1*4882a593Smuzhiyun /*
2*4882a593Smuzhiyun * Copyright (C) 2013-2014 Synopsys, Inc. All rights reserved.
3*4882a593Smuzhiyun *
4*4882a593Smuzhiyun * SPDX-License-Identifier: GPL-2.0+
5*4882a593Smuzhiyun */
6*4882a593Smuzhiyun
7*4882a593Smuzhiyun #ifndef __ASM_ARC_IO_H
8*4882a593Smuzhiyun #define __ASM_ARC_IO_H
9*4882a593Smuzhiyun
10*4882a593Smuzhiyun #include <linux/types.h>
11*4882a593Smuzhiyun #include <asm/byteorder.h>
12*4882a593Smuzhiyun
13*4882a593Smuzhiyun #ifdef CONFIG_ISA_ARCV2
14*4882a593Smuzhiyun
15*4882a593Smuzhiyun /*
16*4882a593Smuzhiyun * ARCv2 based HS38 cores are in-order issue, but still weakly ordered
17*4882a593Smuzhiyun * due to micro-arch buffering/queuing of load/store, cache hit vs. miss ...
18*4882a593Smuzhiyun *
19*4882a593Smuzhiyun * Explicit barrier provided by DMB instruction
20*4882a593Smuzhiyun * - Operand supports fine grained load/store/load+store semantics
21*4882a593Smuzhiyun * - Ensures that selected memory operation issued before it will complete
22*4882a593Smuzhiyun * before any subsequent memory operation of same type
23*4882a593Smuzhiyun * - DMB guarantees SMP as well as local barrier semantics
24*4882a593Smuzhiyun * (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e.
25*4882a593Smuzhiyun * UP: barrier(), SMP: smp_*mb == *mb)
26*4882a593Smuzhiyun * - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed
27*4882a593Smuzhiyun * in the general case. Plus it only provides full barrier.
28*4882a593Smuzhiyun */
29*4882a593Smuzhiyun
30*4882a593Smuzhiyun #define mb() asm volatile("dmb 3\n" : : : "memory")
31*4882a593Smuzhiyun #define rmb() asm volatile("dmb 1\n" : : : "memory")
32*4882a593Smuzhiyun #define wmb() asm volatile("dmb 2\n" : : : "memory")
33*4882a593Smuzhiyun
34*4882a593Smuzhiyun #else
35*4882a593Smuzhiyun
36*4882a593Smuzhiyun /*
37*4882a593Smuzhiyun * ARCompact based cores (ARC700) only have SYNC instruction which is super
38*4882a593Smuzhiyun * heavy weight as it flushes the pipeline as well.
39*4882a593Smuzhiyun * There are no real SMP implementations of such cores.
40*4882a593Smuzhiyun */
41*4882a593Smuzhiyun
42*4882a593Smuzhiyun #define mb() asm volatile("sync\n" : : : "memory")
43*4882a593Smuzhiyun #endif
44*4882a593Smuzhiyun
45*4882a593Smuzhiyun #ifdef CONFIG_ISA_ARCV2
46*4882a593Smuzhiyun #define __iormb() rmb()
47*4882a593Smuzhiyun #define __iowmb() wmb()
48*4882a593Smuzhiyun #else
49*4882a593Smuzhiyun #define __iormb() do { } while (0)
50*4882a593Smuzhiyun #define __iowmb() do { } while (0)
51*4882a593Smuzhiyun #endif
52*4882a593Smuzhiyun
53*4882a593Smuzhiyun /*
54*4882a593Smuzhiyun * Given a physical address and a length, return a virtual address
55*4882a593Smuzhiyun * that can be used to access the memory range with the caching
56*4882a593Smuzhiyun * properties specified by "flags".
