Name Date Size #Lines LOC

..--

README.lsch2H A D05-Jun-2025233 118

README.lsch3H A D05-Jun-202514.7 KiB355296

README.qspiH A D05-Jun-20251.4 KiB4336

README.socH A D05-Jun-20259.8 KiB241222

README.lsch2

1#
2# Copyright 2015 Freescale Semiconductor
3#
4# SPDX-License-Identifier:      GPL-2.0+
5#
6
7Freescale LayerScape with Chassis Generation 2
8
9This architecture supports Freescale ARMv8 SoCs with Chassis generation 2,
10for example LS1043A.
11

README.lsch3

1#
2# Copyright 2014-2015 Freescale Semiconductor
3#
4# SPDX-License-Identifier:      GPL-2.0+
5#
6
7Freescale LayerScape with Chassis Generation 3
8
9This architecture supports Freescale ARMv8 SoCs with Chassis generation 3,
10for example LS2080A.
11
12DDR Layout
13============
14Entire DDR region splits into two regions.
15 - Region 1 is at address 0x8000_0000 to 0xffff_ffff.
16 - Region 2 is at 0x80_8000_0000 to the top of total memory,
17   for example 16GB, 0x83_ffff_ffff.
18
19All DDR memory is marked as cache-enabled.
20
21When MC and Debug server is enabled, they carve 512MB away from the high
22end of DDR. For example, if the total DDR is 16GB, it shrinks to 15.5GB
23with MC and Debug server enabled. Linux only sees 15.5GB.
24
25The reserved 512MB layout looks like
26
27   +---------------+ <-- top/end of memory
28   |    256MB      |  debug server
29   +---------------+
30   |    256MB      |  MC
31   +---------------+
32   |     ...       |
33
34MC requires the memory to be aligned with 512MB, so even debug server is
35not enabled, 512MB is reserved, not 256MB.
36
37Flash Layout
38============
39
40(1) A typical layout of various images (including Linux and other firmware images)
41   is shown below considering a 32MB NOR flash device present on most
42   pre-silicon platforms (simulator and emulator):
43
44	-------------------------
45	| 	FIT Image	|
46	| (linux + DTB + RFS)	|
47	------------------------- ----> 0x0120_0000
48	| 	Debug Server FW |
49	------------------------- ----> 0x00C0_0000
50	|	AIOP FW 	|
51	------------------------- ----> 0x0070_0000
52	|	MC FW 		|
53	------------------------- ----> 0x006C_0000
54	| 	MC DPL Blob 	|
55	------------------------- ----> 0x0020_0000
56	| 	BootLoader + Env|
57	------------------------- ----> 0x0000_1000
58	|	PBI 		|
59	------------------------- ----> 0x0000_0080
60	|	RCW 		|
61	------------------------- ----> 0x0000_0000
62
63	32-MB NOR flash layout for pre-silicon platforms (simulator and emulator)
64
65(2) A typical layout of various images (including Linux and other firmware images)
66    is shown below considering a 128MB NOR flash device present on QDS and RDB
67    boards:
68	----------------------------------------- ----> 0x5_8800_0000 ---
69	|	.. Unused .. (7M)		|			|
70	----------------------------------------- ----> 0x5_8790_0000	|
71	| FIT Image (linux + DTB + RFS)	(40M)	|			|
72	----------------------------------------- ----> 0x5_8510_0000	|
73	|	PHY firmware (2M)	 	|			|
74	----------------------------------------- ----> 0x5_84F0_0000	| 64K
75	|	Debug Server FW (2M)		|			| Alt
76	----------------------------------------- ----> 0x5_84D0_0000	| Bank
77	|	AIOP FW (4M)			|			|
78	----------------------------------------- ----> 0x5_8490_0000 (vbank4)
79	|	MC DPC Blob (1M) 		|			|
80	----------------------------------------- ----> 0x5_8480_0000	|
81	|	MC DPL Blob (1M)		|			|
82	----------------------------------------- ----> 0x5_8470_0000	|
83	| 	MC FW (4M)			|			|
84	----------------------------------------- ----> 0x5_8430_0000	|
85	|	BootLoader Environment (1M) 	|			|
86	----------------------------------------- ----> 0x5_8420_0000	|
87	|	BootLoader (1M)			|			|
88	----------------------------------------- ----> 0x5_8410_0000	|
89	|	RCW and PBI (1M) 		|			|
90	----------------------------------------- ----> 0x5_8400_0000 ---
91	|	.. Unused .. (7M)		|			|
92	----------------------------------------- ----> 0x5_8390_0000	|
93	| FIT Image (linux + DTB + RFS)	(40M)	|			|
94	----------------------------------------- ----> 0x5_8110_0000	|
95	|	PHY firmware (2M)	 	|			|
96	----------------------------------------- ----> 0x5_80F0_0000	| 64K
