xref: /OK3568_Linux_fs/u-boot/arch/mips/include/asm/bitops.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /*
2*4882a593Smuzhiyun  * Copyright (c) 1994 - 1997, 1999, 2000  Ralf Baechle (ralf@gnu.org)
3*4882a593Smuzhiyun  * Copyright (c) 2000  Silicon Graphics, Inc.
4*4882a593Smuzhiyun  *
5*4882a593Smuzhiyun  * SPDX-License-Identifier:	GPL-2.0
6*4882a593Smuzhiyun  */
7*4882a593Smuzhiyun #ifndef _ASM_BITOPS_H
8*4882a593Smuzhiyun #define _ASM_BITOPS_H
9*4882a593Smuzhiyun 
10*4882a593Smuzhiyun #include <linux/types.h>
11*4882a593Smuzhiyun #include <asm/byteorder.h>		/* sigh ... */
12*4882a593Smuzhiyun 
13*4882a593Smuzhiyun #ifdef __KERNEL__
14*4882a593Smuzhiyun 
15*4882a593Smuzhiyun #include <asm/sgidefs.h>
16*4882a593Smuzhiyun #include <asm/system.h>
17*4882a593Smuzhiyun 
18*4882a593Smuzhiyun #include <asm-generic/bitops/fls.h>
19*4882a593Smuzhiyun #include <asm-generic/bitops/__fls.h>
20*4882a593Smuzhiyun #include <asm-generic/bitops/fls64.h>
21*4882a593Smuzhiyun #include <asm-generic/bitops/__ffs.h>
22*4882a593Smuzhiyun 
23*4882a593Smuzhiyun /*
24*4882a593Smuzhiyun  * clear_bit() doesn't provide any barrier for the compiler.
25*4882a593Smuzhiyun  */
26*4882a593Smuzhiyun #define smp_mb__before_clear_bit()	barrier()
27*4882a593Smuzhiyun #define smp_mb__after_clear_bit()	barrier()
28*4882a593Smuzhiyun 
29*4882a593Smuzhiyun /*
30*4882a593Smuzhiyun  * Only disable interrupt for kernel mode stuff to keep usermode stuff
31*4882a593Smuzhiyun  * that dares to use kernel include files alive.
32*4882a593Smuzhiyun  */
33*4882a593Smuzhiyun #define __bi_flags unsigned long flags
34*4882a593Smuzhiyun #define __bi_cli() __cli()
35*4882a593Smuzhiyun #define __bi_save_flags(x) __save_flags(x)
36*4882a593Smuzhiyun #define __bi_save_and_cli(x) __save_and_cli(x)
37*4882a593Smuzhiyun #define __bi_restore_flags(x) __restore_flags(x)
38*4882a593Smuzhiyun #else
39*4882a593Smuzhiyun #define __bi_flags
40*4882a593Smuzhiyun #define __bi_cli()
41*4882a593Smuzhiyun #define __bi_save_flags(x)
42*4882a593Smuzhiyun #define __bi_save_and_cli(x)
43*4882a593Smuzhiyun #define __bi_restore_flags(x)
44*4882a593Smuzhiyun #endif /* __KERNEL__ */
45*4882a593Smuzhiyun 
46*4882a593Smuzhiyun #ifdef CONFIG_CPU_HAS_LLSC
47*4882a593Smuzhiyun 
48*4882a593Smuzhiyun #include <asm/mipsregs.h>
49*4882a593Smuzhiyun 
50*4882a593Smuzhiyun /*
51*4882a593Smuzhiyun  * These functions for MIPS ISA > 1 are interrupt and SMP proof and
52*4882a593Smuzhiyun  * interrupt friendly
53*4882a593Smuzhiyun  */
54*4882a593Smuzhiyun 
55*4882a593Smuzhiyun /*
56*4882a593Smuzhiyun  * set_bit - Atomically set a bit in memory
57*4882a593Smuzhiyun  * @nr: the bit to set
58*4882a593Smuzhiyun  * @addr: the address to start counting from
59*4882a593Smuzhiyun  *
60*4882a593Smuzhiyun  * This function is atomic and may not be reordered.  See __set_bit()
61*4882a593Smuzhiyun  * if you do not require the atomic guarantees.
62*4882a593Smuzhiyun  * Note that @nr may be almost arbitrarily large; this function is not
63*4882a593Smuzhiyun  * restricted to acting on a single-word quantity.
64*4882a593Smuzhiyun  */
65*4882a593Smuzhiyun static __inline__ void
set_bit(int nr,volatile void * addr)66*4882a593Smuzhiyun set_bit(int nr, volatile void *addr)
67*4882a593Smuzhiyun {
68*4882a593Smuzhiyun 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
69*4882a593Smuzhiyun 	unsigned long temp;
70*4882a593Smuzhiyun 
71*4882a593Smuzhiyun 	__asm__ __volatile__(
72*4882a593Smuzhiyun 		"1:\tll\t%0, %1\t\t# set_bit\n\t"
73*4882a593Smuzhiyun 		"or\t%0, %2\n\t"
74*4882a593Smuzhiyun 		"sc\t%0, %1\n\t"
75*4882a593Smuzhiyun 		"beqz\t%0, 1b"
76*4882a593Smuzhiyun 		: "=&r" (temp), "=m" (*m)
77*4882a593Smuzhiyun 		: "ir" (1UL << (nr & 0x1f)), "m" (*m));
78*4882a593Smuzhiyun }
79*4882a593Smuzhiyun 
80*4882a593Smuzhiyun /*
81*4882a593Smuzhiyun  * __set_bit - Set a bit in memory
82*4882a593Smuzhiyun  * @nr: the bit to set
83*4882a593Smuzhiyun  * @addr: the address to start counting from
84*4882a593Smuzhiyun  *
85*4882a593Smuzhiyun  * Unlike set_bit(), this function is non-atomic and may be reordered.
86*4882a593Smuzhiyun  * If it's called on the same region of memory simultaneously, the effect
87*4882a593Smuzhiyun  * may be that only one operation succeeds.
88*4882a593Smuzhiyun  */
__set_bit(int nr,volatile void * addr)89*4882a593Smuzhiyun static __inline__ void __set_bit(int nr, volatile void * addr)
90*4882a593Smuzhiyun {
91*4882a593Smuzhiyun 	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
92*4882a593Smuzhiyun 
93*4882a593Smuzhiyun 	*m |= 1UL << (nr & 31);
94*4882a593Smuzhiyun }
95*4882a593Smuzhiyun #define PLATFORM__SET_BIT
96*4882a593Smuzhiyun 
97*4882a593Smuzhiyun /*
98*4882a593Smuzhiyun  * clear_bit - Clears a bit in memory
99*4882a593Smuzhiyun  * @nr: Bit to clear
100*4882a593Smuzhiyun  * @addr: Address to start counting from
101*4882a593Smuzhiyun  *
102*4882a593Smuzhiyun  * clear_bit() is atomic and may not be reordered.  However, it does
103*4882a593Smuzhiyun  * not contain a memory barrier, so if it is used for locking purposes,
104*4882a593Smuzhiyun  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
105*4882a593Smuzhiyun  * in order to ensure changes are visible on other processors.