57*4882a593Smuzhiyun */
58*4882a593Smuzhiyun #define MAP_NOCACHE (0)
59*4882a593Smuzhiyun #define MAP_WRCOMBINE (0)
60*4882a593Smuzhiyun #define MAP_WRBACK (0)
61*4882a593Smuzhiyun #define MAP_WRTHROUGH (0)
62*4882a593Smuzhiyun
63*4882a593Smuzhiyun static inline void *
map_physmem(phys_addr_t paddr,unsigned long len,unsigned long flags)64*4882a593Smuzhiyun map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
65*4882a593Smuzhiyun {
66*4882a593Smuzhiyun return (void *)((unsigned long)paddr);
67*4882a593Smuzhiyun }
68*4882a593Smuzhiyun
69*4882a593Smuzhiyun /*
70*4882a593Smuzhiyun * Take down a mapping set up by map_physmem().
71*4882a593Smuzhiyun */
unmap_physmem(void * vaddr,unsigned long flags)72*4882a593Smuzhiyun static inline void unmap_physmem(void *vaddr, unsigned long flags)
73*4882a593Smuzhiyun {
74*4882a593Smuzhiyun
75*4882a593Smuzhiyun }
76*4882a593Smuzhiyun
sync(void)77*4882a593Smuzhiyun static inline void sync(void)
78*4882a593Smuzhiyun {
79*4882a593Smuzhiyun /* Not yet implemented */
80*4882a593Smuzhiyun }
81*4882a593Smuzhiyun
__raw_readb(const volatile void __iomem * addr)82*4882a593Smuzhiyun static inline u8 __raw_readb(const volatile void __iomem *addr)
83*4882a593Smuzhiyun {
84*4882a593Smuzhiyun u8 b;
85*4882a593Smuzhiyun
86*4882a593Smuzhiyun __asm__ __volatile__("ldb%U1 %0, %1\n"
87*4882a593Smuzhiyun : "=r" (b)
88*4882a593Smuzhiyun : "m" (*(volatile u8 __force *)addr)
89*4882a593Smuzhiyun : "memory");
90*4882a593Smuzhiyun return b;
91*4882a593Smuzhiyun }
92*4882a593Smuzhiyun
__raw_readw(const volatile void __iomem * addr)93*4882a593Smuzhiyun static inline u16 __raw_readw(const volatile void __iomem *addr)
94*4882a593Smuzhiyun {
95*4882a593Smuzhiyun u16 s;
96*4882a593Smuzhiyun
97*4882a593Smuzhiyun __asm__ __volatile__("ldw%U1 %0, %1\n"
98*4882a593Smuzhiyun : "=r" (s)
99*4882a593Smuzhiyun : "m" (*(volatile u16 __force *)addr)
100*4882a593Smuzhiyun : "memory");
101*4882a593Smuzhiyun return s;
102*4882a593Smuzhiyun }
103*4882a593Smuzhiyun
__raw_readl(const volatile void __iomem * addr)104*4882a593Smuzhiyun static inline u32 __raw_readl(const volatile void __iomem *addr)
105*4882a593Smuzhiyun {
106*4882a593Smuzhiyun u32 w;
107*4882a593Smuzhiyun
108*4882a593Smuzhiyun __asm__ __volatile__("ld%U1 %0, %1\n"
109*4882a593Smuzhiyun : "=r" (w)
110*4882a593Smuzhiyun : "m" (*(volatile u32 __force *)addr)
111*4882a593Smuzhiyun : "memory");
112*4882a593Smuzhiyun return w;
113*4882a593Smuzhiyun }
114*4882a593Smuzhiyun
__raw_writeb(u8 b,volatile void __iomem * addr)115*4882a593Smuzhiyun static inline void __raw_writeb(u8 b, volatile void __iomem *addr)
116*4882a593Smuzhiyun {
117*4882a593Smuzhiyun __asm__ __volatile__("stb%U1 %0, %1\n"
118*4882a593Smuzhiyun :
119*4882a593Smuzhiyun : "r" (b), "m" (*(volatile u8 __force *)addr)