97	|	Debug Server FW (2M)		|			| Bank
98	----------------------------------------- ----> 0x5_80D0_0000	|
99	|	AIOP FW (4M)			|			|
100	----------------------------------------- ----> 0x5_8090_0000 (vbank0)
101	|	MC DPC Blob (1M) 		|			|
102	----------------------------------------- ----> 0x5_8080_0000	|
103	|	MC DPL Blob (1M)		|			|
104	----------------------------------------- ----> 0x5_8070_0000	|
105	| 	MC FW (4M)			|			|
106	----------------------------------------- ----> 0x5_8030_0000	|
107	|	BootLoader Environment (1M) 	|			|
108	----------------------------------------- ----> 0x5_8020_0000	|
109	|	BootLoader (1M)			|			|
110	----------------------------------------- ----> 0x5_8010_0000	|
111	|	RCW and PBI (1M) 		|			|
112	----------------------------------------- ----> 0x5_8000_0000 ---
113
114	128-MB NOR flash layout for QDS and RDB boards
115
116Environment Variables
117=====================
118mcboottimeout:	MC boot timeout in milliseconds. If this variable is not defined
119		the value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be assumed.
120
121mcmemsize:	MC DRAM block size. If this variable is not defined, the value
122		CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be assumed.
123
124mcinitcmd:	This environment variable is defined to initiate MC and DPL deployment
125		from the location where it is stored(NOR, NAND, SD, SATA, USB)during
126		u-boot booting.If this variable is not defined then MC_BOOT_ENV_VAR
127		will be null and MC will not be booted and DPL will not be applied
128		during U-boot booting.However the MC, DPC and DPL can be applied from
129		console independently.
130		The variable needs to be set from the console once and then on
131		rebooting the parameters set in the variable will automatically be
132		executed. The commmand is demostrated taking an example of mc boot
133		using NOR Flash i.e. MC, DPL, and DPC is stored in the NOR flash:
134
135		cp.b 0xa0000000 0x580300000 $filesize
136		cp.b 0x80000000 0x580800000 $filesize
137		cp.b 0x90000000 0x580700000 $filesize
138
139		setenv mcinitcmd 'fsl_mc start mc 0x580300000 0x580800000'
140
141		If only linux is to be booted then the mcinitcmd environment should be set as
142
143		setenv mcinitcmd 'fsl_mc start mc 0x580300000 0x580800000;fsl_mc apply DPL 0x580700000'
144
145		Here the addresses 0xa0000000, 0x80000000, 0x80000000 are of DDR to where
146		MC binary, DPC binary and DPL binary are stored and 0x580300000, 0x580800000
147		and 0x580700000 are addresses in NOR where these are copied. It is to be
148		noted that these addresses in 'fsl_mc start mc 0x580300000 0x580800000;fsl_mc apply DPL 0x580700000'
149		can be replaced with the addresses of DDR to
150		which these will be copied in case of these binaries being stored in other
151		devices like SATA, USB, NAND, SD etc.
152
153Booting from NAND
154-------------------
155Booting from NAND requires two images, RCW and u-boot-with-spl.bin.
156The difference between NAND boot RCW image and NOR boot image is the PBI
157command sequence. Below is one example for PBI commands for QDS which uses
158NAND device with 2KB/page, block size 128KB.
159
1601) CCSR 4-byte write to 0x00e00404, data=0x00000000
1612) CCSR 4-byte write to 0x00e00400, data=0x1800a000
162The above two commands set bootloc register to 0x00000000_1800a000 where
163the u-boot code will be running in OCRAM.
164
1653) Block Copy: SRC=0x0107, SRC_ADDR=0x00020000, DEST_ADDR=0x1800a000,
166BLOCK_SIZE=0x00014000
167This command copies u-boot image from NAND device into OCRAM. The values need
168to adjust accordingly.
169
170SRC		should match the cfg_rcw_src, the reset config pins. It depends
171		on the NAND device. See reference manual for cfg_rcw_src.
172SRC_ADDR	is the offset of u-boot-with-spl.bin image in NAND device. In
173		the example above, 128KB. For easy maintenance, we put it at
174		the beginning of next block from RCW.
175DEST_ADDR	is fixed at 0x1800a000, matching bootloc set above.
176BLOCK_SIZE	is the size to be copied by PBI.
177
178RCW image should be written to the beginning of NAND device. Example of using