106*4882a593Smuzhiyun  */
107*4882a593Smuzhiyun static __inline__ void
clear_bit(int nr,volatile void * addr)108*4882a593Smuzhiyun clear_bit(int nr, volatile void *addr)
109*4882a593Smuzhiyun {
110*4882a593Smuzhiyun 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
111*4882a593Smuzhiyun 	unsigned long temp;
112*4882a593Smuzhiyun 
113*4882a593Smuzhiyun 	__asm__ __volatile__(
114*4882a593Smuzhiyun 		"1:\tll\t%0, %1\t\t# clear_bit\n\t"
115*4882a593Smuzhiyun 		"and\t%0, %2\n\t"
116*4882a593Smuzhiyun 		"sc\t%0, %1\n\t"
117*4882a593Smuzhiyun 		"beqz\t%0, 1b\n\t"
118*4882a593Smuzhiyun 		: "=&r" (temp), "=m" (*m)
119*4882a593Smuzhiyun 		: "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
120*4882a593Smuzhiyun }
121*4882a593Smuzhiyun 
122*4882a593Smuzhiyun /*
123*4882a593Smuzhiyun  * change_bit - Toggle a bit in memory
124*4882a593Smuzhiyun  * @nr: Bit to clear
125*4882a593Smuzhiyun  * @addr: Address to start counting from
126*4882a593Smuzhiyun  *
127*4882a593Smuzhiyun  * change_bit() is atomic and may not be reordered.
128*4882a593Smuzhiyun  * Note that @nr may be almost arbitrarily large; this function is not
129*4882a593Smuzhiyun  * restricted to acting on a single-word quantity.
130*4882a593Smuzhiyun  */
131*4882a593Smuzhiyun static __inline__ void
change_bit(int nr,volatile void * addr)132*4882a593Smuzhiyun change_bit(int nr, volatile void *addr)
133*4882a593Smuzhiyun {
134*4882a593Smuzhiyun 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
135*4882a593Smuzhiyun 	unsigned long temp;
136*4882a593Smuzhiyun 
137*4882a593Smuzhiyun 	__asm__ __volatile__(
138*4882a593Smuzhiyun 		"1:\tll\t%0, %1\t\t# change_bit\n\t"
139*4882a593Smuzhiyun 		"xor\t%0, %2\n\t"
140*4882a593Smuzhiyun 		"sc\t%0, %1\n\t"
141*4882a593Smuzhiyun 		"beqz\t%0, 1b"
142*4882a593Smuzhiyun 		: "=&r" (temp), "=m" (*m)
143*4882a593Smuzhiyun 		: "ir" (1UL << (nr & 0x1f)), "m" (*m));
144*4882a593Smuzhiyun }
145*4882a593Smuzhiyun 
146*4882a593Smuzhiyun /*
147*4882a593Smuzhiyun  * __change_bit - Toggle a bit in memory
148*4882a593Smuzhiyun  * @nr: the bit to set
149*4882a593Smuzhiyun  * @addr: the address to start counting from
150*4882a593Smuzhiyun  *
151*4882a593Smuzhiyun  * Unlike change_bit(), this function is non-atomic and may be reordered.
152*4882a593Smuzhiyun  * If it's called on the same region of memory simultaneously, the effect
153*4882a593Smuzhiyun  * may be that only one operation succeeds.
154*4882a593Smuzhiyun  */
__change_bit(int nr,volatile void * addr)155*4882a593Smuzhiyun static __inline__ void __change_bit(int nr, volatile void * addr)
156*4882a593Smuzhiyun {
157*4882a593Smuzhiyun 	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
158*4882a593Smuzhiyun 
159*4882a593Smuzhiyun 	*m ^= 1UL << (nr & 31);
160*4882a593Smuzhiyun }
161*4882a593Smuzhiyun 
162*4882a593Smuzhiyun /*
163*4882a593Smuzhiyun  * test_and_set_bit - Set a bit and return its old value
164*4882a593Smuzhiyun  * @nr: Bit to set
165*4882a593Smuzhiyun  * @addr: Address to count from
166*4882a593Smuzhiyun  *
167*4882a593Smuzhiyun  * This operation is atomic and cannot be reordered.
168*4882a593Smuzhiyun  * It also implies a memory barrier.
169*4882a593Smuzhiyun  */
170*4882a593Smuzhiyun static __inline__ int
test_and_set_bit(int nr,volatile void * addr)171*4882a593Smuzhiyun test_and_set_bit(int nr, volatile void *addr)
172*4882a593Smuzhiyun {
173*4882a593Smuzhiyun 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
174*4882a593Smuzhiyun 	unsigned long temp, res;
175*4882a593Smuzhiyun 
176*4882a593Smuzhiyun 	__asm__ __volatile__(
177*4882a593Smuzhiyun 		".set\tnoreorder\t\t# test_and_set_bit\n"
178*4882a593Smuzhiyun 		"1:\tll\t%0, %1\n\t"
179*4882a593Smuzhiyun 		"or\t%2, %0, %3\n\t"
180*4882a593Smuzhiyun 		"sc\t%2, %1\n\t"
181*4882a593Smuzhiyun 		"beqz\t%2, 1b\n\t"
182*4882a593Smuzhiyun 		" and\t%2, %0, %3\n\t"
183*4882a593Smuzhiyun 		".set\treorder"
184*4882a593Smuzhiyun 		: "=&r" (temp), "=m" (*m), "=&r" (res)
185*4882a593Smuzhiyun 		: "r" (1UL << (nr & 0x1f)), "m" (*m)
186*4882a593Smuzhiyun 		: "memory");
187*4882a593Smuzhiyun 
188*4882a593Smuzhiyun 	return res != 0;
189*4882a593Smuzhiyun }
190*4882a593Smuzhiyun 
191*4882a593Smuzhiyun /*
192*4882a593Smuzhiyun  * __test_and_set_bit - Set a bit and return its old value
193*4882a593Smuzhiyun  * @nr: Bit to set
194*4882a593Smuzhiyun  * @addr: Address to count from
195*4882a593Smuzhiyun  *
196*4882a593Smuzhiyun  * This operation is non-atomic and can be reordered.
197*4882a593Smuzhiyun  * If two examples of this operation race, one can appear to succeed
198*4882a593Smuzhiyun  * but actually fail.  You must protect multiple accesses with a lock.
199*4882a593Smuzhiyun  */
__test_and_set_bit(int nr,volatile void * addr)200*4882a593Smuzhiyun static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
201*4882a593Smuzhiyun {
202*4882a593Smuzhiyun 	int mask, retval;
203*4882a593Smuzhiyun 	volatile int *a = addr;
204*4882a593Smuzhiyun 
205*4882a593Smuzhiyun 	a += nr >> 5;
206*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
207*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
208*4882a593Smuzhiyun 	*a |= mask;
209*4882a593Smuzhiyun 
210*4882a593Smuzhiyun 	return retval;
211*4882a593Smuzhiyun }
212*4882a593Smuzhiyun 
213*4882a593Smuzhiyun /*
214*4882a593Smuzhiyun  * test_and_clear_bit - Clear a bit and return its old value
215*4882a593Smuzhiyun  * @nr: Bit to set
216*4882a593Smuzhiyun  * @addr: Address to count from
217*4882a593Smuzhiyun  *
218*4882a593Smuzhiyun  * This operation is atomic and cannot be reordered.
