xref: /OK3568_Linux_fs/u-boot/arch/arm/mach-socfpga/clock_manager_gen5.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  *  Copyright (C) 2013-2017 Altera Corporation <www.altera.com>
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/clock_manager.h>
10 #include <wait_bit.h>
11 
12 DECLARE_GLOBAL_DATA_PTR;
13 
14 static const struct socfpga_clock_manager *clock_manager_base =
15 	(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
16 
17 /*
18  * function to write the bypass register which requires a poll of the
19  * busy bit
20  */
cm_write_bypass(u32 val)21 static void cm_write_bypass(u32 val)
22 {
23 	writel(val, &clock_manager_base->bypass);
24 	cm_wait_for_fsm();
25 }
26 
27 /* function to write the ctrl register which requires a poll of the busy bit */
cm_write_ctrl(u32 val)28 static void cm_write_ctrl(u32 val)
29 {
30 	writel(val, &clock_manager_base->ctrl);
31 	cm_wait_for_fsm();
32 }
33 
34 /* function to write a clock register that has phase information */
cm_write_with_phase(u32 value,u32 reg_address,u32 mask)35 static int cm_write_with_phase(u32 value, u32 reg_address, u32 mask)
36 {
37 	int ret;
38 
39 	/* poll until phase is zero */
40 	ret = wait_for_bit_le32(reg_address, mask, false, 20000, false);
41 	if (ret)
42 		return ret;
43 
44 	writel(value, reg_address);
45 
46 	return wait_for_bit_le32(reg_address, mask, false, 20000, false);
47 }
48 
49 /*
50  * Setup clocks while making no assumptions about previous state of the clocks.
51  *
52  * Start by being paranoid and gate all sw managed clocks
53  * Put all plls in bypass
54  * Put all plls VCO registers back to reset value (bandgap power down).
55  * Put peripheral and main pll src to reset value to avoid glitch.
56  * Delay 5 us.
57  * Deassert bandgap power down and set numerator and denominator
58  * Start 7 us timer.
59  * set internal dividers
60  * Wait for 7 us timer.
61  * Enable plls
62  * Set external dividers while plls are locking
63  * Wait for pll lock
64  * Assert/deassert outreset all.
65  * Take all pll's out of bypass
66  * Clear safe mode
67  * set source main and peripheral clocks
68  * Ungate clocks
69  */
70 
cm_basic_init(const struct cm_config * const cfg)71 int cm_basic_init(const struct cm_config * const cfg)
72 {
73 	unsigned long end;
74 	int ret;
75 
76 	/* Start by being paranoid and gate all sw managed clocks */
77 
78 	/*
79 	 * We need to disable nandclk
80 	 * and then do another apb access before disabling
81 	 * gatting off the rest of the periperal clocks.
82 	 */
83 	writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
84 		readl(&clock_manager_base->per_pll.en),
85 		&clock_manager_base->per_pll.en);
86 
87 	/* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
88 	writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
89 		CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
90 		CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
91 		CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
92 		CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
93 		CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
94 		&clock_manager_base->main_pll.en);
95 
96 	writel(0, &clock_manager_base->sdr_pll.en);
97 
98 	/* now we can gate off the rest of the peripheral clocks */
99 	writel(0, &clock_manager_base->per_pll.en);
100 
101 	/* Put all plls in bypass */
102 	cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
103 			CLKMGR_BYPASS_MAINPLL);
104 
105 	/* Put all plls VCO registers back to reset value. */
106 	writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
107 	       ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
108 	       &clock_manager_base->main_pll.vco);
109 	writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
110 	       ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
111 	       &clock_manager_base->per_pll.vco);
112 	writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
113 	       ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
114 	       &clock_manager_base->sdr_pll.vco);
115 
116 	/*
117 	 * The clocks to the flash devices and the L4_MAIN clocks can
118 	 * glitch when coming out of safe mode if their source values
119 	 * are different from their reset value.  So the trick it to
120 	 * put them back to their reset state, and change input
121 	 * after exiting safe mode but before ungating the clocks.
122 	 */
123 	writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
124 	       &clock_manager_base->per_pll.src);
125 	writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
126 	       &clock_manager_base->main_pll.l4src);
127 
128 	/* read back for the required 5 us delay. */
129 	readl(&clock_manager_base->main_pll.vco);
130 	readl(&clock_manager_base->per_pll.vco);
131 	readl(&clock_manager_base->sdr_pll.vco);
132 
133 
134 	/*
135 	 * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
136 	 * with numerator and denominator.