179u-boot command
180
181nand write <rcw image in memory> 0 <size of rcw image>
182
183To form the NAND image, build u-boot with NAND config, for example,
184ls2080aqds_nand_defconfig. The image needed is u-boot-with-spl.bin.
185The u-boot image should be written to match SRC_ADDR, in above example 0x20000.
186
187nand write <u-boot image in memory> 200000 <size of u-boot image>
188
189With these two images in NAND device, the board can boot from NAND.
190
191Another example for RDB boards,
192
1931) CCSR 4-byte write to 0x00e00404, data=0x00000000
1942) CCSR 4-byte write to 0x00e00400, data=0x1800a000
1953) Block Copy: SRC=0x0119, SRC_ADDR=0x00080000, DEST_ADDR=0x1800a000,
196BLOCK_SIZE=0x00014000
197
198nand write <rcw image in memory> 0 <size of rcw image>
199nand write <u-boot image in memory> 80000 <size of u-boot image>
200
201Notice the difference from QDS is SRC, SRC_ADDR and the offset of u-boot image
202to match board NAND device with 4KB/page, block size 512KB.
203
204MMU Translation Tables
205======================
206
207(1) Early MMU Tables:
208
209     Level 0                   Level 1                   Level 2
210------------------        ------------------        ------------------
211| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
212------------------        ------------------        ------------------
213| 0x80_0000_0000 | --|    | 0x00_4000_0000 |        | 0x00_0020_0000 |
214------------------   |    ------------------        ------------------
215|    invalid     |   |    | 0x00_8000_0000 |        | 0x00_0040_0000 |
216------------------   |    ------------------        ------------------
217                     |    | 0x00_c000_0000 |        | 0x00_0060_0000 |
218                     |    ------------------        ------------------
219                     |    | 0x01_0000_0000 |        | 0x00_0080_0000 |
220                     |    ------------------        ------------------
221                     |            ...                      ...
222                     |    ------------------
223                     |    | 0x05_8000_0000 |  --|
224                     |    ------------------    |
225                     |    | 0x05_c000_0000 |    |
226                     |    ------------------    |
227                     |            ...           |
228                     |    ------------------    |   ------------------
229                     |--> | 0x80_0000_0000 |    |-> | 0x00_3000_0000 |
230                          ------------------        ------------------
231                          | 0x80_4000_0000 |        | 0x00_3020_0000 |
232                          ------------------        ------------------
233                          | 0x80_8000_0000 |        | 0x00_3040_0000 |
234                          ------------------        ------------------
235                          | 0x80_c000_0000 |        | 0x00_3060_0000 |
236                          ------------------        ------------------
237                          | 0x81_0000_0000 |        | 0x00_3080_0000 |
238                          ------------------        ------------------
239			         ...	                   ...
240
241(2) Final MMU Tables:
242
243     Level 0                   Level 1                   Level 2
244------------------        ------------------        ------------------
245| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
246------------------        ------------------        ------------------
247| 0x80_0000_0000 | --|    | 0x00_4000_0000 |        | 0x00_0020_0000 |
248------------------   |    ------------------        ------------------
249|    invalid     |   |    | 0x00_8000_0000 |        | 0x00_0040_0000 |
250------------------   |    ------------------        ------------------
251                     |    | 0x00_c000_0000 |        | 0x00_0060_0000 |
252                     |    ------------------        ------------------
253                     |    | 0x01_0000_0000 |        | 0x00_0080_0000 |
254                     |    ------------------        ------------------