219*4882a593Smuzhiyun  * It also implies a memory barrier.
220*4882a593Smuzhiyun  */
221*4882a593Smuzhiyun static __inline__ int
test_and_clear_bit(int nr,volatile void * addr)222*4882a593Smuzhiyun test_and_clear_bit(int nr, volatile void *addr)
223*4882a593Smuzhiyun {
224*4882a593Smuzhiyun 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
225*4882a593Smuzhiyun 	unsigned long temp, res;
226*4882a593Smuzhiyun 
227*4882a593Smuzhiyun 	__asm__ __volatile__(
228*4882a593Smuzhiyun 		".set\tnoreorder\t\t# test_and_clear_bit\n"
229*4882a593Smuzhiyun 		"1:\tll\t%0, %1\n\t"
230*4882a593Smuzhiyun 		"or\t%2, %0, %3\n\t"
231*4882a593Smuzhiyun 		"xor\t%2, %3\n\t"
232*4882a593Smuzhiyun 		"sc\t%2, %1\n\t"
233*4882a593Smuzhiyun 		"beqz\t%2, 1b\n\t"
234*4882a593Smuzhiyun 		" and\t%2, %0, %3\n\t"
235*4882a593Smuzhiyun 		".set\treorder"
236*4882a593Smuzhiyun 		: "=&r" (temp), "=m" (*m), "=&r" (res)
237*4882a593Smuzhiyun 		: "r" (1UL << (nr & 0x1f)), "m" (*m)
238*4882a593Smuzhiyun 		: "memory");
239*4882a593Smuzhiyun 
240*4882a593Smuzhiyun 	return res != 0;
241*4882a593Smuzhiyun }
242*4882a593Smuzhiyun 
243*4882a593Smuzhiyun /*
244*4882a593Smuzhiyun  * __test_and_clear_bit - Clear a bit and return its old value
245*4882a593Smuzhiyun  * @nr: Bit to set
246*4882a593Smuzhiyun  * @addr: Address to count from
247*4882a593Smuzhiyun  *
248*4882a593Smuzhiyun  * This operation is non-atomic and can be reordered.
249*4882a593Smuzhiyun  * If two examples of this operation race, one can appear to succeed
250*4882a593Smuzhiyun  * but actually fail.  You must protect multiple accesses with a lock.
251*4882a593Smuzhiyun  */
__test_and_clear_bit(int nr,volatile void * addr)252*4882a593Smuzhiyun static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
253*4882a593Smuzhiyun {
254*4882a593Smuzhiyun 	int	mask, retval;
255*4882a593Smuzhiyun 	volatile int	*a = addr;
256*4882a593Smuzhiyun 
257*4882a593Smuzhiyun 	a += nr >> 5;
258*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
259*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
260*4882a593Smuzhiyun 	*a &= ~mask;
261*4882a593Smuzhiyun 
262*4882a593Smuzhiyun 	return retval;
263*4882a593Smuzhiyun }
264*4882a593Smuzhiyun 
265*4882a593Smuzhiyun /*
266*4882a593Smuzhiyun  * test_and_change_bit - Change a bit and return its new value
267*4882a593Smuzhiyun  * @nr: Bit to set
268*4882a593Smuzhiyun  * @addr: Address to count from
269*4882a593Smuzhiyun  *
270*4882a593Smuzhiyun  * This operation is atomic and cannot be reordered.
271*4882a593Smuzhiyun  * It also implies a memory barrier.
272*4882a593Smuzhiyun  */
273*4882a593Smuzhiyun static __inline__ int
test_and_change_bit(int nr,volatile void * addr)274*4882a593Smuzhiyun test_and_change_bit(int nr, volatile void *addr)
275*4882a593Smuzhiyun {
276*4882a593Smuzhiyun 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
277*4882a593Smuzhiyun 	unsigned long temp, res;
278*4882a593Smuzhiyun 
279*4882a593Smuzhiyun 	__asm__ __volatile__(
280*4882a593Smuzhiyun 		".set\tnoreorder\t\t# test_and_change_bit\n"
281*4882a593Smuzhiyun 		"1:\tll\t%0, %1\n\t"
282*4882a593Smuzhiyun 		"xor\t%2, %0, %3\n\t"
283*4882a593Smuzhiyun 		"sc\t%2, %1\n\t"
284*4882a593Smuzhiyun 		"beqz\t%2, 1b\n\t"
285*4882a593Smuzhiyun 		" and\t%2, %0, %3\n\t"
286*4882a593Smuzhiyun 		".set\treorder"
287*4882a593Smuzhiyun 		: "=&r" (temp), "=m" (*m), "=&r" (res)
288*4882a593Smuzhiyun 		: "r" (1UL << (nr & 0x1f)), "m" (*m)
289*4882a593Smuzhiyun 		: "memory");
290*4882a593Smuzhiyun 
291*4882a593Smuzhiyun 	return res != 0;
292*4882a593Smuzhiyun }
293*4882a593Smuzhiyun 
294*4882a593Smuzhiyun /*
295*4882a593Smuzhiyun  * __test_and_change_bit - Change a bit and return its old value
296*4882a593Smuzhiyun  * @nr: Bit to set
297*4882a593Smuzhiyun  * @addr: Address to count from
298*4882a593Smuzhiyun  *
299*4882a593Smuzhiyun  * This operation is non-atomic and can be reordered.
300*4882a593Smuzhiyun  * If two examples of this operation race, one can appear to succeed
301*4882a593Smuzhiyun  * but actually fail.  You must protect multiple accesses with a lock.
302*4882a593Smuzhiyun  */
__test_and_change_bit(int nr,volatile void * addr)303*4882a593Smuzhiyun static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
304*4882a593Smuzhiyun {
305*4882a593Smuzhiyun 	int	mask, retval;
306*4882a593Smuzhiyun 	volatile int	*a = addr;
307*4882a593Smuzhiyun 
308*4882a593Smuzhiyun 	a += nr >> 5;
309*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
310*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
311*4882a593Smuzhiyun 	*a ^= mask;
312*4882a593Smuzhiyun 
313*4882a593Smuzhiyun 	return retval;
314*4882a593Smuzhiyun }
315*4882a593Smuzhiyun 
316*4882a593Smuzhiyun #else /* MIPS I */
317*4882a593Smuzhiyun 
318*4882a593Smuzhiyun /*
319*4882a593Smuzhiyun  * set_bit - Atomically set a bit in memory
320*4882a593Smuzhiyun  * @nr: the bit to set
321*4882a593Smuzhiyun  * @addr: the address to start counting from
322*4882a593Smuzhiyun  *
323*4882a593Smuzhiyun  * This function is atomic and may not be reordered.  See __set_bit()
324*4882a593Smuzhiyun  * if you do not require the atomic guarantees.
325*4882a593Smuzhiyun  * Note that @nr may be almost arbitrarily large; this function is not
326*4882a593Smuzhiyun  * restricted to acting on a single-word quantity.