137 	 */
138 	writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
139 	writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
140 	writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
141 
142 	/*
143 	 * Time starts here. Must wait 7 us from
144 	 * BGPWRDN_SET(0) to VCO_ENABLE_SET(1).
145 	 */
146 	end = timer_get_us() + 7;
147 
148 	/* main mpu */
149 	writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
150 
151 	/* altera group mpuclk */
152 	writel(cfg->altera_grp_mpuclk, &clock_manager_base->altera.mpuclk);
153 
154 	/* main main clock */
155 	writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
156 
157 	/* main for dbg */
158 	writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
159 
160 	/* main for cfgs2fuser0clk */
161 	writel(cfg->cfg2fuser0clk,
162 	       &clock_manager_base->main_pll.cfgs2fuser0clk);
163 
164 	/* Peri emac0 50 MHz default to RMII */
165 	writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
166 
167 	/* Peri emac1 50 MHz default to RMII */
168 	writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
169 
170 	/* Peri QSPI */
171 	writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
172 
173 	writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
174 
175 	/* Peri pernandsdmmcclk */
176 	writel(cfg->mainnandsdmmcclk,
177 	       &clock_manager_base->main_pll.mainnandsdmmcclk);
178 
179 	writel(cfg->pernandsdmmcclk,
180 	       &clock_manager_base->per_pll.pernandsdmmcclk);
181 
182 	/* Peri perbaseclk */
183 	writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
184 
185 	/* Peri s2fuser1clk */
186 	writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
187 
188 	/* 7 us must have elapsed before we can enable the VCO */
189 	while (timer_get_us() < end)
190 		;
191 
192 	/* Enable vco */
193 	/* main pll vco */
194 	writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
195 	       &clock_manager_base->main_pll.vco);
196 
197 	/* periferal pll */
198 	writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
199 	       &clock_manager_base->per_pll.vco);
200 
201 	/* sdram pll vco */
202 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
203 	       &clock_manager_base->sdr_pll.vco);
204 
205 	/* L3 MP and L3 SP */
206 	writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
207 
208 	writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
209 
210 	writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
211 
212 	/* L4 MP, L4 SP, can0, and can1 */
213 	writel(cfg->perdiv, &clock_manager_base->per_pll.div);
214 
215 	writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
216 
217 	cm_wait_for_lock(LOCKED_MASK);
218 
219 	/* write the sdram clock counters before toggling outreset all */
220 	writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
221 	       &clock_manager_base->sdr_pll.ddrdqsclk);
222 
223 	writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
224 	       &clock_manager_base->sdr_pll.ddr2xdqsclk);
225 
226 	writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
227 	       &clock_manager_base->sdr_pll.ddrdqclk);
228 
229 	writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
230 	       &clock_manager_base->sdr_pll.s2fuser2clk);
231 
232 	/*
233 	 * after locking, but before taking out of bypass
234 	 * assert/deassert outresetall
235 	 */
236 	u32 mainvco = readl(&clock_manager_base->main_pll.vco);
237 
238 	/* assert main outresetall */
239 	writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
240 	       &clock_manager_base->main_pll.vco);
241 
242 	u32 periphvco = readl(&clock_manager_base->per_pll.vco);
243 
244 	/* assert pheriph outresetall */
245 	writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
246 	       &clock_manager_base->per_pll.vco);
247 
248 	/* assert sdram outresetall */
249 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
250 		CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
251 		&clock_manager_base->sdr_pll.vco);
252 
253 	/* deassert main outresetall */
254 	writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
255 	       &clock_manager_base->main_pll.vco);
256 
257 	/* deassert pheriph outresetall */
258 	writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
259 	       &clock_manager_base->per_pll.vco);
260 
261 	/* deassert sdram outresetall */
262 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
263 	       &clock_manager_base->sdr_pll.vco);
264 
265 	/*
266 	 * now that we've toggled outreset all, all the clocks
267 	 * are aligned nicely; so we can change any phase.