255                     |            ...                      ...
256                     |    ------------------
257                     |    | 0x08_0000_0000 | --|
258                     |    ------------------   |
259                     |    | 0x08_4000_0000 |   |
260                     |    ------------------   |
261                     |            ...          |
262                     |    ------------------   |    ------------------
263                     |--> | 0x80_0000_0000 |   |--> | 0x08_0000_0000 |
264                          ------------------        ------------------
265                          | 0x80_4000_0000 |        | 0x08_0020_0000 |
266                          ------------------        ------------------
267                          | 0x80_8000_0000 |        | 0x08_0040_0000 |
268                          ------------------        ------------------
269                          | 0x80_c000_0000 |        | 0x08_0060_0000 |
270                          ------------------        ------------------
271                          | 0x81_0000_0000 |        | 0x08_0080_0000 |
272                          ------------------        ------------------
273			         ...	                   ...
274
275
276DPAA2 commands to manage Management Complex (MC)
277------------------------------------------------
278DPAA2 commands has been introduced to manage Management Complex
279(MC). These commands are used to start mc, aiop and apply DPL
280from u-boot command prompt.
281
282Please note Management complex Firmware(MC), DPL and DPC are no
283more deployed during u-boot boot-sequence.
284
285Commands:
286a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
287b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
288c) fsl_mc start aiop <FW_addr> - Start AIOP
289
290How to use commands :-
2911. Command sequence for u-boot ethernet:
292   a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
293   b) DPMAC net-devices are now available for use
294
295   Example-
296	Assumption: MC firmware, DPL and DPC dtb is already programmed
297	on NOR flash.
298
299	=> fsl_mc start mc 580300000 580800000
300	=> setenv ethact DPMAC1@xgmii
301	=> ping $serverip
302
3032. Command sequence for Linux boot:
304   a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
305   b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
306   c) No DPMAC net-devices are available for use in u-boot
307   d) boot Linux
308
309   Example-
310	Assumption: MC firmware, DPL and DPC dtb is already programmed
311	on NOR flash.
312
313	=> fsl_mc start mc 580300000 580800000
314	=> setenv ethact DPMAC1@xgmii
315	=> tftp a0000000 kernel.itb
316	=> fsl_mc apply dpl 580700000
317	=> bootm a0000000
318
3193. Command sequence for AIOP boot:
320   a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
321   b) fsl_mc start aiop <FW_addr> - Start AIOP
322   c) fsl_mc apply DPL <DPL_addr> - Apply DPL file
323   d) No DPMAC net-devices are availabe for use in u-boot
324  Please note actual AIOP start will happen during DPL parsing of
325  Management complex
326
327  Example-
328	Assumption: MC firmware, DPL, DPC dtb and AIOP firmware is already
329	programmed on NOR flash.
330
331	=> fsl_mc start mc 580300000 580800000
332	=> fsl_mc start aiop 0x580900000
333	=> setenv ethact DPMAC1@xgmii
334	=> fsl_mc apply dpl 580700000
335
336Errata A009635
337---------------
338If the core runs at higher than x3 speed of the platform, there is
339possiblity about sev instruction to getting missed by other cores.
340This is because of SoC Run Control block may not able to sample
341the EVENTI(Sev) signals.
342
343Workaround: Configure Run Control and EPU to periodically send out EVENTI signals to
344wake up A57 cores
345
346Errata workaround uses Env variable "a009635_interval_val". It uses decimal
347value.
348- Default value of env variable is platform clock (MHz)
349
350- User can modify default value by updating the env variable
351  setenv a009635_interval_val 600; saveenv;
352  It configure platform clock as 600 MHz
353
354- Env variable as 0 signifies no workaround
355