327*4882a593Smuzhiyun  */
set_bit(int nr,volatile void * addr)328*4882a593Smuzhiyun static __inline__ void set_bit(int nr, volatile void * addr)
329*4882a593Smuzhiyun {
330*4882a593Smuzhiyun 	int	mask;
331*4882a593Smuzhiyun 	volatile int	*a = addr;
332*4882a593Smuzhiyun 	__bi_flags;
333*4882a593Smuzhiyun 
334*4882a593Smuzhiyun 	a += nr >> 5;
335*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
336*4882a593Smuzhiyun 	__bi_save_and_cli(flags);
337*4882a593Smuzhiyun 	*a |= mask;
338*4882a593Smuzhiyun 	__bi_restore_flags(flags);
339*4882a593Smuzhiyun }
340*4882a593Smuzhiyun 
341*4882a593Smuzhiyun /*
342*4882a593Smuzhiyun  * __set_bit - Set a bit in memory
343*4882a593Smuzhiyun  * @nr: the bit to set
344*4882a593Smuzhiyun  * @addr: the address to start counting from
345*4882a593Smuzhiyun  *
346*4882a593Smuzhiyun  * Unlike set_bit(), this function is non-atomic and may be reordered.
347*4882a593Smuzhiyun  * If it's called on the same region of memory simultaneously, the effect
348*4882a593Smuzhiyun  * may be that only one operation succeeds.
349*4882a593Smuzhiyun  */
__set_bit(int nr,volatile void * addr)350*4882a593Smuzhiyun static __inline__ void __set_bit(int nr, volatile void * addr)
351*4882a593Smuzhiyun {
352*4882a593Smuzhiyun 	int	mask;
353*4882a593Smuzhiyun 	volatile int	*a = addr;
354*4882a593Smuzhiyun 
355*4882a593Smuzhiyun 	a += nr >> 5;
356*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
357*4882a593Smuzhiyun 	*a |= mask;
358*4882a593Smuzhiyun }
359*4882a593Smuzhiyun 
360*4882a593Smuzhiyun /*
361*4882a593Smuzhiyun  * clear_bit - Clears a bit in memory
362*4882a593Smuzhiyun  * @nr: Bit to clear
363*4882a593Smuzhiyun  * @addr: Address to start counting from
364*4882a593Smuzhiyun  *
365*4882a593Smuzhiyun  * clear_bit() is atomic and may not be reordered.  However, it does
366*4882a593Smuzhiyun  * not contain a memory barrier, so if it is used for locking purposes,
367*4882a593Smuzhiyun  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
368*4882a593Smuzhiyun  * in order to ensure changes are visible on other processors.
369*4882a593Smuzhiyun  */
clear_bit(int nr,volatile void * addr)370*4882a593Smuzhiyun static __inline__ void clear_bit(int nr, volatile void * addr)
371*4882a593Smuzhiyun {
372*4882a593Smuzhiyun 	int	mask;
373*4882a593Smuzhiyun 	volatile int	*a = addr;
374*4882a593Smuzhiyun 	__bi_flags;
375*4882a593Smuzhiyun 
376*4882a593Smuzhiyun 	a += nr >> 5;
377*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
378*4882a593Smuzhiyun 	__bi_save_and_cli(flags);
379*4882a593Smuzhiyun 	*a &= ~mask;
380*4882a593Smuzhiyun 	__bi_restore_flags(flags);
381*4882a593Smuzhiyun }
382*4882a593Smuzhiyun 
383*4882a593Smuzhiyun /*
384*4882a593Smuzhiyun  * change_bit - Toggle a bit in memory
385*4882a593Smuzhiyun  * @nr: Bit to clear
386*4882a593Smuzhiyun  * @addr: Address to start counting from
387*4882a593Smuzhiyun  *
388*4882a593Smuzhiyun  * change_bit() is atomic and may not be reordered.
389*4882a593Smuzhiyun  * Note that @nr may be almost arbitrarily large; this function is not
390*4882a593Smuzhiyun  * restricted to acting on a single-word quantity.
391*4882a593Smuzhiyun  */
change_bit(int nr,volatile void * addr)392*4882a593Smuzhiyun static __inline__ void change_bit(int nr, volatile void * addr)
393*4882a593Smuzhiyun {
394*4882a593Smuzhiyun 	int	mask;
395*4882a593Smuzhiyun 	volatile int	*a = addr;
396*4882a593Smuzhiyun 	__bi_flags;
397*4882a593Smuzhiyun 
398*4882a593Smuzhiyun 	a += nr >> 5;
399*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
400*4882a593Smuzhiyun 	__bi_save_and_cli(flags);
401*4882a593Smuzhiyun 	*a ^= mask;
402*4882a593Smuzhiyun 	__bi_restore_flags(flags);
403*4882a593Smuzhiyun }
404*4882a593Smuzhiyun 
405*4882a593Smuzhiyun /*
406*4882a593Smuzhiyun  * __change_bit - Toggle a bit in memory
407*4882a593Smuzhiyun  * @nr: the bit to set
408*4882a593Smuzhiyun  * @addr: the address to start counting from
409*4882a593Smuzhiyun  *
410*4882a593Smuzhiyun  * Unlike change_bit(), this function is non-atomic and may be reordered.
411*4882a593Smuzhiyun  * If it's called on the same region of memory simultaneously, the effect
412*4882a593Smuzhiyun  * may be that only one operation succeeds.
413*4882a593Smuzhiyun  */
__change_bit(int nr,volatile void * addr)414*4882a593Smuzhiyun static __inline__ void __change_bit(int nr, volatile void * addr)
415*4882a593Smuzhiyun {
416*4882a593Smuzhiyun 	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
417*4882a593Smuzhiyun 
418*4882a593Smuzhiyun 	*m ^= 1UL << (nr & 31);
419*4882a593Smuzhiyun }
420*4882a593Smuzhiyun 
421*4882a593Smuzhiyun /*
422*4882a593Smuzhiyun  * test_and_set_bit - Set a bit and return its old value
423*4882a593Smuzhiyun  * @nr: Bit to set
424*4882a593Smuzhiyun  * @addr: Address to count from
425*4882a593Smuzhiyun  *
426*4882a593Smuzhiyun  * This operation is atomic and cannot be reordered.
427*4882a593Smuzhiyun  * It also implies a memory barrier.
428*4882a593Smuzhiyun  */
test_and_set_bit(int nr,volatile void * addr)429*4882a593Smuzhiyun static __inline__ int test_and_set_bit(int nr, volatile void * addr)
430*4882a593Smuzhiyun {
431*4882a593Smuzhiyun 	int	mask, retval;
432*4882a593Smuzhiyun 	volatile int	*a = addr;
433*4882a593Smuzhiyun 	__bi_flags;
434*4882a593Smuzhiyun 
435*4882a593Smuzhiyun 	a += nr >> 5;
436*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
437*4882a593Smuzhiyun 	__bi_save_and_cli(flags);
438*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
439*4882a593Smuzhiyun 	*a |= mask;
440*4882a593Smuzhiyun 	__bi_restore_flags(flags);
441*4882a593Smuzhiyun 
442*4882a593Smuzhiyun 	return retval;
443*4882a593Smuzhiyun }
444*4882a593Smuzhiyun 
445*4882a593Smuzhiyun /*
446*4882a593Smuzhiyun  * __test_and_set_bit - Set a bit and return its old value
447*4882a593Smuzhiyun  * @nr: Bit to set
448*4882a593Smuzhiyun  * @addr: Address to count from
449*4882a593Smuzhiyun  *
450*4882a593Smuzhiyun  * This operation is non-atomic and can be reordered.
