xref: /OK3568_Linux_fs/u-boot/drivers/mtd/nand/raw/davinci_nand.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * NAND driver for TI DaVinci based boards.
3  *
4  * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5  *
6  * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7  */
8 
9 /*
10  *
11  * linux/drivers/mtd/nand/raw/nand_davinci.c
12  *
13  * NAND Flash Driver
14  *
15  * Copyright (C) 2006 Texas Instruments.
16  *
17  * ----------------------------------------------------------------------------
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  *
21  * ----------------------------------------------------------------------------
22  *
23  *  Overview:
24  *   This is a device driver for the NAND flash device found on the
25  *   DaVinci board which utilizes the Samsung k9k2g08 part.
26  *
27  Modifications:
28  ver. 1.0: Feb 2005, Vinod/Sudhakar
29  -
30  */
31 
32 #include <common.h>
33 #include <asm/io.h>
34 #include <nand.h>
35 #include <asm/ti-common/davinci_nand.h>
36 
37 /* Definitions for 4-bit hardware ECC */
38 #define NAND_TIMEOUT			10240
39 #define NAND_ECC_BUSY			0xC
40 #define NAND_4BITECC_MASK		0x03FF03FF
41 #define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
42 #define ECC_STATE_NO_ERR		0x0
43 #define ECC_STATE_TOO_MANY_ERRS		0x1
44 #define ECC_STATE_ERR_CORR_COMP_P	0x2
45 #define ECC_STATE_ERR_CORR_COMP_N	0x3
46 
47 /*
48  * Exploit the little endianness of the ARM to do multi-byte transfers
49  * per device read. This can perform over twice as quickly as individual
50  * byte transfers when buffer alignment is conducive.
51  *
52  * NOTE: This only works if the NAND is not connected to the 2 LSBs of
53  * the address bus. On Davinci EVM platforms this has always been true.
54  */
nand_davinci_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)55 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
56 {
57 	struct nand_chip *chip = mtd_to_nand(mtd);
58 	const u32 *nand = chip->IO_ADDR_R;
59 
60 	/* Make sure that buf is 32 bit aligned */
61 	if (((int)buf & 0x3) != 0) {
62 		if (((int)buf & 0x1) != 0) {
63 			if (len) {
64 				*buf = readb(nand);
65 				buf += 1;
66 				len--;
67 			}
68 		}
69 
70 		if (((int)buf & 0x3) != 0) {
71 			if (len >= 2) {
72 				*(u16 *)buf = readw(nand);
73 				buf += 2;
74 				len -= 2;
75 			}
76 		}
77 	}
78 
79 	/* copy aligned data */
80 	while (len >= 4) {
81 		*(u32 *)buf = __raw_readl(nand);
82 		buf += 4;
83 		len -= 4;
84 	}
85 
86 	/* mop up any remaining bytes */
87 	if (len) {
88 		if (len >= 2) {
89 			*(u16 *)buf = readw(nand);
90 			buf += 2;
91 			len -= 2;
92 		}
93 
94 		if (len)
95 			*buf = readb(nand);
96 	}
97 }
98 
nand_davinci_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)99 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
100 				   int len)
101 {
102 	struct nand_chip *chip = mtd_to_nand(mtd);
103 	const u32 *nand = chip->IO_ADDR_W;
104 
105 	/* Make sure that buf is 32 bit aligned */
106 	if (((int)buf & 0x3) != 0) {
107 		if (((int)buf & 0x1) != 0) {
108 			if (len) {
109 				writeb(*buf, nand);
110 				buf += 1;
111 				len--;
112 			}
113 		}
114 
115 		if (((int)buf & 0x3) != 0) {
116 			if (len >= 2) {
117 				writew(*(u16 *)buf, nand);
118 				buf += 2;
119 				len -= 2;
120 			}
121 		}
122 	}
123 
124 	/* copy aligned data */
125 	while (len >= 4) {
126 		__raw_writel(*(u32 *)buf, nand);
127 		buf += 4;
128 		len -= 4;
129 	}
130 
131 	/* mop up any remaining bytes */
132 	if (len) {
133 		if (len >= 2) {
134 			writew(*(u16 *)buf, nand);
135 			buf += 2;
136 			len -= 2;
137 		}
138 
139 		if (len)
140 			writeb(*buf, nand);
141 	}
142 }
143 
nand_davinci_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)144 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
145 		unsigned int ctrl)
146 {
147 	struct		nand_chip *this = mtd_to_nand(mtd);
148 	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
149 
150 	if (ctrl & NAND_CTRL_CHANGE) {
151 		IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
152 
153 		if (ctrl & NAND_CLE)
154 			IO_ADDR_W |= MASK_CLE;
155 		if (ctrl & NAND_ALE)
156 			IO_ADDR_W |= MASK_ALE;
157 		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
158 	}
159 
160 	if (cmd != NAND_CMD_NONE)
161 		writeb(cmd, IO_ADDR_W);
162 }
163 
164 #ifdef CONFIG_SYS_NAND_HW_ECC
165 