268 	 */
269 	ret = cm_write_with_phase(cfg->ddrdqsclk,
270 				  (u32)&clock_manager_base->sdr_pll.ddrdqsclk,
271 				  CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
272 	if (ret)
273 		return ret;
274 
275 	/* SDRAM DDR2XDQSCLK */
276 	ret = cm_write_with_phase(cfg->ddr2xdqsclk,
277 				  (u32)&clock_manager_base->sdr_pll.ddr2xdqsclk,
278 				  CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
279 	if (ret)
280 		return ret;
281 
282 	ret = cm_write_with_phase(cfg->ddrdqclk,
283 				  (u32)&clock_manager_base->sdr_pll.ddrdqclk,
284 				  CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
285 	if (ret)
286 		return ret;
287 
288 	ret = cm_write_with_phase(cfg->s2fuser2clk,
289 				  (u32)&clock_manager_base->sdr_pll.s2fuser2clk,
290 				  CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
291 	if (ret)
292 		return ret;
293 
294 	/* Take all three PLLs out of bypass when safe mode is cleared. */
295 	cm_write_bypass(0);
296 
297 	/* clear safe mode */
298 	cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
299 
300 	/*
301 	 * now that safe mode is clear with clocks gated
302 	 * it safe to change the source mux for the flashes the the L4_MAIN
303 	 */
304 	writel(cfg->persrc, &clock_manager_base->per_pll.src);
305 	writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
306 
307 	/* Now ungate non-hw-managed clocks */
308 	writel(~0, &clock_manager_base->main_pll.en);
309 	writel(~0, &clock_manager_base->per_pll.en);
310 	writel(~0, &clock_manager_base->sdr_pll.en);
311 
312 	/* Clear the loss of lock bits (write 1 to clear) */
313 	writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
314 	       CLKMGR_INTER_MAINPLLLOST_MASK,
315 	       &clock_manager_base->inter);
316 
317 	return 0;
318 }
319 
cm_get_main_vco_clk_hz(void)320 static unsigned int cm_get_main_vco_clk_hz(void)
321 {
322 	u32 reg, clock;
323 
324 	/* get the main VCO clock */
325 	reg = readl(&clock_manager_base->main_pll.vco);
326 	clock = cm_get_osc_clk_hz(1);
327 	clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
328 		  CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
329 	clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
330 		  CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
331 
332 	return clock;
333 }
334 
cm_get_per_vco_clk_hz(void)335 static unsigned int cm_get_per_vco_clk_hz(void)
336 {
337 	u32 reg, clock = 0;
338 
339 	/* identify PER PLL clock source */
340 	reg = readl(&clock_manager_base->per_pll.vco);
341 	reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
342 	      CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
343 	if (reg == CLKMGR_VCO_SSRC_EOSC1)
344 		clock = cm_get_osc_clk_hz(1);
345 	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
346 		clock = cm_get_osc_clk_hz(2);
347 	else if (reg == CLKMGR_VCO_SSRC_F2S)
348 		clock = cm_get_f2s_per_ref_clk_hz();
349 
350 	/* get the PER VCO clock */
351 	reg = readl(&clock_manager_base->per_pll.vco);
352 	clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
353 		  CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
354 	clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
355 		  CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
356 
357 	return clock;
358 }
359 
cm_get_mpu_clk_hz(void)360 unsigned long cm_get_mpu_clk_hz(void)
361 {
362 	u32 reg, clock;
363 
364 	clock = cm_get_main_vco_clk_hz();
365 
366 	/* get the MPU clock */
367 	reg = readl(&clock_manager_base->altera.mpuclk);
368 	clock /= (reg + 1);
369 	reg = readl(&clock_manager_base->main_pll.mpuclk);
370 	clock /= (reg + 1);
371 	return clock;
372 }
373 
cm_get_sdram_clk_hz(void)374 unsigned long cm_get_sdram_clk_hz(void)
375 {
376 	u32 reg, clock = 0;
377 
378 	/* identify SDRAM PLL clock source */
379 	reg = readl(&clock_manager_base->sdr_pll.vco);
380 	reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
381 	      CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
382 	if (reg == CLKMGR_VCO_SSRC_EOSC1)
383 		clock = cm_get_osc_clk_hz(1);
384 	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
385 		clock = cm_get_osc_clk_hz(2);
386 	else if (reg == CLKMGR_VCO_SSRC_F2S)
387 		clock = cm_get_f2s_sdr_ref_clk_hz();
388 
389 	/* get the SDRAM VCO clock */
390 	reg = readl(&clock_manager_base->sdr_pll.vco);
391 	clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
392 		  CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
393 	clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
394 		  CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
395 
396 	/* get the SDRAM (DDR_DQS) clock */
397 	reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