451*4882a593Smuzhiyun  * If two examples of this operation race, one can appear to succeed
452*4882a593Smuzhiyun  * but actually fail.  You must protect multiple accesses with a lock.
453*4882a593Smuzhiyun  */
__test_and_set_bit(int nr,volatile void * addr)454*4882a593Smuzhiyun static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
455*4882a593Smuzhiyun {
456*4882a593Smuzhiyun 	int	mask, retval;
457*4882a593Smuzhiyun 	volatile int	*a = addr;
458*4882a593Smuzhiyun 
459*4882a593Smuzhiyun 	a += nr >> 5;
460*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
461*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
462*4882a593Smuzhiyun 	*a |= mask;
463*4882a593Smuzhiyun 
464*4882a593Smuzhiyun 	return retval;
465*4882a593Smuzhiyun }
466*4882a593Smuzhiyun 
467*4882a593Smuzhiyun /*
468*4882a593Smuzhiyun  * test_and_clear_bit - Clear a bit and return its old value
469*4882a593Smuzhiyun  * @nr: Bit to set
470*4882a593Smuzhiyun  * @addr: Address to count from
471*4882a593Smuzhiyun  *
472*4882a593Smuzhiyun  * This operation is atomic and cannot be reordered.
473*4882a593Smuzhiyun  * It also implies a memory barrier.
474*4882a593Smuzhiyun  */
test_and_clear_bit(int nr,volatile void * addr)475*4882a593Smuzhiyun static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
476*4882a593Smuzhiyun {
477*4882a593Smuzhiyun 	int	mask, retval;
478*4882a593Smuzhiyun 	volatile int	*a = addr;
479*4882a593Smuzhiyun 	__bi_flags;
480*4882a593Smuzhiyun 
481*4882a593Smuzhiyun 	a += nr >> 5;
482*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
483*4882a593Smuzhiyun 	__bi_save_and_cli(flags);
484*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
485*4882a593Smuzhiyun 	*a &= ~mask;
486*4882a593Smuzhiyun 	__bi_restore_flags(flags);
487*4882a593Smuzhiyun 
488*4882a593Smuzhiyun 	return retval;
489*4882a593Smuzhiyun }
490*4882a593Smuzhiyun 
491*4882a593Smuzhiyun /*
492*4882a593Smuzhiyun  * __test_and_clear_bit - Clear a bit and return its old value
493*4882a593Smuzhiyun  * @nr: Bit to set
494*4882a593Smuzhiyun  * @addr: Address to count from
495*4882a593Smuzhiyun  *
496*4882a593Smuzhiyun  * This operation is non-atomic and can be reordered.
497*4882a593Smuzhiyun  * If two examples of this operation race, one can appear to succeed
498*4882a593Smuzhiyun  * but actually fail.  You must protect multiple accesses with a lock.
499*4882a593Smuzhiyun  */
__test_and_clear_bit(int nr,volatile void * addr)500*4882a593Smuzhiyun static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
501*4882a593Smuzhiyun {
502*4882a593Smuzhiyun 	int	mask, retval;
503*4882a593Smuzhiyun 	volatile int	*a = addr;
504*4882a593Smuzhiyun 
505*4882a593Smuzhiyun 	a += nr >> 5;
506*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
507*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
508*4882a593Smuzhiyun 	*a &= ~mask;
509*4882a593Smuzhiyun 
510*4882a593Smuzhiyun 	return retval;
511*4882a593Smuzhiyun }
512*4882a593Smuzhiyun 
513*4882a593Smuzhiyun /*
514*4882a593Smuzhiyun  * test_and_change_bit - Change a bit and return its new value
515*4882a593Smuzhiyun  * @nr: Bit to set
516*4882a593Smuzhiyun  * @addr: Address to count from
517*4882a593Smuzhiyun  *
518*4882a593Smuzhiyun  * This operation is atomic and cannot be reordered.
519*4882a593Smuzhiyun  * It also implies a memory barrier.
520*4882a593Smuzhiyun  */
test_and_change_bit(int nr,volatile void * addr)521*4882a593Smuzhiyun static __inline__ int test_and_change_bit(int nr, volatile void * addr)
522*4882a593Smuzhiyun {
523*4882a593Smuzhiyun 	int	mask, retval;
524*4882a593Smuzhiyun 	volatile int	*a = addr;
525*4882a593Smuzhiyun 	__bi_flags;
526*4882a593Smuzhiyun 
527*4882a593Smuzhiyun 	a += nr >> 5;
528*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
529*4882a593Smuzhiyun 	__bi_save_and_cli(flags);
530*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
531*4882a593Smuzhiyun 	*a ^= mask;
532*4882a593Smuzhiyun 	__bi_restore_flags(flags);
533*4882a593Smuzhiyun 
534*4882a593Smuzhiyun 	return retval;
535*4882a593Smuzhiyun }
536*4882a593Smuzhiyun 
537*4882a593Smuzhiyun /*
538*4882a593Smuzhiyun  * __test_and_change_bit - Change a bit and return its old value
539*4882a593Smuzhiyun  * @nr: Bit to set
540*4882a593Smuzhiyun  * @addr: Address to count from
541*4882a593Smuzhiyun  *
542*4882a593Smuzhiyun  * This operation is non-atomic and can be reordered.
543*4882a593Smuzhiyun  * If two examples of this operation race, one can appear to succeed
544*4882a593Smuzhiyun  * but actually fail.  You must protect multiple accesses with a lock.
545*4882a593Smuzhiyun  */
__test_and_change_bit(int nr,volatile void * addr)546*4882a593Smuzhiyun static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
547*4882a593Smuzhiyun {
548*4882a593Smuzhiyun 	int	mask, retval;
549*4882a593Smuzhiyun 	volatile int	*a = addr;
550*4882a593Smuzhiyun 
551*4882a593Smuzhiyun 	a += nr >> 5;
552*4882a593Smuzhiyun 	mask = 1 << (nr & 0x1f);
553*4882a593Smuzhiyun 	retval = (mask & *a) != 0;
554*4882a593Smuzhiyun 	*a ^= mask;
555*4882a593Smuzhiyun 
556*4882a593Smuzhiyun 	return retval;
557*4882a593Smuzhiyun }
558*4882a593Smuzhiyun 
559*4882a593Smuzhiyun #undef __bi_flags
560*4882a593Smuzhiyun #undef __bi_cli
561*4882a593Smuzhiyun #undef __bi_save_flags
562*4882a593Smuzhiyun #undef __bi_restore_flags
563*4882a593Smuzhiyun 
564*4882a593Smuzhiyun #endif /* MIPS I */
565*4882a593Smuzhiyun 
566*4882a593Smuzhiyun /*
567*4882a593Smuzhiyun  * test_bit - Determine whether a bit is set
568*4882a593Smuzhiyun  * @nr: bit number to test
569*4882a593Smuzhiyun  * @addr: Address to start counting from
570*4882a593Smuzhiyun  */
test_bit(int nr,const volatile void * addr)571*4882a593Smuzhiyun static __inline__ int test_bit(int nr, const volatile void *addr)
572*4882a593Smuzhiyun {
573*4882a593Smuzhiyun 	return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
574*4882a593Smuzhiyun }
575*4882a593Smuzhiyun 
576*4882a593Smuzhiyun #ifndef __MIPSEB__
577*4882a593Smuzhiyun 
578*4882a593Smuzhiyun /* Little endian versions. */
579*4882a593Smuzhiyun 
580*4882a593Smuzhiyun /*
581*4882a593Smuzhiyun  * find_first_zero_bit - find the first zero bit in a memory region
582*4882a593Smuzhiyun  * @addr: The address to start the search at
583*4882a593Smuzhiyun  * @size: The maximum size to search
584*4882a593Smuzhiyun  *
585*4882a593Smuzhiyun  * Returns the bit-number of the first zero bit, not the number of the byte
586*4882a593Smuzhiyun  * containing a bit.