nand_davinci_readecc(struct mtd_info * mtd)166 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
167 {
168 	u_int32_t	ecc = 0;
169 
170 	ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
171 				CONFIG_SYS_NAND_CS - 2]));
172 
173 	return ecc;
174 }
175 
nand_davinci_enable_hwecc(struct mtd_info * mtd,int mode)176 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
177 {
178 	u_int32_t	val;
179 
180 	/* reading the ECC result register resets the ECC calculation */
181 	nand_davinci_readecc(mtd);
182 
183 	val = __raw_readl(&davinci_emif_regs->nandfcr);
184 	val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
185 	val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
186 	__raw_writel(val, &davinci_emif_regs->nandfcr);
187 }
188 
nand_davinci_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)189 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
190 		u_char *ecc_code)
191 {
192 	u_int32_t		tmp;
193 
194 	tmp = nand_davinci_readecc(mtd);
195 
196 	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
197 	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
198 	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
199 
200 	/* Invert so that erased block ECC is correct */
201 	tmp = ~tmp;
202 
203 	*ecc_code++ = tmp;
204 	*ecc_code++ = tmp >>  8;
205 	*ecc_code++ = tmp >> 16;
206 
207 	/* NOTE:  the above code matches mainline Linux:
208 	 *	.PQR.stu ==> ~PQRstu
209 	 *
210 	 * MontaVista/TI kernels encode those bytes differently, use
211 	 * complicated (and allegedly sometimes-wrong) correction code,
212 	 * and usually shipped with U-Boot that uses software ECC:
213 	 *	.PQR.stu ==> PsQRtu
214 	 *
215 	 * If you need MV/TI compatible NAND I/O in U-Boot, it should
216 	 * be possible to (a) change the mangling above, (b) reverse
217 	 * that mangling in nand_davinci_correct_data() below.
218 	 */
219 
220 	return 0;
221 }
222 
nand_davinci_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)223 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
224 		u_char *read_ecc, u_char *calc_ecc)
225 {
226 	struct nand_chip *this = mtd_to_nand(mtd);
227 	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
228 					  (read_ecc[2] << 16);
229 	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
230 					  (calc_ecc[2] << 16);
231 	u_int32_t diff = ecc_calc ^ ecc_nand;
232 
233 	if (diff) {
234 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
235 			/* Correctable error */
236 			if ((diff >> (12 + 3)) < this->ecc.size) {
237 				uint8_t find_bit = 1 << ((diff >> 12) & 7);
238 				uint32_t find_byte = diff >> (12 + 3);
239 
240 				dat[find_byte] ^= find_bit;
241 				pr_debug("Correcting single "
242 					 "bit ECC error at offset: %d, bit: "
243 					 "%d\n", find_byte, find_bit);
244 				return 1;
245 			} else {
246 				return -EBADMSG;
247 			}
248 		} else if (!(diff & (diff - 1))) {
249 			/* Single bit ECC error in the ECC itself,
250 			   nothing to fix */
251 			pr_debug("Single bit ECC error in " "ECC.\n");
252 			return 1;
253 		} else {
254 			/* Uncorrectable error */
255 			pr_debug("ECC UNCORRECTED_ERROR 1\n");
256 			return -EBADMSG;
257 		}
258 	}
259 	return 0;
260 }
261 #endif /* CONFIG_SYS_NAND_HW_ECC */
262 
263 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
264 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
265 #if defined(CONFIG_SYS_NAND_PAGE_2K)
266 	.eccbytes = 40,
267 #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
268 	.eccpos = {
269 		6,   7,  8,  9, 10,	11, 12, 13, 14, 15,
270 		22, 23, 24, 25, 26,	27, 28, 29, 30, 31,
271 		38, 39, 40, 41, 42,	43, 44, 45, 46, 47,
272 		54, 55, 56, 57, 58,	59, 60, 61, 62, 63,
273 	},
274 	.oobfree = {
275 		{2, 4}, {16, 6}, {32, 6}, {48, 6},
276 	},
277 #else
278 	.eccpos = {
279 		24, 25, 26, 27, 28,
280 		29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
281 		39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
282 		49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
283 		59, 60, 61, 62, 63,
284 		},
285 	.oobfree = {
286 		{.offset = 2, .length = 22, },
287 	},
288 #endif	/* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
289 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
290 	.eccbytes = 80,
291 	.eccpos = {
292 		48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
293 		58, 59, 60, 61, 62, 63,	64, 65, 66, 67,
294 		68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