398 	reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
399 	      CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
400 	clock /= (reg + 1);
401 
402 	return clock;
403 }
404 
cm_get_l4_sp_clk_hz(void)405 unsigned int cm_get_l4_sp_clk_hz(void)
406 {
407 	u32 reg, clock = 0;
408 
409 	/* identify the source of L4 SP clock */
410 	reg = readl(&clock_manager_base->main_pll.l4src);
411 	reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
412 	      CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
413 
414 	if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
415 		clock = cm_get_main_vco_clk_hz();
416 
417 		/* get the clock prior L4 SP divider (main clk) */
418 		reg = readl(&clock_manager_base->altera.mainclk);
419 		clock /= (reg + 1);
420 		reg = readl(&clock_manager_base->main_pll.mainclk);
421 		clock /= (reg + 1);
422 	} else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
423 		clock = cm_get_per_vco_clk_hz();
424 
425 		/* get the clock prior L4 SP divider (periph_base_clk) */
426 		reg = readl(&clock_manager_base->per_pll.perbaseclk);
427 		clock /= (reg + 1);
428 	}
429 
430 	/* get the L4 SP clock which supplied to UART */
431 	reg = readl(&clock_manager_base->main_pll.maindiv);
432 	reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
433 	      CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
434 	clock = clock / (1 << reg);
435 
436 	return clock;
437 }
438 
cm_get_mmc_controller_clk_hz(void)439 unsigned int cm_get_mmc_controller_clk_hz(void)
440 {
441 	u32 reg, clock = 0;
442 
443 	/* identify the source of MMC clock */
444 	reg = readl(&clock_manager_base->per_pll.src);
445 	reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
446 	      CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
447 
448 	if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
449 		clock = cm_get_f2s_per_ref_clk_hz();
450 	} else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
451 		clock = cm_get_main_vco_clk_hz();
452 
453 		/* get the SDMMC clock */
454 		reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
455 		clock /= (reg + 1);
456 	} else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
457 		clock = cm_get_per_vco_clk_hz();
458 
459 		/* get the SDMMC clock */
460 		reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
461 		clock /= (reg + 1);
462 	}
463 
464 	/* further divide by 4 as we have fixed divider at wrapper */
465 	clock /= 4;
466 	return clock;
467 }
468 
cm_get_qspi_controller_clk_hz(void)469 unsigned int cm_get_qspi_controller_clk_hz(void)
470 {
471 	u32 reg, clock = 0;
472 
473 	/* identify the source of QSPI clock */
474 	reg = readl(&clock_manager_base->per_pll.src);
475 	reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
476 	      CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
477 
478 	if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
479 		clock = cm_get_f2s_per_ref_clk_hz();
480 	} else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
481 		clock = cm_get_main_vco_clk_hz();
482 
483 		/* get the qspi clock */
484 		reg = readl(&clock_manager_base->main_pll.mainqspiclk);
485 		clock /= (reg + 1);
486 	} else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
487 		clock = cm_get_per_vco_clk_hz();
488 
489 		/* get the qspi clock */
490 		reg = readl(&clock_manager_base->per_pll.perqspiclk);
491 		clock /= (reg + 1);
492 	}
493 
494 	return clock;
495 }
496 
cm_get_spi_controller_clk_hz(void)497 unsigned int cm_get_spi_controller_clk_hz(void)
498 {
499 	u32 reg, clock = 0;
500 
501 	clock = cm_get_per_vco_clk_hz();
502 
503 	/* get the clock prior L4 SP divider (periph_base_clk) */
504 	reg = readl(&clock_manager_base->per_pll.perbaseclk);
505 	clock /= (reg + 1);
506 
507 	return clock;
508 }
509 
cm_print_clock_quick_summary(void)510 void cm_print_clock_quick_summary(void)
511 {
512 	printf("MPU       %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
513 	printf("DDR       %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
514 	printf("EOSC1       %8d kHz\n", cm_get_osc_clk_hz(1) / 1000);
515 	printf("EOSC2       %8d kHz\n", cm_get_osc_clk_hz(2) / 1000);
516 	printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000);
517 	printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000);
518 	printf("MMC         %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
519 	printf("QSPI        %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
520 	printf("UART        %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
521 	printf("SPI         %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
522 }
523