587*4882a593Smuzhiyun  */
find_first_zero_bit(void * addr,unsigned size)588*4882a593Smuzhiyun static __inline__ int find_first_zero_bit (void *addr, unsigned size)
589*4882a593Smuzhiyun {
590*4882a593Smuzhiyun 	unsigned long dummy;
591*4882a593Smuzhiyun 	int res;
592*4882a593Smuzhiyun 
593*4882a593Smuzhiyun 	if (!size)
594*4882a593Smuzhiyun 		return 0;
595*4882a593Smuzhiyun 
596*4882a593Smuzhiyun 	__asm__ (".set\tnoreorder\n\t"
597*4882a593Smuzhiyun 		".set\tnoat\n"
598*4882a593Smuzhiyun 		"1:\tsubu\t$1,%6,%0\n\t"
599*4882a593Smuzhiyun 		"blez\t$1,2f\n\t"
600*4882a593Smuzhiyun 		"lw\t$1,(%5)\n\t"
601*4882a593Smuzhiyun 		"addiu\t%5,4\n\t"
602*4882a593Smuzhiyun #if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
603*4882a593Smuzhiyun     (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
604*4882a593Smuzhiyun     (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
605*4882a593Smuzhiyun 		"beql\t%1,$1,1b\n\t"
606*4882a593Smuzhiyun 		"addiu\t%0,32\n\t"
607*4882a593Smuzhiyun #else
608*4882a593Smuzhiyun 		"addiu\t%0,32\n\t"
609*4882a593Smuzhiyun 		"beq\t%1,$1,1b\n\t"
610*4882a593Smuzhiyun 		"nop\n\t"
611*4882a593Smuzhiyun 		"subu\t%0,32\n\t"
612*4882a593Smuzhiyun #endif
613*4882a593Smuzhiyun #ifdef __MIPSEB__
614*4882a593Smuzhiyun #error "Fix this for big endian"
615*4882a593Smuzhiyun #endif /* __MIPSEB__ */
616*4882a593Smuzhiyun 		"li\t%1,1\n"
617*4882a593Smuzhiyun 		"1:\tand\t%2,$1,%1\n\t"
618*4882a593Smuzhiyun 		"beqz\t%2,2f\n\t"
619*4882a593Smuzhiyun 		"sll\t%1,%1,1\n\t"
620*4882a593Smuzhiyun 		"bnez\t%1,1b\n\t"
621*4882a593Smuzhiyun 		"add\t%0,%0,1\n\t"
622*4882a593Smuzhiyun 		".set\tat\n\t"
623*4882a593Smuzhiyun 		".set\treorder\n"
624*4882a593Smuzhiyun 		"2:"
625*4882a593Smuzhiyun 		: "=r" (res), "=r" (dummy), "=r" (addr)
626*4882a593Smuzhiyun 		: "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
627*4882a593Smuzhiyun 		  "2" (addr), "r" (size)
628*4882a593Smuzhiyun 		: "$1");
629*4882a593Smuzhiyun 
630*4882a593Smuzhiyun 	return res;
631*4882a593Smuzhiyun }
632*4882a593Smuzhiyun 
633*4882a593Smuzhiyun /*
634*4882a593Smuzhiyun  * find_next_zero_bit - find the first zero bit in a memory region
635*4882a593Smuzhiyun  * @addr: The address to base the search on
636*4882a593Smuzhiyun  * @offset: The bitnumber to start searching at
637*4882a593Smuzhiyun  * @size: The maximum size to search
638*4882a593Smuzhiyun  */
find_next_zero_bit(void * addr,int size,int offset)639*4882a593Smuzhiyun static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
640*4882a593Smuzhiyun {
641*4882a593Smuzhiyun 	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
642*4882a593Smuzhiyun 	int set = 0, bit = offset & 31, res;
643*4882a593Smuzhiyun 	unsigned long dummy;
644*4882a593Smuzhiyun 
645*4882a593Smuzhiyun 	if (bit) {
646*4882a593Smuzhiyun 		/*
647*4882a593Smuzhiyun 		 * Look for zero in first byte
648*4882a593Smuzhiyun 		 */
649*4882a593Smuzhiyun #ifdef __MIPSEB__
650*4882a593Smuzhiyun #error "Fix this for big endian byte order"
651*4882a593Smuzhiyun #endif
652*4882a593Smuzhiyun 		__asm__(".set\tnoreorder\n\t"
653*4882a593Smuzhiyun 			".set\tnoat\n"
654*4882a593Smuzhiyun 			"1:\tand\t$1,%4,%1\n\t"
655*4882a593Smuzhiyun 			"beqz\t$1,1f\n\t"
656*4882a593Smuzhiyun 			"sll\t%1,%1,1\n\t"
657*4882a593Smuzhiyun 			"bnez\t%1,1b\n\t"
658*4882a593Smuzhiyun 			"addiu\t%0,1\n\t"
659*4882a593Smuzhiyun 			".set\tat\n\t"
660*4882a593Smuzhiyun 			".set\treorder\n"
661*4882a593Smuzhiyun 			"1:"
662*4882a593Smuzhiyun 			: "=r" (set), "=r" (dummy)
663*4882a593Smuzhiyun 			: "0" (0), "1" (1 << bit), "r" (*p)
664*4882a593Smuzhiyun 			: "$1");
665*4882a593Smuzhiyun 		if (set < (32 - bit))
666*4882a593Smuzhiyun 			return set + offset;
667*4882a593Smuzhiyun 		set = 32 - bit;
668*4882a593Smuzhiyun 		p++;
669*4882a593Smuzhiyun 	}
670*4882a593Smuzhiyun 	/*
671*4882a593Smuzhiyun 	 * No zero yet, search remaining full bytes for a zero
672*4882a593Smuzhiyun 	 */
673*4882a593Smuzhiyun 	res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
674*4882a593Smuzhiyun 	return offset + set + res;
675*4882a593Smuzhiyun }
676*4882a593Smuzhiyun 
677*4882a593Smuzhiyun #endif /* !(__MIPSEB__) */
678*4882a593Smuzhiyun 
679*4882a593Smuzhiyun /*
680*4882a593Smuzhiyun  * ffz - find first zero in word.
681*4882a593Smuzhiyun  * @word: The word to search
682*4882a593Smuzhiyun  *
683*4882a593Smuzhiyun  * Undefined if no zero exists, so code should check against ~0UL first.