120*4882a593Smuzhiyun : "memory");
121*4882a593Smuzhiyun }
122*4882a593Smuzhiyun
__raw_writew(u16 s,volatile void __iomem * addr)123*4882a593Smuzhiyun static inline void __raw_writew(u16 s, volatile void __iomem *addr)
124*4882a593Smuzhiyun {
125*4882a593Smuzhiyun __asm__ __volatile__("stw%U1 %0, %1\n"
126*4882a593Smuzhiyun :
127*4882a593Smuzhiyun : "r" (s), "m" (*(volatile u16 __force *)addr)
128*4882a593Smuzhiyun : "memory");
129*4882a593Smuzhiyun }
130*4882a593Smuzhiyun
__raw_writel(u32 w,volatile void __iomem * addr)131*4882a593Smuzhiyun static inline void __raw_writel(u32 w, volatile void __iomem *addr)
132*4882a593Smuzhiyun {
133*4882a593Smuzhiyun __asm__ __volatile__("st%U1 %0, %1\n"
134*4882a593Smuzhiyun :
135*4882a593Smuzhiyun : "r" (w), "m" (*(volatile u32 __force *)addr)
136*4882a593Smuzhiyun : "memory");
137*4882a593Smuzhiyun }
138*4882a593Smuzhiyun
__raw_readsb(unsigned int addr,void * data,int bytelen)139*4882a593Smuzhiyun static inline int __raw_readsb(unsigned int addr, void *data, int bytelen)
140*4882a593Smuzhiyun {
141*4882a593Smuzhiyun __asm__ __volatile__ ("1:ld.di r8, [r0]\n"
142*4882a593Smuzhiyun "sub.f r2, r2, 1\n"
143*4882a593Smuzhiyun "bnz.d 1b\n"
144*4882a593Smuzhiyun "stb.ab r8, [r1, 1]\n"
145*4882a593Smuzhiyun :
146*4882a593Smuzhiyun : "r" (addr), "r" (data), "r" (bytelen)
147*4882a593Smuzhiyun : "r8");
148*4882a593Smuzhiyun return bytelen;
149*4882a593Smuzhiyun }
150*4882a593Smuzhiyun
__raw_readsw(unsigned int addr,void * data,int wordlen)151*4882a593Smuzhiyun static inline int __raw_readsw(unsigned int addr, void *data, int wordlen)
152*4882a593Smuzhiyun {
153*4882a593Smuzhiyun __asm__ __volatile__ ("1:ld.di r8, [r0]\n"
154*4882a593Smuzhiyun "sub.f r2, r2, 1\n"
155*4882a593Smuzhiyun "bnz.d 1b\n"
156*4882a593Smuzhiyun "stw.ab r8, [r1, 2]\n"
157*4882a593Smuzhiyun :
158*4882a593Smuzhiyun : "r" (addr), "r" (data), "r" (wordlen)
159*4882a593Smuzhiyun : "r8");
160*4882a593Smuzhiyun return wordlen;
161*4882a593Smuzhiyun }
162*4882a593Smuzhiyun
__raw_readsl(unsigned int addr,void * data,int longlen)163*4882a593Smuzhiyun static inline int __raw_readsl(unsigned int addr, void *data, int longlen)
164*4882a593Smuzhiyun {
165*4882a593Smuzhiyun __asm__ __volatile__ ("1:ld.di r8, [r0]\n"
166*4882a593Smuzhiyun "sub.f r2, r2, 1\n"
167*4882a593Smuzhiyun "bnz.d 1b\n"
168*4882a593Smuzhiyun "st.ab r8, [r1, 4]\n"
169*4882a593Smuzhiyun :
170*4882a593Smuzhiyun : "r" (addr), "r" (data), "r" (longlen)
171*4882a593Smuzhiyun : "r8");
172*4882a593Smuzhiyun return longlen;
173*4882a593Smuzhiyun }
174*4882a593Smuzhiyun
__raw_writesb(unsigned int addr,void * data,int bytelen)175*4882a593Smuzhiyun static inline int __raw_writesb(unsigned int addr, void *data, int bytelen)
176*4882a593Smuzhiyun {
177*4882a593Smuzhiyun __asm__ __volatile__ ("1:ldb.ab r8, [r1, 1]\n"