295 		78, 79,	80, 81, 82, 83,	84, 85, 86, 87,
296 		88, 89, 90, 91, 92, 93,	94, 95, 96, 97,
297 		98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
298 		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
299 		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
300 		},
301 	.oobfree = {
302 		{.offset = 2, .length = 46, },
303 	},
304 #endif
305 };
306 
307 #if defined CONFIG_KEYSTONE_RBL_NAND
308 static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
309 #if defined(CONFIG_SYS_NAND_PAGE_2K)
310 	.eccbytes = 40,
311 	.eccpos = {
312 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
313 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
314 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
315 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
316 	},
317 	.oobfree = {
318 		{.offset = 2, .length = 4, },
319 		{.offset = 16, .length = 6, },
320 		{.offset = 32, .length = 6, },
321 		{.offset = 48, .length = 6, },
322 	},
323 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
324 	.eccbytes = 80,
325 	.eccpos = {
326 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
327 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
328 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
329 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
330 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
331 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
332 		102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
333 		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
334 	},
335 	.oobfree = {
336 		{.offset = 2, .length = 4, },
337 		{.offset = 16, .length = 6, },
338 		{.offset = 32, .length = 6, },
339 		{.offset = 48, .length = 6, },
340 		{.offset = 64, .length = 6, },
341 		{.offset = 80, .length = 6, },
342 		{.offset = 96, .length = 6, },
343 		{.offset = 112, .length = 6, },
344 	},
345 #endif
346 };
347 
348 #ifdef CONFIG_SYS_NAND_PAGE_2K
349 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE	CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
350 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
351 #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE	CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
352 #endif
353 
354 /**
355  * nand_davinci_write_page - write one page
356  * @mtd: MTD device structure
357  * @chip: NAND chip descriptor
358  * @buf: the data to write
359  * @oob_required: must write chip->oob_poi to OOB
360  * @page: page number to write
361  * @raw: use _raw version of write_page
362  */
nand_davinci_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)363 static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
364 				   uint32_t offset, int data_len,
365 				   const uint8_t *buf, int oob_required,
366 				   int page, int raw)
367 {
368 	int status;
369 	int ret = 0;
370 	struct nand_ecclayout *saved_ecc_layout;
371 
372 	/* save current ECC layout and assign Keystone RBL ECC layout */
373 	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
374 		saved_ecc_layout = chip->ecc.layout;
375 		chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
376 		mtd->oobavail = chip->ecc.layout->oobavail;
377 	}
378 
379 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
380 
381 	if (unlikely(raw)) {
382 		status = chip->ecc.write_page_raw(mtd, chip, buf,
383 						  oob_required, page);
384 	} else {
385 		status = chip->ecc.write_page(mtd, chip, buf,
386 					      oob_required, page);
387 	}
388 
389 	if (status < 0) {
390 		ret = status;
391 		goto err;
392 	}
393 
394 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
395 	status = chip->waitfunc(mtd, chip);
396 
397 	if (status & NAND_STATUS_FAIL) {
398 		ret = -EIO;
399 		goto err;
400 	}
401 
402 err:
403 	/* restore ECC layout */
404 	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
405 		chip->ecc.layout = saved_ecc_layout;
406 		mtd->oobavail = saved_ecc_layout->oobavail;
407 	}
408 
409 	return ret;
410 }
411 
412 /**
413  * nand_davinci_read_page_hwecc - hardware ECC based page read function
414  * @mtd: mtd info structure
415  * @chip: nand chip info structure
416  * @buf: buffer to store read data
417  * @oob_required: caller requires OOB data read to chip->oob_poi
418  * @page: page number to read
419  *
420  * Not for syndrome calculating ECC controllers which need a special oob layout.