684*4882a593Smuzhiyun  */
ffz(unsigned long word)685*4882a593Smuzhiyun static __inline__ unsigned long ffz(unsigned long word)
686*4882a593Smuzhiyun {
687*4882a593Smuzhiyun 	unsigned int	__res;
688*4882a593Smuzhiyun 	unsigned int	mask = 1;
689*4882a593Smuzhiyun 
690*4882a593Smuzhiyun 	__asm__ (
691*4882a593Smuzhiyun 		".set\tnoreorder\n\t"
692*4882a593Smuzhiyun 		".set\tnoat\n\t"
693*4882a593Smuzhiyun 		"move\t%0,$0\n"
694*4882a593Smuzhiyun 		"1:\tand\t$1,%2,%1\n\t"
695*4882a593Smuzhiyun 		"beqz\t$1,2f\n\t"
696*4882a593Smuzhiyun 		"sll\t%1,1\n\t"
697*4882a593Smuzhiyun 		"bnez\t%1,1b\n\t"
698*4882a593Smuzhiyun 		"addiu\t%0,1\n\t"
699*4882a593Smuzhiyun 		".set\tat\n\t"
700*4882a593Smuzhiyun 		".set\treorder\n"
701*4882a593Smuzhiyun 		"2:\n\t"
702*4882a593Smuzhiyun 		: "=&r" (__res), "=r" (mask)
703*4882a593Smuzhiyun 		: "r" (word), "1" (mask)
704*4882a593Smuzhiyun 		: "$1");
705*4882a593Smuzhiyun 
706*4882a593Smuzhiyun 	return __res;
707*4882a593Smuzhiyun }
708*4882a593Smuzhiyun 
709*4882a593Smuzhiyun #ifdef __KERNEL__
710*4882a593Smuzhiyun 
711*4882a593Smuzhiyun /*
712*4882a593Smuzhiyun  * hweightN - returns the hamming weight of a N-bit word
713*4882a593Smuzhiyun  * @x: the word to weigh
714*4882a593Smuzhiyun  *
715*4882a593Smuzhiyun  * The Hamming Weight of a number is the total number of bits set in it.
716*4882a593Smuzhiyun  */
717*4882a593Smuzhiyun 
718*4882a593Smuzhiyun #define hweight32(x) generic_hweight32(x)
719*4882a593Smuzhiyun #define hweight16(x) generic_hweight16(x)
720*4882a593Smuzhiyun #define hweight8(x) generic_hweight8(x)
721*4882a593Smuzhiyun 
722*4882a593Smuzhiyun #endif /* __KERNEL__ */
723*4882a593Smuzhiyun 
724*4882a593Smuzhiyun #ifdef __MIPSEB__
725*4882a593Smuzhiyun /*
726*4882a593Smuzhiyun  * find_next_zero_bit - find the first zero bit in a memory region
727*4882a593Smuzhiyun  * @addr: The address to base the search on
728*4882a593Smuzhiyun  * @offset: The bitnumber to start searching at
729*4882a593Smuzhiyun  * @size: The maximum size to search
730*4882a593Smuzhiyun  */
find_next_zero_bit(void * addr,int size,int offset)731*4882a593Smuzhiyun static __inline__ int find_next_zero_bit(void *addr, int size, int offset)
732*4882a593Smuzhiyun {
733*4882a593Smuzhiyun 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
734*4882a593Smuzhiyun 	unsigned long result = offset & ~31UL;
735*4882a593Smuzhiyun 	unsigned long tmp;
736*4882a593Smuzhiyun 
737*4882a593Smuzhiyun 	if (offset >= size)
738*4882a593Smuzhiyun 		return size;
739*4882a593Smuzhiyun 	size -= result;
740*4882a593Smuzhiyun 	offset &= 31UL;
741*4882a593Smuzhiyun 	if (offset) {
742*4882a593Smuzhiyun 		tmp = *(p++);
743*4882a593Smuzhiyun 		tmp |= ~0UL >> (32-offset);
744*4882a593Smuzhiyun 		if (size < 32)
745*4882a593Smuzhiyun 			goto found_first;
746*4882a593Smuzhiyun 		if (~tmp)
747*4882a593Smuzhiyun 			goto found_middle;
748*4882a593Smuzhiyun 		size -= 32;
749*4882a593Smuzhiyun 		result += 32;
750*4882a593Smuzhiyun 	}
751*4882a593Smuzhiyun 	while (size & ~31UL) {
752*4882a593Smuzhiyun 		if (~(tmp = *(p++)))
753*4882a593Smuzhiyun 			goto found_middle;
754*4882a593Smuzhiyun 		result += 32;
755*4882a593Smuzhiyun 		size -= 32;
756*4882a593Smuzhiyun 	}
757*4882a593Smuzhiyun 	if (!size)
758*4882a593Smuzhiyun 		return result;
759*4882a593Smuzhiyun 	tmp = *p;
760*4882a593Smuzhiyun 
761*4882a593Smuzhiyun found_first:
762*4882a593Smuzhiyun 	tmp |= ~0UL << size;
763*4882a593Smuzhiyun found_middle:
764*4882a593Smuzhiyun 	return result + ffz(tmp);
765*4882a593Smuzhiyun }
766*4882a593Smuzhiyun 
767*4882a593Smuzhiyun /* Linus sez that gcc can optimize the following correctly, we'll see if this
768*4882a593Smuzhiyun  * holds on the Sparc as it does for the ALPHA.
769*4882a593Smuzhiyun  */
770*4882a593Smuzhiyun 
771*4882a593Smuzhiyun #if 0 /* Fool kernel-doc since it doesn't do macros yet */
772*4882a593Smuzhiyun /*
773*4882a593Smuzhiyun  * find_first_zero_bit - find the first zero bit in a memory region
774*4882a593Smuzhiyun  * @addr: The address to start the search at
775*4882a593Smuzhiyun  * @size: The maximum size to search
776*4882a593Smuzhiyun  *
777*4882a593Smuzhiyun  * Returns the bit-number of the first zero bit, not the number of the byte
778*4882a593Smuzhiyun  * containing a bit.
