	else
789 		reg_val |= DMA_MST_CTRL_DIR_WRITE;
790 
791 	writel(reg_val, &info->reg->dma_mst_ctrl);
792 
793 	start_command(info->reg);
794 
795 	if (!nand_waitfor_cmd_completion(info->reg)) {
796 		if (!is_writing)
797 			printf("Read OOB of Page 0x%X timeout\n", page);
798 		else
799 			printf("Write OOB of Page 0x%X timeout\n", page);
800 		return -EIO;
801 	}
802 
803 	bounce_buffer_stop(&bbstate_oob);
804 
805 	if (with_ecc && !is_writing) {
806 		reg_val = (u32)check_ecc_error(info->reg, 0, 0,
807 			(u8 *)(chip->oob_poi + free->offset),
808 			chip->ecc.layout->oobavail);
809 		if (reg_val & ECC_TAG_ERROR)
810 			printf("Read OOB of Page 0x%X tag ECC error\n", page);
811 	}
812 	return 0;
813 }
814 
815 /**
816  * OOB data read function
817  *
818  * @param mtd		mtd info structure
819  * @param chip		nand chip info structure
820  * @param page		page number to read
821  */
nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)822 static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
823 	int page)
824 {
825 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
826 	nand_rw_oob(mtd, chip, page, 0, 0);
827 	return 0;
828 }
829 
830 /**
831  * OOB data write function
832  *
833  * @param mtd	mtd info structure
834  * @param chip	nand chip info structure
835  * @param page	page number to write
836  * @return	0 when successfully completed
837  *		-EINVAL when chip->oob_poi is not double-word aligned
838  *		-EIO when command timeout
839  */
nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)840 static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
841 	int page)
842 {
843 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
844 
845 	return nand_rw_oob(mtd, chip, page, 0, 1);
846 }
847 
848 /**
849  * Set up NAND memory timings according to the provided parameters
850  *
851  * @param timing	Timing parameters
852  * @param reg		NAND controller register address
853  */
setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],struct nand_ctlr * reg)854 static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
855 			 struct nand_ctlr *reg)
856 {
857 	u32 reg_val, clk_rate, clk_period, time_val;
858 
859 	clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
860 		CLOCK_ID_PERIPH) / 1000000;
861 	clk_period = 1000 / clk_rate;
862 	reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
863 		TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
864 	reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
865 		TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
866 	time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
867 	if (time_val > 2)
868 		reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
869 			TIMING_TCR_TAR_TRR_CNT_MASK;
870 	reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
871 		TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
872 	time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
873 	if (time_val > 1)
874 		reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
875 			TIMING_TCS_CNT_MASK;
876 	reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
877 		TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
878 	reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
879 		TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
880 	reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
881 		TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
882 	reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
883 		TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
884 	writel(reg_val, &reg->timing);
885 
886 	reg_val = 0;
887 	time_val = timing[FDT_NAND_TADL] / clk_period;
888 	if (time_val > 2)
889 		reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
890 	writel(reg_val, &reg->timing2);
891 }
892 
893 /**
894  * Decode NAND parameters from the device tree
895  *
896  * @param dev		Driver model device
897  * @param config	Device tree NAND configuration
898  * @return 0 if ok, -ve on error (FDT_ERR_...)
899  */
fdt_decode_nand(struct udevice * dev,struct fdt_nand * config)900 static int fdt_decode_nand(struct udevice *dev, struct fdt_nand *config)
901 {
902 	int err;
903 
904 	config->reg = (struct nand_ctlr *)dev_read_addr(dev);
905 	config->enabled = dev_read_enabled(dev);
906 	config->width = dev_read_u32_default(dev, "nvidia,nand-width", 8);
907 	err = gpio_request_by_name(dev, "nvidia,wp-gpios", 0, &config->wp_gpio,
908 				   GPIOD_IS_OUT);
909 	if (err)
910 		return err;
911 	err = dev_read_u32_array(dev, "nvidia,timing", config->timing,
912 				 FDT_NAND_TIMING_COUNT);
913 	if (err < 0)
914 		return err;
915 
916 	return 0;
917 }
918 
tegra_probe(struct udevice * dev)919 static int tegra_probe(struct udevice *dev)
920 {
921 	struct tegra_nand_info *tegra = dev_get_priv(dev);
922 	struct nand_chip *nand = &tegra->nand_chip;
923 	struct nand_drv *info = &tegra->nand_ctrl;
924 	struct fdt_nand *config = &info->config;
925 	struct mtd_info *our_mtd;
926 	int ret;
927 
928 	if (fdt_decode_nand(dev, config)) {
929 		printf("Could not decode nand-flash in device tree\n");
930 		return -1;
931 	}
932 	if (!config->enabled)
933 		return -1;
934 	info->reg = config->reg;
935 	nand->ecc.mode = NAND_ECC_HW;
936 	nand->ecc.layout = &eccoob;
937 
938 	nand->options = LP_OPTIONS;
939 	nand->cmdfunc = nand_command;
940 	nand->read_byte = read_byte;
941 	nand->read_buf = read_buf;
942 	nand->ecc.read_page = nand_read_page_hwecc;
943 	nand->ecc.write_page = nand_write_page_hwecc;
944 	nand->ecc.read_page_raw = nand_read_page_raw;
945 	nand->ecc.write_page_raw = nand_write_page_raw;
946 	nand->ecc.read_oob = nand_read_oob;
947 	nand->ecc.write_oob = nand_write_oob;
948 	nand->ecc.strength = 1;
949 	nand->select_chip = nand_select_chip;
950 	nand->dev_ready  = nand_dev_ready;
951 	nand_set_controller_data(nand, &tegra->nand_ctrl);
952 
953 	/* Disable subpage writes as we do not provide ecc->hwctl */
954 	nand->options |= NAND_NO_SUBPAGE_WRITE;
955 
956 	/* Adjust controller clock rate */
957 	clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
958 
959 	/* Adjust timing for NAND device */
960 	setup_timing(config->timing, info->reg);
961 
962 	dm_gpio_set_value(&config->wp_gpio, 1);
963 
964 	our_mtd = nand_to_mtd(nand);
965 	ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
966 	if (ret)
967 		return ret;
968 
969 	nand->ecc.size = our_mtd->writesize;
970 	nand->ecc.bytes = our_mtd->oobsize;
971 
972 	ret = nand_scan_tail(our_mtd);
973 	if (ret)
974 		return ret;
975 
976 	ret = nand_register(0, our_mtd);
977 	if (ret) {
978 		dev_err(dev, "Failed to register MTD: %d\n", ret);
979 		return ret;
980 	}
981 
982 	return 0;
983 }
984 
985 U_BOOT_DRIVER(tegra_nand) = {
986 	.name = "tegra-nand",
987 	.id = UCLASS_MTD,
988 	.of_match = tegra_nand_dt_ids,
989 	.probe = tegra_probe,
990 	.priv_auto_alloc_size = sizeof(struct tegra_nand_info),
991 };
992 
board_nand_init(void)993 void board_nand_init(void)
994 {
995 	struct udevice *dev;
996 	int ret;
997 
998 	ret = uclass_get_device_by_driver(UCLASS_MTD,
999 					  DM_GET_DRIVER(tegra_nand), &dev);
1000 	if (ret && ret != -ENODEV)
1001 		pr_err("Failed to initialize %s. (error %d)\n", dev->name,
1002 		       ret);
1003 }
1004