178*4882a593Smuzhiyun "sub.f r2, r2, 1\n"
179*4882a593Smuzhiyun "bnz.d 1b\n"
180*4882a593Smuzhiyun "st.di r8, [r0, 0]\n"
181*4882a593Smuzhiyun :
182*4882a593Smuzhiyun : "r" (addr), "r" (data), "r" (bytelen)
183*4882a593Smuzhiyun : "r8");
184*4882a593Smuzhiyun return bytelen;
185*4882a593Smuzhiyun }
186*4882a593Smuzhiyun
__raw_writesw(unsigned int addr,void * data,int wordlen)187*4882a593Smuzhiyun static inline int __raw_writesw(unsigned int addr, void *data, int wordlen)
188*4882a593Smuzhiyun {
189*4882a593Smuzhiyun __asm__ __volatile__ ("1:ldw.ab r8, [r1, 2]\n"
190*4882a593Smuzhiyun "sub.f r2, r2, 1\n"
191*4882a593Smuzhiyun "bnz.d 1b\n"
192*4882a593Smuzhiyun "st.ab.di r8, [r0, 0]\n"
193*4882a593Smuzhiyun :
194*4882a593Smuzhiyun : "r" (addr), "r" (data), "r" (wordlen)
195*4882a593Smuzhiyun : "r8");
196*4882a593Smuzhiyun return wordlen;
197*4882a593Smuzhiyun }
198*4882a593Smuzhiyun
__raw_writesl(unsigned int addr,void * data,int longlen)199*4882a593Smuzhiyun static inline int __raw_writesl(unsigned int addr, void *data, int longlen)
200*4882a593Smuzhiyun {
201*4882a593Smuzhiyun __asm__ __volatile__ ("1:ld.ab r8, [r1, 4]\n"
202*4882a593Smuzhiyun "sub.f r2, r2, 1\n"
203*4882a593Smuzhiyun "bnz.d 1b\n"
204*4882a593Smuzhiyun "st.ab.di r8, [r0, 0]\n"
205*4882a593Smuzhiyun :
206*4882a593Smuzhiyun : "r" (addr), "r" (data), "r" (longlen)
207*4882a593Smuzhiyun : "r8");
208*4882a593Smuzhiyun return longlen;
209*4882a593Smuzhiyun }
210*4882a593Smuzhiyun
211*4882a593Smuzhiyun /*
212*4882a593Smuzhiyun * MMIO can also get buffered/optimized in micro-arch, so barriers needed
213*4882a593Smuzhiyun * Based on ARM model for the typical use case
214*4882a593Smuzhiyun *
215*4882a593Smuzhiyun * <ST [DMA buffer]>
216*4882a593Smuzhiyun * <writel MMIO "go" reg>
217*4882a593Smuzhiyun * or:
218*4882a593Smuzhiyun * <readl MMIO "status" reg>
219*4882a593Smuzhiyun * <LD [DMA buffer]>
220*4882a593Smuzhiyun *
221*4882a593Smuzhiyun * http://lkml.kernel.org/r/20150622133656.GG1583@arm.com
222*4882a593Smuzhiyun */
223*4882a593Smuzhiyun #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
224*4882a593Smuzhiyun #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
225*4882a593Smuzhiyun #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
226*4882a593Smuzhiyun
227*4882a593Smuzhiyun #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
228*4882a593Smuzhiyun #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
229*4882a593Smuzhiyun #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
230*4882a593Smuzhiyun
231*4882a593Smuzhiyun /*
232*4882a593Smuzhiyun * Relaxed API for drivers which can handle barrier ordering themselves
233*4882a593Smuzhiyun *
234*4882a593Smuzhiyun * Also these are defined to perform little endian accesses.