779*4882a593Smuzhiyun  */
780*4882a593Smuzhiyun static int find_first_zero_bit (void *addr, unsigned size);
781*4882a593Smuzhiyun #endif
782*4882a593Smuzhiyun 
783*4882a593Smuzhiyun #define find_first_zero_bit(addr, size) \
784*4882a593Smuzhiyun 	find_next_zero_bit((addr), (size), 0)
785*4882a593Smuzhiyun 
786*4882a593Smuzhiyun #endif /* (__MIPSEB__) */
787*4882a593Smuzhiyun 
788*4882a593Smuzhiyun /* Now for the ext2 filesystem bit operations and helper routines. */
789*4882a593Smuzhiyun 
790*4882a593Smuzhiyun #ifdef __MIPSEB__
ext2_set_bit(int nr,void * addr)791*4882a593Smuzhiyun static __inline__ int ext2_set_bit(int nr, void * addr)
792*4882a593Smuzhiyun {
793*4882a593Smuzhiyun 	int		mask, retval, flags;
794*4882a593Smuzhiyun 	unsigned char	*ADDR = (unsigned char *) addr;
795*4882a593Smuzhiyun 
796*4882a593Smuzhiyun 	ADDR += nr >> 3;
797*4882a593Smuzhiyun 	mask = 1 << (nr & 0x07);
798*4882a593Smuzhiyun 	save_and_cli(flags);
799*4882a593Smuzhiyun 	retval = (mask & *ADDR) != 0;
800*4882a593Smuzhiyun 	*ADDR |= mask;
801*4882a593Smuzhiyun 	restore_flags(flags);
802*4882a593Smuzhiyun 	return retval;
803*4882a593Smuzhiyun }
804*4882a593Smuzhiyun 
ext2_clear_bit(int nr,void * addr)805*4882a593Smuzhiyun static __inline__ int ext2_clear_bit(int nr, void * addr)
806*4882a593Smuzhiyun {
807*4882a593Smuzhiyun 	int		mask, retval, flags;
808*4882a593Smuzhiyun 	unsigned char	*ADDR = (unsigned char *) addr;
809*4882a593Smuzhiyun 
810*4882a593Smuzhiyun 	ADDR += nr >> 3;
811*4882a593Smuzhiyun 	mask = 1 << (nr & 0x07);
812*4882a593Smuzhiyun 	save_and_cli(flags);
813*4882a593Smuzhiyun 	retval = (mask & *ADDR) != 0;
814*4882a593Smuzhiyun 	*ADDR &= ~mask;
815*4882a593Smuzhiyun 	restore_flags(flags);
816*4882a593Smuzhiyun 	return retval;
817*4882a593Smuzhiyun }
818*4882a593Smuzhiyun 
ext2_test_bit(int nr,const void * addr)819*4882a593Smuzhiyun static __inline__ int ext2_test_bit(int nr, const void * addr)
820*4882a593Smuzhiyun {
821*4882a593Smuzhiyun 	int			mask;
822*4882a593Smuzhiyun 	const unsigned char	*ADDR = (const unsigned char *) addr;
823*4882a593Smuzhiyun 
824*4882a593Smuzhiyun 	ADDR += nr >> 3;
825*4882a593Smuzhiyun 	mask = 1 << (nr & 0x07);
826*4882a593Smuzhiyun 	return ((mask & *ADDR) != 0);
827*4882a593Smuzhiyun }
828*4882a593Smuzhiyun 
829*4882a593Smuzhiyun #define ext2_find_first_zero_bit(addr, size) \
830*4882a593Smuzhiyun 	ext2_find_next_zero_bit((addr), (size), 0)
831*4882a593Smuzhiyun 
ext2_find_next_zero_bit(void * addr,unsigned long size,unsigned long offset)832*4882a593Smuzhiyun static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
833*4882a593Smuzhiyun {
834*4882a593Smuzhiyun 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
835*4882a593Smuzhiyun 	unsigned long result = offset & ~31UL;
836*4882a593Smuzhiyun 	unsigned long tmp;
837*4882a593Smuzhiyun 
838*4882a593Smuzhiyun 	if (offset >= size)
839*4882a593Smuzhiyun 		return size;
840*4882a593Smuzhiyun 	size -= result;
841*4882a593Smuzhiyun 	offset &= 31UL;
842*4882a593Smuzhiyun 	if(offset) {
843*4882a593Smuzhiyun 		/* We hold the little endian value in tmp, but then the
844*4882a593Smuzhiyun 		 * shift is illegal. So we could keep a big endian value
845*4882a593Smuzhiyun 		 * in tmp, like this:
846*4882a593Smuzhiyun 		 *
847*4882a593Smuzhiyun 		 * tmp = __swab32(*(p++));
848*4882a593Smuzhiyun 		 * tmp |= ~0UL >> (32-offset);
849*4882a593Smuzhiyun 		 *
850*4882a593Smuzhiyun 		 * but this would decrease preformance, so we change the
851*4882a593Smuzhiyun 		 * shift:
852*4882a593Smuzhiyun 		 */
853*4882a593Smuzhiyun 		tmp = *(p++);
854*4882a593Smuzhiyun 		tmp |= __swab32(~0UL >> (32-offset));
855*4882a593Smuzhiyun 		if(size < 32)
856*4882a593Smuzhiyun 			goto found_first;
857*4882a593Smuzhiyun 		if(~tmp)
858*4882a593Smuzhiyun 			goto found_middle;
859*4882a593Smuzhiyun 		size -= 32;
860*4882a593Smuzhiyun 		result += 32;
861*4882a593Smuzhiyun 	}
862*4882a593Smuzhiyun 	while(size & ~31UL) {
863*4882a593Smuzhiyun 		if(~(tmp = *(p++)))
864*4882a593Smuzhiyun 			goto found_middle;
865*4882a593Smuzhiyun 		result += 32;
866*4882a593Smuzhiyun 		size -= 32;
867*4882a593Smuzhiyun 	}
868*4882a593Smuzhiyun 	if(!size)
869*4882a593Smuzhiyun 		return result;
870*4882a593Smuzhiyun 	tmp = *p;
871*4882a593Smuzhiyun 
872*4882a593Smuzhiyun found_first:
873*4882a593Smuzhiyun 	/* tmp is little endian, so we would have to swab the shift,
874*4882a593Smuzhiyun 	 * see above. But then we have to swab tmp below for ffz, so
875*4882a593Smuzhiyun 	 * we might as well do this here.
876*4882a593Smuzhiyun 	 */
877*4882a593Smuzhiyun 	return result + ffz(__swab32(tmp) | (~0UL << size));
878*4882a593Smuzhiyun found_middle:
879*4882a593Smuzhiyun 	return result + ffz(__swab32(tmp));
880*4882a593Smuzhiyun }
881*4882a593Smuzhiyun #else /* !(__MIPSEB__) */
882*4882a593Smuzhiyun 
883*4882a593Smuzhiyun /* Native ext2 byte ordering, just collapse using defines. */
884*4882a593Smuzhiyun #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
885*4882a593Smuzhiyun #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
886*4882a593Smuzhiyun #define ext2_test_bit(nr, addr) test_bit((nr), (addr))
887*4882a593Smuzhiyun #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
888*4882a593Smuzhiyun #define ext2_find_next_zero_bit(addr, size, offset) \
889*4882a593Smuzhiyun 		find_next_zero_bit((addr), (size), (offset))
890*4882a593Smuzhiyun 
891*4882a593Smuzhiyun #endif /* !(__MIPSEB__) */
892*4882a593Smuzhiyun 
893*4882a593Smuzhiyun /*
894*4882a593Smuzhiyun  * Bitmap functions for the minix filesystem.
895*4882a593Smuzhiyun  * FIXME: These assume that Minix uses the native byte/bitorder.
896*4882a593Smuzhiyun  * This limits the Minix filesystem's value for data exchange very much.
897*4882a593Smuzhiyun  */
898*4882a593Smuzhiyun #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
899*4882a593Smuzhiyun #define minix_set_bit(nr,addr) set_bit(nr,addr)
900*4882a593Smuzhiyun #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
901*4882a593Smuzhiyun #define minix_test_bit(nr,addr) test_bit(nr,addr)
902*4882a593Smuzhiyun #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
903*4882a593Smuzhiyun 
904*4882a593Smuzhiyun #endif /* _ASM_BITOPS_H */
905