README.qspi

1QSPI Boot source support Overview
2-------------------
3	1. LS1043A
4		LS1043AQDS
5	2. LS2080A
6		LS2080AQDS
7	3. LS1012A
8		LS1012AQDS
9		LS1012ARDB
10	4. LS1046A
11		LS1046AQDS
12		LS1046ARDB
13
14Booting from QSPI
15-------------------
16Booting from QSPI requires two images, RCW and u-boot-dtb.bin.
17The difference between QSPI boot RCW image and NOR boot image is the PBI
18command sequence for setting the boot location pointer. It's should point
19to the address for u-boot in QSPI flash.
20
21RCW image should be written to the beginning of QSPI flash device.
22Example of using u-boot command
23
24=> sf probe 0:0
25SF: Detected S25FL256S_64K with page size 256 Bytes, erase size 64 KiB, total 32 MiB
26=> sf erase 0 +<size of rcw image>
27SF: 65536 bytes @ 0x0 Erased: OK
28=> sf write <rcw image in memory> 0 <size of rcw image>
29SF: 164 bytes @ 0x0 Written: OK
30
31To get the QSPI image, build u-boot with QSPI config, for example,
32<board_name>_qspi_defconfig. The image needed is u-boot-dtb.bin.
33The u-boot image should be written to 0x10000(but 0x1000 for LS1043A, LS2080A).
34
35=> sf probe 0:0
36SF: Detected S25FL256S_64K with page size 256 Bytes, erase size 64 KiB, total 32 MiB
37=> sf erase 10000 +<size of u-boot image>
38SF: 589824 bytes @ 0x10000 Erased: OK
39=> sf write <u-boot image in memory> 10000 <size of u-boot image>
40SF: 580966 bytes @ 0x10000 Written: OK
41
42With these two images in QSPI flash device, the board can boot from QSPI.
43