421  */
nand_davinci_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)422 static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
423 				uint8_t *buf, int oob_required, int page)
424 {
425 	int i, eccsize = chip->ecc.size;
426 	int eccbytes = chip->ecc.bytes;
427 	int eccsteps = chip->ecc.steps;
428 	uint32_t *eccpos;
429 	uint8_t *p = buf;
430 	uint8_t *ecc_code = chip->buffers->ecccode;
431 	uint8_t *ecc_calc = chip->buffers->ecccalc;
432 	struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
433 
434 	/* save current ECC layout and assign Keystone RBL ECC layout */
435 	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
436 		chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
437 		mtd->oobavail = chip->ecc.layout->oobavail;
438 	}
439 
440 	eccpos = chip->ecc.layout->eccpos;
441 
442 	/* Read the OOB area first */
443 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
444 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
445 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
446 
447 	for (i = 0; i < chip->ecc.total; i++)
448 		ecc_code[i] = chip->oob_poi[eccpos[i]];
449 
450 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
451 		int stat;
452 
453 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
454 		chip->read_buf(mtd, p, eccsize);
455 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
456 
457 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
458 		if (stat < 0)
459 			mtd->ecc_stats.failed++;
460 		else
461 			mtd->ecc_stats.corrected += stat;
462 	}
463 
464 	/* restore ECC layout */
465 	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
466 		chip->ecc.layout = saved_ecc_layout;
467 		mtd->oobavail = saved_ecc_layout->oobavail;
468 	}
469 
470 	return 0;
471 }
472 #endif /* CONFIG_KEYSTONE_RBL_NAND */
473 
nand_davinci_4bit_enable_hwecc(struct mtd_info * mtd,int mode)474 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
475 {
476 	u32 val;
477 
478 	switch (mode) {
479 	case NAND_ECC_WRITE:
480 	case NAND_ECC_READ:
481 		/*
482 		 * Start a new ECC calculation for reading or writing 512 bytes
483 		 * of data.
484 		 */
485 		val = __raw_readl(&davinci_emif_regs->nandfcr);
486 		val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
487 		val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
488 		val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
489 		val |= DAVINCI_NANDFCR_4BIT_ECC_START;
490 		__raw_writel(val, &davinci_emif_regs->nandfcr);
491 		break;
492 	case NAND_ECC_READSYN:
493 		val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
494 		break;
495 	default:
496 		break;
497 	}
498 }
499 
nand_davinci_4bit_readecc(struct mtd_info * mtd,unsigned int ecc[4])500 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
501 {
502 	int i;
503 
504 	for (i = 0; i < 4; i++) {
505 		ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
506 			NAND_4BITECC_MASK;
507 	}
508 
509 	return 0;
510 }
511 
nand_davinci_4bit_calculate_ecc(struct mtd_info * mtd,const uint8_t * dat,uint8_t * ecc_code)512 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
513 					   const uint8_t *dat,
514 					   uint8_t *ecc_code)
515 {
516 	unsigned int hw_4ecc[4];
517 	unsigned int i;
518 
519 	nand_davinci_4bit_readecc(mtd, hw_4ecc);
520 
521 	/*Convert 10 bit ecc value to 8 bit */
522 	for (i = 0; i < 2; i++) {
523 		unsigned int hw_ecc_low = hw_4ecc[i * 2];
524 		unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
525 
526 		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
527 		*ecc_code++ = hw_ecc_low & 0xFF;
528 
529 		/*
530 		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
531 		 * (count1=1) and 6 bits from val2 (count1=0) or
532 		 * val5 (count1=1)
533 		 */
534 		*ecc_code++ =
535 		    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
536 
537 		/*
538 		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
539 		 * 4 bits from val3 (count1=0) or val6 (count1=1)
540 		 */
541 		*ecc_code++ =
542 		    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
543 
544 		/*
545 		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
546 		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
547 		 */
548 		*ecc_code++ =
549 		    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
550 
551 		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
552 		*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
553 	}
554 
555 	return 0;
556 }
557 
nand_davinci_4bit_correct_data(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)558 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
559 					  uint8_t *read_ecc, uint8_t *calc_ecc)
560 {
561 	int i;
562 	unsigned int hw_4ecc[4];
563 	unsigned int iserror;
564 	unsigned short *ecc16;
565 	unsigned int numerrors, erroraddress, errorvalue;
566 	u32 val;
567 
568 	/*
569 	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
570 	 * will assume we are looking at an erased page and we should ignore
571 	 * the ECC.