235*4882a593Smuzhiyun * To provide the typical device register semantics of fixed endian,
236*4882a593Smuzhiyun * swap the byte order for Big Endian
237*4882a593Smuzhiyun *
238*4882a593Smuzhiyun * http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de
239*4882a593Smuzhiyun */
240*4882a593Smuzhiyun #define readb_relaxed(c) __raw_readb(c)
241*4882a593Smuzhiyun #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
242*4882a593Smuzhiyun __raw_readw(c)); __r; })
243*4882a593Smuzhiyun #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
244*4882a593Smuzhiyun __raw_readl(c)); __r; })
245*4882a593Smuzhiyun
246*4882a593Smuzhiyun #define writeb_relaxed(v,c) __raw_writeb(v,c)
247*4882a593Smuzhiyun #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
248*4882a593Smuzhiyun #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
249*4882a593Smuzhiyun
250*4882a593Smuzhiyun #define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a)
251*4882a593Smuzhiyun #define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a))
252*4882a593Smuzhiyun
253*4882a593Smuzhiyun #define out_le32(a, v) out_arch(l, le32, a, v)
254*4882a593Smuzhiyun #define out_le16(a, v) out_arch(w, le16, a, v)
255*4882a593Smuzhiyun
256*4882a593Smuzhiyun #define in_le32(a) in_arch(l, le32, a)
257*4882a593Smuzhiyun #define in_le16(a) in_arch(w, le16, a)
258*4882a593Smuzhiyun
259*4882a593Smuzhiyun #define out_be32(a, v) out_arch(l, be32, a, v)
260*4882a593Smuzhiyun #define out_be16(a, v) out_arch(w, be16, a, v)
261*4882a593Smuzhiyun
262*4882a593Smuzhiyun #define in_be32(a) in_arch(l, be32, a)
263*4882a593Smuzhiyun #define in_be16(a) in_arch(w, be16, a)
264*4882a593Smuzhiyun
265*4882a593Smuzhiyun #define out_8(a, v) __raw_writeb(v, a)
266*4882a593Smuzhiyun #define in_8(a) __raw_readb(a)
267*4882a593Smuzhiyun
268*4882a593Smuzhiyun /*
269*4882a593Smuzhiyun * Clear and set bits in one shot. These macros can be used to clear and
270*4882a593Smuzhiyun * set multiple bits in a register using a single call. These macros can
271*4882a593Smuzhiyun * also be used to set a multiple-bit bit pattern using a mask, by
272*4882a593Smuzhiyun * specifying the mask in the 'clear' parameter and the new bit pattern
273*4882a593Smuzhiyun * in the 'set' parameter.
274*4882a593Smuzhiyun */
275*4882a593Smuzhiyun
276*4882a593Smuzhiyun #define clrbits(type, addr, clear) \
277*4882a593Smuzhiyun out_##type((addr), in_##type(addr) & ~(clear))
278*4882a593Smuzhiyun
279*4882a593Smuzhiyun #define setbits(type, addr, set) \
280*4882a593Smuzhiyun out_##type((addr), in_##type(addr) | (set))
281*4882a593Smuzhiyun
282*4882a593Smuzhiyun #define clrsetbits(type, addr, clear, set) \
283*4882a593Smuzhiyun out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
284*4882a593Smuzhiyun
285*4882a593Smuzhiyun #define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
286*4882a593Smuzhiyun #define setbits_be32(addr, set) setbits(be32, addr, set)
287*4882a593Smuzhiyun #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
288*4882a593Smuzhiyun
289*4882a593Smuzhiyun #define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
290*4882a593Smuzhiyun #define setbits_le32(addr, set) setbits(le32, addr, set)
291*4882a593Smuzhiyun #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
292*4882a593Smuzhiyun
293*4882a593Smuzhiyun #define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
294*4882a593Smuzhiyun #define setbits_be16(addr, set) setbits(be16, addr, set)
295*4882a593Smuzhiyun #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
296*4882a593Smuzhiyun
297*4882a593Smuzhiyun #define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
298*4882a593Smuzhiyun #define setbits_le16(addr, set) setbits(le16, addr, set)
299*4882a593Smuzhiyun #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
300*4882a593Smuzhiyun
301*4882a593Smuzhiyun #define clrbits_8(addr, clear) clrbits(8, addr, clear)
302*4882a593Smuzhiyun #define setbits_8(addr, set) setbits(8, addr, set)
303*4882a593Smuzhiyun #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
304*4882a593Smuzhiyun
virt_to_phys(void * vaddr)305*4882a593Smuzhiyun static inline phys_addr_t virt_to_phys(void *vaddr)
306*4882a593Smuzhiyun {
307*4882a593Smuzhiyun return (phys_addr_t)((unsigned long)vaddr);
308*4882a593Smuzhiyun }
309*4882a593Smuzhiyun
310*4882a593Smuzhiyun #endif /* __ASM_ARC_IO_H */
311