README.soc

1SoC overview
2
3	1. LS1043A
4	2. LS2080A
5	3. LS1012A
6	4. LS1046A
7	5. LS2088A
8	6. LS2081A
9
10LS1043A
11---------
12The LS1043A integrated multicore processor combines four ARM Cortex-A53
13processor cores with datapath acceleration optimized for L2/3 packet
14processing, single pass security offload and robust traffic management
15and quality of service.
16
17The LS1043A SoC includes the following function and features:
18 - Four 64-bit ARM Cortex-A53 CPUs
19 - 1 MB unified L2 Cache
20 - One 32-bit DDR3L/DDR4 SDRAM memory controllers with ECC and interleaving
21   support
22 - Data Path Acceleration Architecture (DPAA) incorporating acceleration the
23   the following functions:
24   - Packet parsing, classification, and distribution (FMan)
25   - Queue management for scheduling, packet sequencing, and congestion
26     management (QMan)
27   - Hardware buffer management for buffer allocation and de-allocation (BMan)
28   - Cryptography acceleration (SEC)
29 - Ethernet interfaces by FMan
30   - Up to 1 x XFI supporting 10G interface
31   - Up to 1 x QSGMII
32   - Up to 4 x SGMII supporting 1000Mbps
33   - Up to 2 x SGMII supporting 2500Mbps
34   - Up to 2 x RGMII supporting 1000Mbps
35 - High-speed peripheral interfaces
36   - Three PCIe 2.0 controllers, one supporting x4 operation
37   - One serial ATA (SATA 3.0) controllers
38 - Additional peripheral interfaces
39   - Three high-speed USB 3.0 controllers with integrated PHY
40   - Enhanced secure digital host controller (eSDXC/eMMC)
41   - Quad Serial Peripheral Interface (QSPI) Controller
42   - Serial peripheral interface (SPI) controller
43   - Four I2C controllers
44   - Two DUARTs
45   - Integrated flash controller supporting NAND and NOR flash
46 - QorIQ platform's trust architecture 2.1
47
48LS2080A
49--------
50The LS2080A integrated multicore processor combines eight ARM Cortex-A57
51processor cores with high-performance data path acceleration logic and network
52and peripheral bus interfaces required for networking, telecom/datacom,
53wireless infrastructure, and mil/aerospace applications.
54
55The LS2080A SoC includes the following function and features:
56
57 - Eight 64-bit ARM Cortex-A57 CPUs
58 - 1 MB platform cache with ECC
59 - Two 64-bit DDR4 SDRAM memory controllers with ECC and interleaving support
60 - One secondary 32-bit DDR4 SDRAM memory controller, intended for use by
61  the AIOP
62 - Data path acceleration architecture (DPAA2) incorporating acceleration for
63 the following functions:
64   - Packet parsing, classification, and distribution (WRIOP)
65   - Queue and Hardware buffer management for scheduling, packet sequencing, and
66     congestion management, buffer allocation and de-allocation (QBMan)
67   - Cryptography acceleration (SEC) at up to 10 Gbps
68   - RegEx pattern matching acceleration (PME) at up to 10 Gbps
69   - Decompression/compression acceleration (DCE) at up to 20 Gbps
70   - Accelerated I/O processing (AIOP) at up to 20 Gbps
71   - QDMA engine
72 - 16 SerDes lanes at up to 10.3125 GHz
73 - Ethernet interfaces
74   - Up to eight 10 Gbps Ethernet MACs
75   - Up to eight 1 / 2.5 Gbps Ethernet MACs
76 - High-speed peripheral interfaces
77   - Four PCIe 3.0 controllers, one supporting SR-IOV
78 - Additional peripheral interfaces
79   - Two serial ATA (SATA 3.0) controllers
80   - Two high-speed USB 3.0 controllers with integrated PHY
81   - Enhanced secure digital host controller (eSDXC/eMMC)
82   - Serial peripheral interface (SPI) controller
83   - Quad Serial Peripheral Interface (QSPI) Controller
84   - Four I2C controllers
85   - Two DUARTs
86   - Integrated flash controller (IFC 2.0) supporting NAND and NOR flash
87 - Support for hardware virtualization and partitioning enforcement
88 - QorIQ platform's trust architecture 3.0
89 - Service processor (SP) provides pre-boot initialization and secure-boot
90  capabilities
91
92LS1012A
93--------
94The LS1012A features an advanced 64-bit ARM v8 Cortex-
95A53 processor, with 32 KB of parity protected L1-I cache,
9632 KB of ECC protected L1-D cache, as well as 256 KB of
97ECC protected L2 cache.
98
99The LS1012A SoC includes the following function and features:
100 - One 64-bit ARM v8 Cortex-A53 core with the following capabilities:
101 - ARM v8 cryptography extensions
102 - One 16-bit DDR3L SDRAM memory controller, Up to 1.0 GT/s, Supports
103    16-/8-bit operation (no ECC support)
104 - ARM core-link CCI-400 cache coherent interconnect
105 - Packet Forwarding Engine (PFE)
106 - Cryptography acceleration (SEC)
107 - Ethernet interfaces supported by PFE:
108 - One Configurable x3 SerDes:
109    Two Serdes PLLs supported for usage by any SerDes data lane
110    Support for up to 6 GBaud operation
111 - High-speed peripheral interfaces:
112     - One PCI Express Gen2 controller, supporting x1 operation
113     - One serial ATA (SATA Gen 3.0) controller
114     - One USB 3.0/2.0 controller with integrated PHY
115     - One USB 2.0 controller with ULPI interface. .
116 - Additional peripheral interfaces:
117    - One quad serial peripheral interface (QuadSPI) controller
118    - One serial peripheral interface (SPI) controller
119    - Two enhanced secure digital host controllers
120    - Two I2C controllers
121    - One 16550 compliant DUART (two UART interfaces)