572 	 */
573 	for (i = 0; i < 10; i++) {
574 		if (read_ecc[i] != 0xFF)
575 			break;
576 	}
577 	if (i == 10)
578 		return 0;
579 
580 	/* Convert 8 bit in to 10 bit */
581 	ecc16 = (unsigned short *)&read_ecc[0];
582 
583 	/*
584 	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
585 	 * Write each parity value one at a time starting from 4bit_ecc_val8
586 	 * to 4bit_ecc_val1.
587 	 */
588 
589 	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
590 	__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
591 			&davinci_emif_regs->nand4biteccload);
592 
593 	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
594 	__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
595 			&davinci_emif_regs->nand4biteccload);
596 
597 	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
598 	__raw_writel((ecc16[3] >> 2) & 0x3FF,
599 			&davinci_emif_regs->nand4biteccload);
600 
601 	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
602 	__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
603 			&davinci_emif_regs->nand4biteccload);
604 
605 	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
606 	__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
607 			&davinci_emif_regs->nand4biteccload);
608 
609 	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
610 	__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
611 			&davinci_emif_regs->nand4biteccload);
612 
613 	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
614 	__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
615 			&davinci_emif_regs->nand4biteccload);
616 
617 	/* Take 10 bits from 0th and 1st bytes */
618 	__raw_writel((ecc16[0]) & 0x3FF,
619 			&davinci_emif_regs->nand4biteccload);
620 
621 	/*
622 	 * Perform a dummy read to the EMIF Revision Code and Status register.
623 	 * This is required to ensure time for syndrome calculation after
624 	 * writing the ECC values in previous step.
625 	 */
626 
627 	val = __raw_readl(&davinci_emif_regs->nandfsr);
628 
629 	/*
630 	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
631 	 * A syndrome value of 0 means no bit errors. If the syndrome is
632 	 * non-zero then go further otherwise return.
633 	 */
634 	nand_davinci_4bit_readecc(mtd, hw_4ecc);
635 
636 	if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
637 		return 0;
638 
639 	/*
640 	 * Clear any previous address calculation by doing a dummy read of an
641 	 * error address register.
642 	 */
643 	val = __raw_readl(&davinci_emif_regs->nanderradd1);
644 
645 	/*
646 	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
647 	 * register to 1.
648 	 */
649 	__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
650 			&davinci_emif_regs->nandfcr);
651 
652 	/*
653 	 * Wait for the corr_state field (bits 8 to 11) in the
654 	 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
655 	 * Otherwise ECC calculation has not even begun and the next loop might
656 	 * fail because of a false positive!
657 	 */
658 	i = NAND_TIMEOUT;
659 	do {
660 		val = __raw_readl(&davinci_emif_regs->nandfsr);
661 		val &= 0xc00;
662 		i--;
663 	} while ((i > 0) && !val);
664 
665 	/*
666 	 * Wait for the corr_state field (bits 8 to 11) in the
667 	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
668 	 */
669 	i = NAND_TIMEOUT;
670 	do {
671 		val = __raw_readl(&davinci_emif_regs->nandfsr);
672 		val &= 0xc00;
673 		i--;
674 	} while ((i > 0) && val);
675 
676 	iserror = __raw_readl(&davinci_emif_regs->nandfsr);
677 	iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
678 	iserror = iserror >> 8;
679 
680 	/*
681 	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
682 	 * corrected (five or more errors).  The number of errors
683 	 * calculated (err_num field) differs from the number of errors
684 	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
685 	 * correction complete (errors on bit 8 or 9).
686 	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
687 	 * complete (error exists).
688 	 */
689 
690 	if (iserror == ECC_STATE_NO_ERR) {
691 		val = __raw_readl(&davinci_emif_regs->nanderrval1);
692 		return 0;
693 	} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
694 		val = __raw_readl(&davinci_emif_regs->nanderrval1);
695 		return -EBADMSG;
696 	}
697 
698 	numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
699 			& 0x3) + 1;
700 
701 	/* Read the error address, error value and correct */
702 	for (i = 0; i < numerrors; i++) {
703 		if (i > 1) {
704 			erroraddress =
705 			    ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
706 			      (16 * (i & 1))) & 0x3FF);
707 			erroraddress = ((512 + 7) - erroraddress);
708 			errorvalue =
709 			    ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
710 			      (16 * (i & 1))) & 0xFF);
711 		} else {
712 			erroraddress =
713 			    ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
714 			      (16 * (i & 1))) & 0x3FF);
715 			erroraddress = ((512 + 7) - erroraddress);
716 			errorvalue =
717 			    ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
718 			      (16 * (i & 1))) & 0xFF);
719 		}
720 		/* xor the corrupt data with error value */
721 		if (erroraddress < 512)
722 			dat[erroraddress] ^= errorvalue;
723 	}
724 
725 	return numerrors;
726 }
727 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
728 
nand_davinci_dev_ready(struct mtd_info * mtd)729 static int nand_davinci_dev_ready(struct mtd_info *mtd)
730 {
731 	return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
732 }
733 
davinci_nand_init(struct nand_chip * nand)734 void davinci_nand_init(struct nand_chip *nand)
735 {
736 #if defined CONFIG_KEYSTONE_RBL_NAND
737 	int i;
738 	struct nand_ecclayout *layout;
739 
740 	layout = &nand_keystone_rbl_4bit_layout_oobfirst;
741 	layout->oobavail = 0;
742 	for (i = 0; layout->oobfree[i].length &&
743 	     i < ARRAY_SIZE(layout->oobfree); i++)
744 		layout->oobavail += layout->oobfree[i].length;
745 
746 	nand->write_page = nand_davinci_write_page;
747 	nand->ecc.read_page = nand_davinci_read_page_hwecc;
748 #endif
749 	nand->chip_delay  = 0;
750 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
751 	nand->bbt_options	  |= NAND_BBT_USE_FLASH;
752 #endif
753 #ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
754 	nand->options	  |= NAND_NO_SUBPAGE_WRITE;
755 #endif
756 #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
757 	nand->options	  |= NAND_BUSWIDTH_16;
758 #endif
759 #ifdef CONFIG_SYS_NAND_HW_ECC
760 	nand->ecc.mode = NAND_ECC_HW;
761 	nand->ecc.size = 512;
762 	nand->ecc.bytes = 3;
763 	nand->ecc.strength = 1;
764 	nand->ecc.calculate = nand_davinci_calculate_ecc;
765 	nand->ecc.correct  = nand_davinci_correct_data;
766 	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
767 #else
768 	nand->ecc.mode = NAND_ECC_SOFT;
769 #endif /* CONFIG_SYS_NAND_HW_ECC */
770 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
771 	nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
772 	nand->ecc.size = 512;
773 	nand->ecc.bytes = 10;
774 	nand->ecc.strength = 4;
775 	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
776 	nand->ecc.correct = nand_davinci_4bit_correct_data;
777 	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
778 	nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
779 #endif
780 	/* Set address of hardware control function */
781 	nand->cmd_ctrl = nand_davinci_hwcontrol;
782 
783 	nand->read_buf = nand_davinci_read_buf;
784 	nand->write_buf = nand_davinci_write_buf;
785 
786 	nand->dev_ready = nand_davinci_dev_ready;
787 }
788 
789 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
790 
board_nand_init(struct nand_chip * chip)791 int board_nand_init(struct nand_chip *chip)
792 {
793 	davinci_nand_init(chip);
794 	return 0;
795 }
796