122    - Two general purpose IOs (GPIO)
123    - Two FlexTimers
124    - Five synchronous audio interfaces (SAI)
125    - Pre-boot loader (PBL) provides pre-boot initialization and RCW loading
126    - Single-source clocking solution enabling generation of core, platform,
127    DDR, SerDes, and USB clocks from a single external crystal and internal
128    crystaloscillator
129    - Thermal monitor unit (TMU) with +/- 3C accuracy
130    - Two WatchDog timers
131    - ARM generic timer
132 - QorIQ platform's trust architecture 2.1
133
134LS1046A
135--------
136The LS1046A integrated multicore processor combines four ARM Cortex-A72
137processor cores with datapath acceleration optimized for L2/3 packet
138processing, single pass security offload and robust traffic management
139and quality of service.
140
141The LS1046A SoC includes the following function and features:
142 - Four 64-bit ARM Cortex-A72 CPUs
143 - 2 MB unified L2 Cache
144 - One 64-bit DDR4 SDRAM memory controllers with ECC and interleaving
145   support
146 - Data Path Acceleration Architecture (DPAA) incorporating acceleration the
147   the following functions:
148   - Packet parsing, classification, and distribution (FMan)
149   - Queue management for scheduling, packet sequencing, and congestion
150     management (QMan)
151   - Hardware buffer management for buffer allocation and de-allocation (BMan)
152   - Cryptography acceleration (SEC)
153 - Two Configurable x4 SerDes
154   - Two PLLs per four-lane SerDes
155   - Support for 10G operation
156 - Ethernet interfaces by FMan
157   - Up to 2 x XFI supporting 10G interface (MAC 9, 10)
158   - Up to 1 x QSGMII (MAC 5, 6, 10, 1)
159   - Up to 4 x SGMII supporting 1000Mbps (MAC 5, 6, 9, 10)
160   - Up to 3 x SGMII supporting 2500Mbps (MAC 5, 9, 10)
161   - Up to 2 x RGMII supporting 1000Mbps (MAC 3, 4)
162 - High-speed peripheral interfaces
163   - Three PCIe 3.0 controllers, one supporting x4 operation
164   - One serial ATA (SATA 3.0) controllers
165 - Additional peripheral interfaces
166   - Three high-speed USB 3.0 controllers with integrated PHY
167   - Enhanced secure digital host controller (eSDXC/eMMC)
168   - Quad Serial Peripheral Interface (QSPI) Controller
169   - Serial peripheral interface (SPI) controller
170   - Four I2C controllers
171   - Two DUARTs
172   - Integrated flash controller (IFC) supporting NAND and NOR flash
173 - QorIQ platform's trust architecture 2.1
174
175LS2088A
176--------
177The LS2088A integrated multicore processor combines eight ARM Cortex-A72
178processor cores with high-performance data path acceleration logic and network
179and peripheral bus interfaces required for networking, telecom/datacom,
180wireless infrastructure, and mil/aerospace applications.
181
182The LS2088A SoC includes the following function and features:
183
184 - Eight 64-bit ARM Cortex-A72 CPUs
185 - 1 MB platform cache with ECC
186 - Two 64-bit DDR4 SDRAM memory controllers with ECC and interleaving support
187 - One secondary 32-bit DDR4 SDRAM memory controller, intended for use by
188   the AIOP
189 - Data path acceleration architecture (DPAA2) incorporating acceleration for
190   the following functions:
191   - Packet parsing, classification, and distribution (WRIOP)
192   - Queue and Hardware buffer management for scheduling, packet sequencing, and
193     congestion management, buffer allocation and de-allocation (QBMan)
194   - Cryptography acceleration (SEC) at up to 10 Gbps
195   - RegEx pattern matching acceleration (PME) at up to 10 Gbps
196   - Decompression/compression acceleration (DCE) at up to 20 Gbps
197   - Accelerated I/O processing (AIOP) at up to 20 Gbps
198   - QDMA engine
199 - 16 SerDes lanes at up to 10.3125 GHz
200 - Ethernet interfaces
201   - Up to eight 10 Gbps Ethernet MACs
202   - Up to eight 1 / 2.5 Gbps Ethernet MACs
203 - High-speed peripheral interfaces
204   - Four PCIe 3.0 controllers, one supporting SR-IOV
205 - Additional peripheral interfaces
206   - Two serial ATA (SATA 3.0) controllers
207   - Two high-speed USB 3.0 controllers with integrated PHY
208   - Enhanced secure digital host controller (eSDXC/eMMC)
209   - Serial peripheral interface (SPI) controller
210   - Quad Serial Peripheral Interface (QSPI) Controller
211   - Four I2C controllers
212   - Two DUARTs
213   - Integrated flash controller (IFC 2.0) supporting NAND and NOR flash
214 - Support for hardware virtualization and partitioning enforcement
215 - QorIQ platform's trust architecture 3.0
216 - Service processor (SP) provides pre-boot initialization and secure-boot
217 capabilities
218
219LS2088A SoC has 3 more similar SoC personalities
2201)LS2048A, few difference w.r.t. LS2088A:
221       a) Four 64-bit ARM v8 Cortex-A72 CPUs
222
2232)LS2084A, few difference w.r.t. LS2088A:
224       a) No AIOP
225       b) No 32-bit DDR3 SDRAM memory
226       c) 5 * 1/10G + 5 *1G WRIOP
227       d) No L2 switch
228
2293)LS2044A, few difference w.r.t. LS2084A:
230       a) Four 64-bit ARM v8 Cortex-A72 CPUs
231
232LS2081A
233--------
234LS2081A is 40-pin derivative of LS2084A.
235So feature-wise it is same as LS2084A.
236Refer to LS2084A(LS2088A) section above for details.
237
238It has one more similar SoC personality
2391)LS2041A, few difference w.r.t. LS2081A:
240       a) Four 64-bit ARM v8 Cortex-A72 CPUs
241